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Abstract: Vitamin C, a water-soluble vitamin with strong reducing power, cannot be synthesized
by the human body and participates in a variety of important biochemical reactions. Vitamin C is
widely used in the pharmaceutical, food, health care, beverage, cosmetics, and feed industries, with
a huge market demand. The classical two-step fermentation method is the mainstream technology
for vitamin C production. D-sorbitol is transformed into L-sorbose by Gluconobacter oxydans in
the first step of fermentation; then, L-sorbose is transformed into 2-keto-L-gulonic acid (2-KGA)
by a coculture system composed of Ketogulonicigenium vulgare and associated bacteria; and finally,
2-KGA is transformed into vitamin C through chemical transformation. The conversion of L-sorbose
into 2-KGA in the second fermentation step is performed by K. vulgare. However, considering the
slow growth and low 2-KGA production of K. vulgare when cultured alone, it is necessary to add an
associated bacteria to stimulate K. vulgare growth and 2-KGA production. Although the mechanism by
which the associated bacteria promote K. vulgare growth and 2-KGA production has extensively been
studied, this remains a hot topic in related fields. Based on the latest achievements and research, this
review summarizes the metabolic characteristics of K. vulgare and associated bacteria and elucidates
the mechanism by which the associated bacteria promote the growth and 2-KGA production of
K. vulgare.

Keywords: Vitamin C; 2-keto-L-gulonic acid; mixed fermentation; associated bacteria

1. Introduction

Vitamin C, a water-soluble vitamin of vital importance to the human body, participates
in many important biochemical reactions in organisms and contains an unsaturated enediol
structure, thus having a strong reducing ability. In addition to its antioxidant function,
vitamin C is involved in collagen synthesis, hormone synthesis, carnitine synthesis, gene
transcription, regulation of translation, L-tyrosine catabolism, and iron absorption in
humans [1]. As primates, guinea pigs, and fish lack gulonolactone oxidase (GULO), the
enzyme required for vitamin C synthesis, they rely on exogenous vitamin C intake [2].
Vitamin C is widely used in the pharmaceutical, food, health, beverage, cosmetic, and feed
industries [3] and has a huge market demand.

At present, vitamin C is primarily produced through the classical two-step fermenta-
tion process (Figure 1). Specifically, in the first step of fermentation, Gluconobacter oxydans
converts D-sorbitol into L-sorbose, which is a fast and efficient process. By adding 300 g/L
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D-sorbitol in batch feeding, the yield of L-sorbose reaches 279.7 g/L at 16 h [4]. Then, in
the second fermentation step, L-sorbose is converted into 2-keto-L-gulonic acid (2-KGA)
through a coculture system composed of Ketogulonicigenium vulgare and associated bacteria.
Subsequently, 2-KGA is converted to vitamin C by esterification and lactonization via
chemical catalysis. Among these reactions, the transformation of L-sorbose to 2-KGA takes
a long time, with a low yield and conversion rate (Table 1), so it is the committed step that
determines the yield and cost of vitamin C.
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Figure 1. The process of producing the vitamin C precursor 2-keto-L-gulonic acid by two-step
fermentation.

Table 1. Fermentation yield of the coculture of K. vulgare and different associated bacteria.

Associated Bacteria Fermentation
Container

Time
(h)

L-Sorbose
Concentration

(g/L)

2-KGA
Concentration

(g/L)

Conversion
Rate
(%)

References

Xanthomonas maltophilia IFO12692 3 L fermentor 60 126 124.0 - [5]
Bacillus cereus 112 Flask 45 85 63.4 - [6]

Bacillus megaterium 116 Flask 45 85 64.5 - [6]
Bacillus megaterium 116 and Bacillus

cereus 112 (1:3, v/v) Flask 45 85 69.0 - [6]

Bacillus cereus HB601 Flask 96 80 - 93.0 [7]
Bacillus thuringiensis 320 260 m3 fermentor 48 88–92 90.2 94.5 [8]

Bacillus endophyticus Hbe603 Flask 72 - 70.0 93.0 [9]
Bacillus subtilis A9 Flask 48 92.5 71.2 - [10]
Bacillus cereus 112 Flask 55 110 98.5 89.5 [11]

Bacillus pumilus SH-B9 Flask 72 80 63.1 - [12]
Saccharomyces cerevisiae VTC2 Flask - 20 13.2 - [13]

Although the two-step fermentation method has advantages such as mature technol-
ogy and high yield, it suffers from shortcomings such as high energy consumption, large
equipment investment, and complex operation brought about by the two sterilization and
fermentation steps. Therefore, extensive research has been conducted on one-step fermen-
tation, and some researchers have achieved high 2-KGA yields with such an approach.
For example, sorbose dehydrogenase (SDH) and sorbosone dehydrogenase (SNDH) of
G. oxydans T100 were coexpressed in G. oxydans G624, which was a chemical mutation to
inhibit the L-idonate pathway and the replacement of the original promoter with that of
Escherichia coli tufB, resulting in a 2-KGA yield of 130 g/L from 150 g/L of D-sorbitol [14].
Wang et al. [15] deleted the gene involved in the L-sorbose metabolism of G. oxydans and
cocultured G. oxydans with K. vulgare, obtaining a 2-KGA yield of 76.6 g/L within 36 h.
Zhou et al. used the Gluconobacter oxydans ATCC9937 to direct the production of 2-KGA
from D-glucose by balancing intracellular and extracellular D-glucose metabolic flux. The
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2-KGA titer reached 30.5 g/L [16]. Despite some progress, the developed one-step fermen-
tation method is not yet suitable for industrial production because of the low yield and low
conversion rate.

The coculture process has been widely applied in wastewater treatment, biodegra-
dation of textile azo dyes, treatment of contaminated soil, production of biofuels, and
various bulk chemicals and natural products, with high application value [17]. Compared
to monoculture, coculture systems can perform more complex tasks and have higher stabil-
ity and robustness to environmental disturbances [17,18]. In addition, the coculture system
can alleviate the growth damage or poor biosynthetic behavior of a single strain caused
by excessive cell resource consumption and heavy metabolic burden through division of
labor strategies [19]. The coculture system not only makes tasks that cannot be completed
by a single strain possible, such as the coculture of Clostridium thermocellum to efficiently
hydrolyze cellulose and Thermoanaerobacterium saccharolyticum to produce ethanol from
sugars, which produced 38 g/L of ethanol from 92 g/L of avicel [20], but also improves
yield and fermentation intensity, such as the coculture of associated bacteria with K. vulgare
for 2-KGA production.

In the second step of the two-step fermentation method, K. vulgare, which is responsible
for converting L-sorbose into 2-KGA, grows slowly and hardly produces 2-KGA when
cultured alone [21,22]. However, when cocultured with associated bacteria that neither
metabolize L-sorbose nor produce 2-KGA, K. vulgare can grow smoothly and efficiently
to produce 2-KGA. A variety of associated bacteria, such as Xanthomonas maltophilia [5],
Bacillus cereus, Bacillus megaterium [6], Bacillus thuringiensis [8], Bacillus endophyticus [9],
Bacillus subtilis [10], Bacillus pumilus [12], and Saccharomyces cerevisiae [13], have previously
been studied and exploited. Among them, B. megaterium is the most popular one for
industrial production.

Stable interactions in microbial consortia generally rely on communication between
cells through the coutilization of different substrates in the environment, the sequential
conversion and reutilization of substrates, the complement of metabolites, and other ways
to meet the normal growth of a single cell in a multicellular system [23]. However, in
the second step of the two-step fermentation process for vitamin C production, what
mechanism does the associated bacteria use to promote the growth of K. vulgare and the
production of 2-KGA? This has always been a research hotspot, and researchers have
conducted extensive research and in-depth exploration.

Zou, et al. [22] reviewed the characteristics of K. vulgare and B. megaterium, the research
methods of intercellular interaction, and the regulation of artificial microbial ecosystems.
Wang et al. [24] expounded on the current classic two-step fermentation process and other
potential routes for vitamin C production and summarized the challenges and shortcom-
ings of the one-step fermentation process. Zhang and Lyu [25] reviewed the exchange of
substances and intercellular communication between associated bacteria and K. vulgare.
Although the previous reviews described the interaction between K. vulgare and associ-
ated bacteria in the two-step fermentation process of producing 2-KGA from different
perspectives, they have not presented a summary of metabolic defects in different K. vul-
gare strains or metabolic commonalities among different associated bacteria. The present
review summarizes the metabolic defects of K. vulgare and the metabolic characteristics
of its associated bacteria and illustrates the mechanism by which associated bacteria can
promote K. vulgare growth and 2-KGA production. Not only does this article help provide
suggestions and guidance for subsequent research on vitamin C production, but it is also
helpful in elucidating the mechanism of mixed microbial symbiosis.

2. Metabolic Characteristics of K. vulgare
2.1. Enzymes and Electron Transfer Chains for the Production of 2-KGA

The conversion of L-sorbose to 2-KGA by K. vulgare is achieved by two dehydroge-
nases, sorbose/sorbosone dehydrogenase (SSDH) and SNDH. SSDH exhibits both sorbose
dehydrogenase and sorbosone dehydrogenase activities, catalyzing not only the conver-
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sion of L-sorbose to L-sorbosone but also the conversion of L-sorbose to 2-KGA [26,27].
SNDH is responsible for converting L-sorbosone into 2-KGA. It is worth noting that SSDH
and SNDH usually have multiple isoenzymes in the cell. For example, five SSDHs and
two SNDHs were found in K. vulgare WSH-001, and three SNDHs were found in K. vulgare
DSM 4025 [27,28]. The dual synthesis pathway of 2-KGA in K. vulgare and the multiple
isoenzymes of SSDH and SNDH accelerate the synthesis speed of 2-KGA and increase
the environmental adaptability of the enzyme catalytic process, which is an important
prerequisite for K. vulgare to become a 2-KGA production strain.

The hydrogen generated during the catalytic process of L-sorbose to 2-KGA by SSDHs
and SNDHs requires electron transfer chains to bind with oxygen and generate adenosine
triphosphate (Figure 2). With PQQ as the coenzyme, the electrons of SSDHs are transferred
to cytochrome c oxidase through cytochrome c551 and cytochrome c552 [29]. SNDHs use
PQQ as a coenzyme, and most SNDHs also have a binding site for heme C, transferring
electrons from substrate to membrane-bound cytochrome c by PQQ and heme C [28].
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2.2. Metabolic Defects of K. vulgare and the Effects of Different Substances on K. vulgare Growth
and 2-KGA Production

The bacteria that produce 2-KGA in the second step of the two-step fermentation
process have been mistaken for G. oxydans for a long time. However, Ur Ba Nce et al. [21]
classified these bacteria as Ketogulonigenium vulgare after phenotype and genotype analysis
in 2001. So far, whole-genome sequencing has been completed for K. vulgare Y25 [30],
WSH-001 [31], Hbe602 [32], SKV [33], and SPU B805 [34].

Deficiency of carbon metabolism has been reported in K. vulgare. For example, K.
vulgare SPU B805 and SKV have complete TCA and PP pathways and invalid EMP and
ED pathways, while K. vulgare WSH-001, Y25, and Hbe602 have complete TCA, ED, and
PP pathways and a nonfunctional EMP pathway [34]. However, 2-KGA generated by
the conversion of L-sorbose can be converted into 6-phospho-D-gluconate through L-
iduronic acid, 5-dihydro-D-gluconate, and D-gluonic acid, which can then enter the PP
pathway and the ED pathway [35]. Nevertheless, SSDHs in K. vulgare WSH001 can cat-
alyze D-sorbitol, L-sorbitol, glyoxal, methanol, ethanol, glycerol, 1-propanol, 2-propanol,
D-mannitol, inositol, D-xylitol, D-glucose, D-galactose, D-mannose, D-xylose, D-rhamnose,
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D-fructose, D-gluconic acid, D-glucuronic acid, δ-gluconate lactone, and D-lactose, whereas
glucose/sorbosone dehydrogenase (GSNDH) and SNDH have higher catalytic activity
against glyoxal, D-glucose, D-galactose, D-mannose, D-xylose, and D-rhamnose [27]. There-
fore, K. vulgare can utilize various carbon sources for growth. For example, strains 62A-
12APP, 266-13BPP, and DSM 4025TP can use carbon sources such as L-arabinose, cellobiose,
D-glucose, glycerol, inositol, D-lactose, maltose, D-mannose, D-rhamnose, D-sorbitol, and
L-sorbose for growth [21].

Genome-scale metabolic models (GSMMs) of K. vulgare WSH-001 have shown that the
insufficient biosynthesis of L-asparagine, L-glycine, L-cysteine, L-methionine, L-tryptophan,
adenine, guanine, thymine, thiamine, pantothenic acid, folic acid, and pyridoxal 5-phosphate
may be the cause of the poor growth in monoculture. For example, L-glycine, L-cysteine,
L-methionine, L-tryptophan, adenine, thymine, thiamine, and pantothenate were sepa-
rately removed in the fully chemically determined medium (CDM), which resulted in the
reduction of biomass formation of K. vulgare to 1, 21, 16, 1, 26, 57, 73, and 24%, respec-
tively [35,36]. K. vulgare Y25 lacks one or more enzymes in the de-novo biosynthesis path-
ways of L-histidine, L-glycine, L-lysine, L-proline, L-threonine, L-methionine, L-leucine,
and L-isoleucine [37]. K. vulgare Hbe602 lacks many amino acid synthesis pathways; only
10 kinds of amino acids are found in the cells, and the metabolic pathways of thiamine,
biotin and porphyrin, folic acid, and ubiquinone are incomplete [32]. Wang et al. [34]
reconstructed the carbon metabolic pathway of K. vulgare SPU B805 and predicted the
presence of synthesis defects in L-histidine, L-alanine, and L-aspartic acid.

Sulfur participates in the formation of important organic compounds such as
L-methionine, L-cysteine, L-cystine, biotin, Fe–S cluster proteins, and glutathione (GSH),
which play an important role in signal transduction, redox balance, promotion of gene
expression, and maintenance of basal metabolic activities [38]. SO4

2− cannot be converted
to SO3

2− in K. vulgare due to a defect in adenosine monophosphate reductase and adenosine
sulfate reductase [35]. Moreover, the insufficient supply of NADPH limits the continued
synthesis of SO3

2− to L-cysteine and L-methionine [39,40]. In addition to being a basic
component of proteins, L-cysteine is also an important precursor of GSH and CoA. As
an acyl carrier, CoA is involved in a variety of reactions in carbohydrate, fat, and amino
acid metabolism, and its deficiency directly limits the growth and metabolism of K. vulgare.
The addition of 1 g/L GSH to the culture medium increases cell growth, 2-KGA titer,
and intracellular CoA levels by 38.7, 45.5, and 85.3%, respectively, while the addition of
0.4 g/L L-cysteine increases the same indicators by 25.6, 35.8, and 44.7%, respectively [39].
The addition of sulfhydryl compounds such as reduced GSH and dithiothreitol (DTT)
increases K. vulgare growth and 2-KGA production approximately twofold and fivefold,
respectively [41]. As such, the addition of sulfur-containing compounds not only verifies
the sulfur metabolism defect of K. vulgare but also demonstrates that the sulfur metabolism
defect is one of the key factors in the slow growth and low 2-KGA production of K. vulgare
in monoculture. In addition, the sulfur metabolism defect of K. vulgare can hinder the
synthesis of two sulfur-containing vitamins, vitamin B1 and biotin.

In addition to being the basic unit of peptides and proteins, some amino acids are
involved in a variety of important microbial metabolisms, such as energy metabolism,
sulfur metabolism, and purine and pyrimidine synthesis; thus, metabolic defects of amino
acids directly limit the growth and metabolic activities of microorganisms. Some amino
acids can also play a crucial role in microbial resistance to adverse external environmental
factors. L-proline not only prevents the osmotic pressure generated by high concentrations
of 2-KGA from damaging K. vulgare cells by stabilizing proteins, subcellular structures, and
cell membranes, but also provides antioxidant stress protection for cells by maintaining
intracellular redox homeostasis and increasing catalase activity [42,43].

Four key enzymes in the folate synthesis pathway of K. vulgare WSH001 are defective.
Thus, K. vulgare WSH001 cannot synthesize folate [36]. Folate acts as a cofactor in the
cell, providing one-carbon compounds in many reactions and participating in the de-novo
biosynthetic pathways of amino acids, purines, and pyrimidines [44]. Therefore, the supply
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of folate and synthetic precursors can promote the growth of K. vulgare and its production
of 2-KGA. Folate derivatives, especially dihydrofolic acid, significantly increase the biomass
of K. vulgare LMP P-20356 and its production of 2-KGA [45]. In addition, by overexpressing
the folate synthesis gene cluster in K. vulgare, the biomass and yield of the recombinant
bacteria in the fermentor can be increased by 25 and 36%, respectively [44]. Adenine,
guanine, and thymidine all significantly promote the growth of K. vulgare, and since the
purine nucleotide and deoxythymidine biosynthesis pathways are folate-dependent, this
may be due to the requirement for folate compounds [45].

In addition to the effects on growth and metabolism, some nutrients can also affect the
cell size, morphology, and membrane structure of K. vulgare. Intracytoplasmic membranes
are formed by the invagination of the plasma membrane due to nutrient restriction or
stimulation by some nutrients, which is accompanied by a significant increase in membrane-
bound dehydrogenase activity [46]. Addition of 1 g/L GSH to the medium can lead to
4–6-fold elongation of K. vulgare cells (from (0.6 ± 0.2) × (0.5 ± 0.1) µm to (2.4 ± 0.7) ×
(0.6 ± 0.1) µm), a 3.6-fold increase in biomass, a 5.6-fold increase in 2-KGA production,
and the formation of intracytoplasmic membranes [40]. Similarly, reconstruction of the L-
threonine biosynthesis pathway in K. vulgare enables the cell size to change from (0.7 ± 0.2)
× (0.6 ± 0.1) µm to (1.5 ± 0.2) × (0.6 ± 1) µm, and the gene transcription levels of SNDH
and idonate-dehydrogenase (IDH) increase by 3.78 and 1.54 times, respectively [47].

Genome sequencing and the reconstruction of GSMMs systematically have predicted
the metabolic defects of K. vulgare. The addition of nutrients has further verified these
metabolic defects and revealed the effect of the metabolic defects on the growth and 2-KGA
production of K. vulgare. Notably, the study of the K. vulgare metabolic defects provides a
theoretical basis for the mechanism by which associated bacteria promote K. vulgare growth
and 2-KGA production, in addition to guiding endeavors to further improve the yield
under the coculture system.

3. Species and Metabolic Characteristics of Associated Bacteria
3.1. Species of Associated Bacteria

In the 1960s, Yin et al. invented a mixed culture system for 2-KGA production from
L-sorbose, which consisted of K. vulgare and an associated strain (Pseudomonas sp. or
Bacillus sp.) [24]. Although the associated bacteria can neither utilize L-sorbose nor trans-
form L-sorbose into 2-KGA [48], the addition of these bacteria to the mixed fermentation
system can significantly enhance the growth of K. vulgare and its production of 2-KGA.
Subsequently, a variety of associated bacteria have been developed and applied to promote
2-KGA production by K. vulgare (Table 1), and the strains of the Bacillus genus have shown
strong potential for application. Despite differences in fermentation containers, cultivation
conditions, and L-sorbose concentrations, these associated bacteria significantly increased
the yield and conversion rate, shortening the fermentation cycle. It is worth noting that
the coculture of B. megaterium and B. cereus as associated bacteria in mixed fermentation
with K. vulgare could achieve a higher 2-KGA yield than the addition of a single associated
bacteria [6]. Moreover, the mixed fermentation system composed of K. vulgare and G.
oxydans achieves a one-step fermentation with a high conversion rate from D-sorbitol to
2-KGA. In that system, G. oxydans is not only responsible for converting D-sorbitol to
L-sorbose but also plays a role similar to associated bacteria [15].

3.2. Metabolic Characteristics of Associated Bacteria

According to the records of Bergey’s Manual of Systematic Bacteriology [49], B. subtilis,
B. licheniformis, B. megaterium, B. thuringiensis, and most Pseudomonas species can grow
with ammonium salt or nitrate as the only nitrogen source. B. macerans can grow in an
ammonium medium supplemented with vitamin H and vitamin B1. The growth of B. cereus
requires the addition of one or more amino acids to the culture medium, and some strains
of B. pumilus also require amino acids in addition to vitamin H. The growth requirements of
Xanthomonas are complex, and the culture medium usually needs to contain L-methionine,
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L-glutamate, and niacin. The fermentation medium usually contains corn steep liquor as
an organic nitrogen source, which can fully meet the nutritional requirements of all types
of associated bacteria. Furthermore, the metabolic defects of the associated bacteria do not
conflict with the metabolic defects of K. vulgare; the medium can provide nutrients that
neither the associated bacteria nor K. vulgare can synthesize. In addition, these associated
bacteria with metabolic defects can meet the needs of K. vulgare in the synthesis of other
nutrients. Thus, although B. macerans, B. cereus, B. pumilus, and X. maltophilia lack the
ability to synthesize certain amino acids or vitamins, they can still serve as excellent
associated bacteria.

Various nutrients that are easily destroyed by high-temperature sterilization, such as
vitamins and sulfur-containing amino acids—which can promote the growth and 2-KGA
production of K. vulgare but cannot be synthesized due to K. vulgare’s metabolic defects—are
primarily synthesized by the associated bacteria. Therefore, accompanying bacteria must
have strong biosynthetic abilities. The reported related bacteria can grow in inorganic
nitrogen sources or inorganic nitrogen source media with only a few amino acids and
vitamins added, demonstrating their potential to synthesize all or most of the nutrients
required for their growth and reproduction. For example, in the GSMM of B. megaterium
WSH002, the reactions of amino acid metabolism, nucleic acid metabolism, and cofactor
and vitamin metabolism account for 23.1, 12.9, and 14.0%, respectively [50], ensuring its
strong ability to synthesize nutrients.

Rapid growth, vigorous metabolism, and abundant enzyme systems are also common
characteristics and important prerequisites of associated bacteria. First, in the early stage
of fermentation, associated bacteria secrete various digestive enzymes to degrade the
macromolecular nutrients, especially nitrogen sources, such as converting corn steep liquor
powder into small peptides or amino acids that can be easily absorbed and utilized by
K. vulgare. Second, the vigorous metabolism of associated bacteria ensures their rapid
utilization of various nutrients synthesized in the culture medium, except for L-sorbose,
for growth and conversion into their sugars, lipids, amino acids, proteins, and vitamins.
In addition, Bacillus species can produce spores and show greater potential than other
associated bacteria, possibly due to the release of intracellular nutrients into the extracellular
space by the formation and release of the spores at the appropriate time.

Although various excellent associated bacteria have been developed, screening new
types of associated bacteria, modification of the already known associated bacteria, and
evolution of bacteria under human intervention may still be effective means to achieve
higher production yields. For example, L-sorbose in the culture medium can inhibit the
growth of associated bacteria; however, the strain of L-sorbose–tolerant associated bacteria,
B. cereus 21, obtained through experimental evolution, can achieve higher conversion rates
at higher concentrations of L-sorbose when cocultured with K. vulgare [11].

4. Effect of Associated Bacteria on the Growth and 2-KGA Production of K. vulgare
4.1. Fermentation Process

In the second step of the two-step fermentation method, K. vulgare and associated
bacteria are usually prepared into mixed bacterial seeds through cocultivation and then
inoculated into the fermentation medium [51]. It has been shown that the centrifugation
supernatant and cytoplasmic matrix of B. megaterium can promote the growth of K. vulgare,
and the presence of B. megaterium significantly shortens the lag time of K. vulgare [52]. At
this stage, the associated bacteria grow rapidly, and the biomass of K. vulgare increases
slowly, producing only a small amount of 2-KGA [48,51].

The coculture fermentation medium usually includes L-sorbose, corn steep liquor,
urea, potassium dihydrogen phosphate, magnesium sulfate, and calcium carbonate [10,53].
Given that the associated bacteria cannot use L-sorbose, corn steep liquor is the only energy
source for the associated bacteria, besides providing carbon sources, nitrogen sources, and
growth factors. With the progress of fermentation, the nutrient components in the medium
are rapidly consumed, leading to a lack of nutrition and especially energy. Poor nutritional
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conditions lead to the formation of spores by Bacillus [48,54]. Subsequently, Bacillus releases
spores, which are accompanied by cell lysis, and the associated bacteria that cannot form
spores undergo autolysis. As a result, peptides, proteins, purines, pyrimidines, and small
molecules from the cytoplasm are released, which provides new nutrients for K. vulgare.
From this moment on, K. vulgare enters the stage of rapid growth and rapid transformation
of L-sorbose to 2-KGA [51].

The associated bacteria quickly absorb nutrients from the culture medium, except
for L-sorbose, and synthesize the nutrients required for their own growth. Subsequently,
the associated bacteria release new components and ratios of nutrients through secretion,
release of spores, or cell lysis, which are utilized by K. vulgare. This phenomenon of
sequential conversion and reutilization of substrates is common in cocultivation systems,
such as the process of cellulose-to-ethanol transformation in the cocultivation of cellulose-
decomposing microorganisms and ethanol-producing microorganisms [17]. Nutrients with
new compositions and proportions are released by associated bacteria, stimulating the
growth of K. vulgare and the production of 2-KGA.

4.2. Supplementation of Key Substance

Although K. vulgare has defects in amino acid, vitamin, coenzyme, and sulfur
metabolism, it has a strong resource utilization and transportation system. In the GSMM
of K. vulgare WSH-001, 103 genes were found responsible for the transport of exogenous
polypeptides, and about 58 genes encoded aminopeptidases or peptidases that could hy-
drolyze polypeptides into amino acids [35]. Maximizing the use of nutrient elements in the
environment is the way for many auxotrophic strains to survive in nature, and this is why
associated bacteria can promote the growth and 2-KGA production of K. vulgare.

On the soft agar medium plate, the increase in amino acid concentration in the medium
around K. vulgare colonies attracted B. megaterium to move and aggregate to K. vulgare;
erythrose, erythritol, avian purines, and inositol were depleted by K. vulgare; and 2-KGA
content in agar increased dramatically [54]. The same movement phenomenon was found
when K. vulgare was cocultured with B. thuringiensis. Erythrose, erythritol, guanine, and
inositol accumulated around B. thuringiensis were consumed by K. vulgare, and the pro-
duction of 2-KGA increased sharply [55]. Additionally, B. megaterium WSH002 can secrete
pantothenic acid and L-cysteine, which may be two potential growth promoters of K. vulgare
because they are precursors of CoA [50]. Other studies have also shown that the adenine,
guanine, and hypoxanthine required for K. vulgare in the middle stage of fermentation
probably come from the decomposition of the associated bacteria [56].

In addition to the small-molecule metabolites, the associated bacteria also secrete
proteins that can promote the growth and 2-KGA production of K. vulgare. B. megaterium
secretes two different proteins, with molecular weights of 30–50 kDa and > 100 kDa, which
can promote the growth of K. vulgare and increase the production of 2-KGA [37]. However,
the specific protein and the mechanism by which it promotes K. vulgare growth and 2-KGA
production have not yet been isolated and studied.

Reasonable utilization of material exchange between microorganisms can improve
the biomass and product yield of coculture systems. For example, in the nitrogen- and
fatty acid-limiting environment of water kefir, the presence of Saccharomyces cerevisiae
improves the growth of Lactobacillus hordei by providing gluconate, fructose, amino acids,
fatty acids, etc. [57]. Yeast utilizes oxygen respiration to produce carbon dioxide, while
microalgae convert carbon dioxide into lipids and oxygen through photosynthesis [58].
Coculture of Rhodotorula glutinis and Scenedesmus obliquus in a photobioreactor increases
the fermentation biomass by 40–50% and total lipids by 60–70%. [59]. However, in the
continuous transformation and reutilization process of substrates, microorganisms that
first utilize these substances will consume a portion for growth and metabolism; reducing
these losses can improve the conversion efficiency of substrates. Similarly, in the coculture
process of Bacillus and K. vulgare, a considerable part of the limited nutrients in the medium
is locked in the spores. It has been shown that using lysozyme to lyse B. megaterium
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releases more intracellular substances than spore formation; the growth rate of K. vulgare
increases by 27.4%, and the productivity of 2-KGA increases by 28.2%. [52]. Second, in
the fermentation stage after the formation of spores, most of the nutrients for K. vulgare
growth are provided by the lysate produced during the process of spore release by Bacillus,
which leads to the problem that the substances released after spore decomposition may
not completely meet the needs of K. vulgare. For example, in the coculture system with
B. megaterium as associated bacteria, B. megaterium forms spores within 7–22 h, but the
extracellular contents of L-proline, L-cysteine, L-valine, L-phenylalanine, and L-arginine
remain 0 during 10–70 h of fermentation [60]. This indicates that these nutrients are leaked
at low concentrations or that they are quickly absorbed and utilized by K. vulgare during
spore release, and nutrients such as L-cysteine and L-proline, which cannot be synthesized
by K. vulgare itself, may be factors limiting K. vulgare’s growth and 2-KGA production at
this time.

4.3. Alleviation of Oxidative Pressure in Fermentation Systems

Autoxidation of flavin dehydrogenase [61,62] and non-respiratory flavoproteins in
some metabolic pathways [63–65] can generate reactive oxygen species (ROS), including
superoxide anion, hydrogen peroxide, hydroxyl radicals, and nitric oxide. ROS are natural
products of oxygen metabolism in aerobic organisms. Excessive levels of ROS in cells cause
oxidative stress, which results in DNA damage, cell membrane peroxidation, inactivation
of enzymes and cofactors, and eventually cell death [66]. The presence of cytochrome c in K.
vulgare couples the production of 2-KGA with the respiratory chain [27], and ROS inhibits
the growth of K. vulgare and the production of 2-KGA [67]. Except for the conversion
process of L-sorbose to 2-KGA and other metabolic activities that produce a lot of ROS,
2-KGA as the target product also causes oxidative stress in K. vulgare [68,69].

To combat the ROS-induced damage to cells, biological organisms have developed a
series of enzymes that can eliminate ROS, including superoxide dismutase, catalase, and
peroxidase. The associated bacteria can induce the upregulation of these ROS-scavenging
enzymes. For example, S. cerevisiae induces upregulation of superoxide dismutase, catalase,
and oxidative stress–related genes (sod, cat, and gpd), thereby leading to increased 2-KGA
production by K. vulgare [13]. Proteomic studies have shown that the enzymes in the
microbial consortium that maintain the metabolic reduction environment of cells, including
superoxide dismutase, glutathione S-transferase, NADPH: quinone oxidoreductase, and
glucose-6-phosphate dehydrogenase, reach higher levels of expression during 18–23 h of
fermentation [56].

Some small-molecular substances released by the associated bacteria may also help K.
vulgare resist ROS. Proline can directly eliminate ROS and may also protect the stability of
a variety of antioxidant enzymes [70]. L-cysteine can be used to synthesize GSH—the most
important antioxidant in cells. Pyridoxine can quench ROS [71]. Vitamin C can alleviate
oxidative stress in the environment and promote the growth and 2-KGA production of
K. vulgare. Hence, using Saccharomyces cerevicae VTC2, which is genetically engineered
to produce vitamin C from D-glucose, as an associated bacteria could increase 2-KGA
production by 25% compared to the original strain [13]. Adenine, guanine, xanthine, and
hypoxanthine produced by the associated bacteria may contribute to K. vulgare’s resistance
to ROS [56]. Furthermore, the effect of B. megaterium–engineered bacteria that cannot form
spores in the coculture system is weakened, which may be due to the absence or reduction
of antioxidant substances called sporulenes, produced during the sporulation stage of B.
megaterium [72,73].

Siderophores are secreted by microorganisms such as bacteria and fungi to obtain
iron from the environment, and they can efficiently combine with low-molecular-weight
substances of iron in the surrounding environment [74,75]. Most aerobic and facultative
anaerobic microorganisms can synthesize at least one siderophore, and microorganisms
growing under aerobic conditions require iron for a variety of functions, including the
reduction of oxygen for ATP synthesis, the reduction of nucleoside precursors of DNA,
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heme formation, and other basic purposes [76]. It has been shown that K. vulgare cannot
synthesize siderophores but has a siderophore-absorption system, and the addition of
500 µg/L Bacillus pumilus SY-A9 siderophores increases the titer of 2-KGA by 71.45% [12].
Further research has shown that siderophores cause overexpression of iron absorption
system–related genes, electron transfer chain–related genes, ATP synthase–related genes,
antioxidant enzyme–related genes, and 2-KGA production enzyme–related factors in K.
vulgare 25B-1, thereby reducing oxidative stress and ensuring energy metabolism [12].

Despite the fact that the associated bacteria play a significant role in helping K. vulgare
resist oxidation, the addition of antioxidant substances can further alleviate the oxidative
stress of the fermentation system and improve the yield of 2-KGA. The addition of glu-
tathione and oxidized glutathione with a concentration ratio of 50:1 in the fermentation
system of B. endophyticus ST-1 as the associated bacteria increases the activities of total
antioxidant capacity (t-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) in
the fermentation system and upregulates the expression of genes related to superoxide
dismutase, such as sod, gst, gr, zwf, and gp, thereby eliminating oxidative stress, improving
2-KGA production, and shortening fermentation time [67]. Moreover, during the period
when K. vulgare produces ROS due to the rapid dehydrogenation of L-sorbose to 2-KGA,
the associated bacteria usually form spores or cell lysates. The antioxidant substances
provided by associated bacteria lack a sustained supply during the high-speed production
period of 2-KGA, so manual intervention to alleviate the oxidative pressure of K. vulgare in
the later stage of fermentation may further improve the fermentation intensity.

5. Conclusions

The second fermentation process in the production of vitamin C by the two-step
fermentation method is an artificial microbial community system with a clear division of
labor composed of the strain K. vulgare (responsible for converting L-sorbose into 2-KGA)
and associated bacteria (responsible for promoting K. vulgare growth and its production
of 2-KGA). Due to deficiencies in the synthesis of amino acids, purines, pyrimidines, and
vitamins, as well as carbon metabolism and sulfur metabolism pathways, K. vulgare grows
slowly and produces low 2-KGA when cultured alone. However, associated bacteria
possess extremely strong biosynthetic abilities and act as nutrient synthesis factories in
coculture systems to synthesize a variety of nutrients for K. vulgare. Moreover, the nutrient
availability in the culture medium is relatively scarce, which leads to the formation of spores
by the associated bacteria, such as Bacillus, thereby releasing a large amount of intracellular
nutrients during cell lysis and spore release after rapidly consuming nutrients. In the
coculture system, nutrients, especially nitrogen sources, are transformed by associated
bacteria and subsequently utilized by K. vulgare, supplementing K. vulgare’s metabolic
defects and meeting K. vulgare’s growth and 2-KGA production. In addition to producing
and providing necessary nutrients for K. vulgare, the associated bacteria can also regulate
the redox environment of the fermentation system, slow down the oxidative stress of K.
vulgare, and ensure a good external environment for K. vulgare’s 2-KGA production.

Previous studies have sequenced the genomes of several K. vulgare strains, recon-
structed the metabolic models, and predicted the metabolic defects of K. vulgare. However,
cultivating K. vulgare alone to achieve a high yield of 2-KGA has not yet been realized.
More accurate exploration of enzymatic properties and gene annotation, research on the
promoting effects of more types of nutrients on the growth and 2-KGA production of K.
vulgare, and the development of a more complex high-yield 2-KGA fermentation medium
will further deepen the understanding of K. vulgare metabolic defects and nutrient exchange
with associated strains in mixed fermentation.

The sequential conversion and reutilization process of substrates in coculture systems
usually results in substrate loss; take carbon sources, for instance, which are used for
respiratory metabolism and cell components. For Bacillus, some nutrients are locked in
the spore and cannot be utilized by K. vulgare. Further promoting the release of nutrients
from Bacillus spores may further promote K. vulgare’s growth and 2-KGA production.
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Moreover, in the later stage of cocultivation, K. vulgare produces a large amount of ROS
due to the production of 2-KGA, and the associated bacteria are in a spore or cell lysis state.
During this period, using chemical reducing agents to stabilize the redox potential of the
fermentation environment will be beneficial for the fermentation process. Furthermore, the
nutrients released by the associated bacteria cannot perfectly meet the needs of K. vulgare
in terms of composition and proportion. It is necessary to study the addition of nutrients
to meet the growth needs of K. vulgare after the associated bacteria form spores or lysis.
Additionally, enhancing the synthesis and release of key nutrients in associated bacteria
through genetic engineering is an ideal means to improve the industrial production of
2-KGA. Moreover, adding different forms of associated bacteria and their secreted nutrients
in the later stage of fermentation, such as active or inactivated cell-containing cultures,
cultures that, after spore release or bacterial autolysis, or the supernatant of these cultures,
may further shorten the fermentation cycle and increase 2-KGA production.
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