
Citation: Shevchenko, A.R.;

Mayorova, K.A.; Chukhchin, D.G.;

Malkov, A.V.; Toptunov, E.A.;

Telitsin, V.D.; Rozhkova, A.M.;

Zorov, I.N.; Rodicheva, M.A.; Plakhin,

V.A.; et al. Enzymatic Hydrolysis of

Kraft and Sulfite Pulps: What Is the

Best Cellulosic Substrate for Industrial

Saccharification? Fermentation 2023, 9,

936. https://doi.org/10.3390/

fermentation9110936

Academic Editors: Alexander

Rapoport and Fei Huang

Received: 18 September 2023

Revised: 25 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fermentation

Article

Enzymatic Hydrolysis of Kraft and Sulfite Pulps: What Is the
Best Cellulosic Substrate for Industrial Saccharification?
Aleksandr R. Shevchenko 1 , Ksenia A. Mayorova 1 , Dmitry G. Chukhchin 1, Alexey V. Malkov 1,
Evgeniy A. Toptunov 1 , Vadim D. Telitsin 1,2, Aleksandra M. Rozhkova 3 , Ivan N. Zorov 2,3,
Maria A. Rodicheva 1, Vadim A. Plakhin 1, Denis A. Akishin 1, Daria N. Poshina 4 , Margarita V. Semenova 3,
Andrey S. Aksenov 1,* and Arkady P. Sinitsyn 2,3

1 Northern (Arctic) Federal University, Northern Dvina Embankment 17, 163000 Arkhangelsk, Russia;
a.shevchenko@narfu.ru (A.R.S.); ksu100103@yandex.ru (K.A.M.); dimatsch@mail.ru (D.G.C.);
a.malkov@narfu.ru (A.V.M.); zhenyatope@gmail.com (E.A.T.); vadim.telitsin@gmail.com (V.D.T.);
rodichevam@yandex.ru (M.A.R.); v.plahin@narfu.ru (V.A.P.); denis28_mbs@mail.ru (D.A.A.)

2 Chemical Department, Lomonosov Moscow State University, Vorobyevy Gory, 1–11, 119992 Moscow, Russia;
inzorov@mail.ru (I.N.Z.); apsinitsyn@gmail.com (A.P.S.)

3 Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Leninsky prospect,
33, build. 2, 119071 Moscow, Russia; a.rojkova@fbras.ru (A.M.R.); margs@mail.ru (M.V.S.)

4 Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg,
Russia; poschin@yandex.ru

* Correspondence: a.s.aksenov@narfu.ru; Tel.: +7-921-2915446

Abstract: Sulfite and kraft pulping are two principal methods of industrial delignification of wood.
In recent decades, those have been considered as possibilities to pretreat recalcitrant wood lignocellu-
losics for the enzymatic hydrolysis of polysaccharides and the subsequent fermentation of obtained
sugars to valuable bioproducts. Current work compares chemistry and technological features of
two different cooking processes in the preparation of polysaccharide substrates for deep saccharifi-
cation with P. verruculosum glycosyl hydrolases. Bleached kraft and sulfite pulps were subjected to
hydrolysis with enzyme mixture of high xylanase, cellobiohydrolase, and β-glucosidase activities
at a dosage of 10 FPU/g of dry pulp and fiber concentration of 2.5, 5, and 10%. HPLC was used to
analyze soluble sugars after hydrolysis and additional acid inversion of oligomers to monosaccha-
rides. Kraft pulp demonstrated higher pulp conversion after 48 h (74–99%), which mostly resulted
from deep xylan hydrolysis. Sulfite-pulp hydrolysates, obtained in similar conditions due to higher
hexose concentration (more than 50 g/L), had higher fermentability for industrial strains producing
alcohols, microbial protein, or organic acids. Along with saccharification, enzymatic modification of
non-hydrolyzed residues occurred, which led to decreased degree of polymerization and composition
changes in two industrial pulps. As a result, crystallinity of kraft pulp increased by 1.3%, which
opens possibilities for obtaining new types of cellulosic products in the pulp and paper industry. The
high adaptability and controllability of enzymatic and fermentation processes creates prospects for
the modernization of existing factories.

Keywords: wood lignocellulose; pretreatment; enzymatic saccharification; glucose; kraft pulping;
sulfite delignification; biomodified pulp

1. Introduction

Food security principles around the world imply an increasing use of abundant non-
starch polysaccharide sources, including wood, to produce important industrial bio-based
products. That requires developing new technologies, including primarily efficient enzy-
matic hydrolysis of polysaccharides [1,2]. Deep saccharification is one of the main tasks
in this context; it remains challenging due to the recalcitrant structure of wood lignocel-
lulose [3,4]. Prior to the implementation of cost-effective techniques for cellulose and

Fermentation 2023, 9, 936. https://doi.org/10.3390/fermentation9110936 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation9110936
https://doi.org/10.3390/fermentation9110936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0003-1220-9234
https://orcid.org/0000-0001-7009-2500
https://orcid.org/0000-0001-8441-788X
https://orcid.org/0000-0003-4901-4705
https://orcid.org/0000-0001-5342-0605
https://orcid.org/0000-0003-1013-1357
https://doi.org/10.3390/fermentation9110936
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9110936?type=check_update&version=1


Fermentation 2023, 9, 936 2 of 15

hemicelluloses hydrolysis to fermentable sugars with advanced enzymes, an adequate
pretreatment of raw substrate must be developed. A large number of researchers have pro-
posed various pretreatment techniques based on physical [5,6], chemical [7], biological [8,9],
and combined [10] treatment of wood lignocellulose. Nevertheless, the development of
the most effective pretreatment method still remains urgent and continues to this day [11].
Finally, due to hierarchically ordered structure of cell wall and high lignin content in trees,
pretreatment methods successfully applied in industry for non-wood lignocellulosics can
hardly be adapted to pretreat raw wood for the production of sugars and subsequently
bio-products with enzymes [12].

Novozhilov et al. first considered the industrial pulping of raw wood as a commer-
cially available method for the effective pretreatment of wood polysaccharides to enzymatic
hydrolysis [13,14]. The industrial wood-to-pulp processing provides leaching of most of
lignin, partial destruction, and dissolution of hemicelluloses, as well as a reduction of cellu-
lose degree of polymerization, increasing fiber swelling, etc. The widely applied sulfate
or kraft pulping process implies reduced sulfur compounds and active alkali reagent and
represents the dominant technology for production of paper-grade pulps from wood. It
was shown that kraft pulping significantly increased the accessibility of hardwoods and
softwoods polysaccharides for cellulases and hemicellulases [15–17]. Bleaching is one way
of dealing with residual lignin as a negative factor for enzymatic saccharification. Bleached
pulps have already been considered as an adequate substrate for enzymatic treatment [18].
Sulfite delignification was historically the first large-scale industrial pulping process [19]; it
implies treatment with sulfur dioxide in acidic medium and at high temperatures for the
production of commercial sulfite pulps of various applications. Enzymatic saccharification
of sulfite pulps has been poorly studied so far; nevertheless, commercial cellulases have
been applied in sulfite pulp production [20]. Various techniques have been proposed to
modify sulfite pulping and produce sulfite pulps that are more suitable for enzymatic
hydrolysis [21]. These include lignin conversion to lignosulfonates, as well as the applica-
tion of the lignin reactive sites blocking agents to limit the enzyme adsorption onto lignin.
An alternative approach is the enzymatic hydrolysis of industrially bleached pulps with
minimal lignin content.

Successful pretreatment enables the complicated lignocellulose structure to be targeted
by fungal glycosyl hydrolases (GHs). Generally GHs mixtures include endoglucanases,
cellobiohydrolases, β-glucosidases, xylanases, and mannanases acting by endo- and exo-
mechanisms, as well as accessory enzymes [22,23]. Acting together, these enzymes convert
the main wood polysaccharides to fermentable sugars. However, simply maximizing the
amount of carbohydrate active enzymes is not enough; the composition of the mixture and
the ratio of individual enzymes are crucial for effective saccharification. The synergistic
effect between cellulases and hemicellulases allows for a high saccharification level in
cellulosic pulp with low enzyme dosages less than 10 filter paper units per 1 g of substrate.
The generation of a cellulolytic complex with a balanced composition and high productivity
is possible by means of genetic engineering. Currently, recombinant GHs produced by Peni-
cillium fungi have received large-scale development and have demonstrated high efficiency
in long-term studies [24,25] towards different cellulosic substrates [26], including good per-
formance on kraft pulps [13,15,27]. In the 1990s, researchers of the Department of Chemical
Enzymology of the Moscow State University started the development of laboratory-scale
and industrial enzyme mixture derived from highly active P. verruculosum strains, which
have already found applications as feed additives in animal breeding, increasing nutritional
value [28,29]. The optimization of P. verruculosum enzyme compositions creates prospects
for the successful saccharification of wood lignocellulose. The investigations of enzyme
performance on less studied sulfite cellulosic pulp are now of great interest.

The enzymatic hydrolysis of cellulosic substrates produces fermentable sugars, glu-
cose, xylose, mannose, and others; most of those can be converted into bioethanol [30]
or other highly valuable products, such as organic or amino acids [31,32]. Another type
of product is non-hydrolyzed residue, insoluble biomodified cellulose, which represents
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a complex of partially hydrolyzed cellulose, xylan, and mannan. Due to the high hy-
drolysis level, its composition and properties differ essentially from the original, which
could be favorable in terms of application [33,34]. Through comprehensive utilization of
sugars, aromatic compounds, and insoluble products from lignocellulose, one can obtain
the maximum benefit from non-food plant resources.

The current study presents a comparative analysis of enzymatic saccharification of
two commercially available cellulosic pulps with P. verruculosum cellulases and xylanases—
understudied sulfite pulp versus well-studied kraft pulp. The aim of the work was to
validate existing industrial techniques for pulping and bleaching as effective pretreatment
options of wood lignocelluloses and to select the optimal schemes for production of soluble
fermentable sugars and valuable insoluble residues from wood polysaccharides.

2. Materials and Methods
2.1. Cellulosic Pulps

We used never-dried bleached spruce sulfite pulp and never-dried bleached hardwood
kraft pulp (birch and aspen mixture 1:1). Sulfite and kraft pulps were commercially
available and were produced according to the schemes presented in Figure S1 and Figure S2,
respectively. The bleaching scheme for kraft pulp is presented in Figure S3. Commercial
sulfite pulp was bleached in six stages using chlorine- and alkali-based agents. To determine
the composition of raw pulps, an exhaustive hydrolysis (enzyme dosage of 30 FPU/g)
was carried out with P. verruculosum enzymes according to [13]. The polysaccharide
compositions of initial pulps (Table 1) were further calculated from the monosaccharide
content of hydrolysates.

Table 1. Pulp composition.

Component Kraft Pulp, % Sulfite Pulp, %

Cellulose 72.0 ± 1.4 78.9 ± 1.3
Xylan 23.7 ± 1.1 7.0 ± 0.5

Mannan 3.0 ± 0.6 9.1 ± 0.5
Others 1.3 ± 0.4 5.0 ± 1.5

2.2. Enzymes

The enzyme mixture was produced by ascomycete P. verruculosum Xyl35/Xyl8 [35].
The enzyme dosage used in hydrolysis experiments was calculated from the specific
cellulase activity on filter paper and was adjusted to 10 filter paper units (FPU) per 1 g of dry
pulp. Corresponding activities towards carboxymethylcellulose (CMC), microcrystalline
cellulose (MCC), beech xylan, galactomannan, p-NF-cellobioside (cellobiase activity), and
p-NF-β-D-glucopyranoside (β-glucosidase activity) were determined and collected in
Table 2. The activities were analyzed at a temperature of 50 ◦C and pH of 5.0, according to
previously published techniques [36].

Table 2. Activities of the P. verruculosum enzyme complex (U adjusted to 10 FPU per 1 g of dry pulp).

CMC-ase MCC-ase Xylanase Mannanase β-Glucosidase Cellobiase

286 ± 1.94 19.8 ± 0.12 2326 ± 6.2 29.1 ± 0.15 26.4 ± 0.12 10.9 ± 0.08

2.3. Enzymatic Hydrolysis of Pulp Substrates

Enzymatic saccharification at low pulp concentration (2.5 and 5% of dry fiber) was
carried out using a ES-20/60 (BioSan, Latvia) laboratory shaker-incubator; for high pulp
concentration (10%) a Biostat A Plus (Sartorius, Germany) bioreactor was used, all experi-
ments were carried out in triplicates, and the results were presented as mean ± SD. The
hydrolysis temperature was adjusted to 50 ◦C and pH was maintained at 5.0 with 0.05 M
sodium acetate buffer. Continuous stirring at 150–300 rpm was applied during the entire
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saccharification period, up to 48 h. Samples for analyses were taken after 3, 6, 10, 12, and
24 h (for 2.5 and 5% concentration) and after 1.5, 3.0, 4.5, 8, 12, 21, 24, and 48 h (for 10%
concentration). The suspension was first centrifuged for 1 min at 13,400 rpm, and then the
supernatant (hydrolysate) was further analyzed.

2.4. Hydrolysate Analyses
2.4.1. Determination of Reducing Sugars, Glucose, and Minor Soluble Sugars

An analysis of monosaccharides (glucose, xylose, and mannose), disaccharides (cel-
lobiose, xylobiose) and oligosaccharides in hydrolysates was carried out by HPLC using an
Agilent 1200 (Agilent Technologies, Santa Clara, CA, USA) high pressure chromatographic
system according to a procedure such as [37]. Sugars were separated on a Dionex CarboPac
PA20 (Dionex, Sunnyvale, CA, USA) column using NaOH gradient increasing from 7.5 to
100 mM and were analyzed using ESA Coulochem III (Thermo Fisher Scientific, Waltham,
MA, USA) detector. The concentration of reducing sugars (RS, g/L) was determined by the
modified Somogyi–Nelson method [38].

To assess the hydrolytic ability of the pulps, the oligosaccharides released under
enzymatic action were further hydrolyzed using sulfuric acid. Hydrolysate aliquots were
mixed with 8% sulfuric acid in a ratio of 1:1 and boiled for 20 min; after neutralization, the
samples were analyzed similarly to the hydrolysates before acidic inversion.

The cellulose conversion in pulps was calculated as follows:

Cellulose conversion, % =
(Glc − 0.2 ∗ Man) ∗ 0.9

Solids ∗ % cellulose
∗ 100% (1)

Here Glc is the concentration of glucose after inversion (g/L); Solids is the pulp fiber
concentration for hydrolysis (g/L); Man is the concentration of mannose after inversion
(g/L); % cellulose is the cellulose content in pulp according to Table 1; 0.2 is the conversion
factor, taking into account the glucose monosaccharide produced from glucomannan (as
mannose to glucose ratio in glucomannan is 4:1 according to literature data [39]); and 0.9 is
a factor considering the addition of water molecules during hydrolysis.

2.4.2. Gravimetrical Analysis of Non-Hydrolyzed Residue

Pulp mass losses under hydrolysis were used to calculate total pulp conversion. Non-
hydrolyzed residue, or biomodified pulp, was washed several times with distilled water
to remove soluble products, and then it was frozen at −80 ◦C and freeze-dried using a
Labconco FreeZone 2.5 machine (Labconco, Kansas City, MO, USA). The pulp conversion
was determined by the formula:

Pulp conversion, % =

(
1 − non − hydrolysed residue dry weight (g)

initial f iber dry weight (g)

)
∗ 100% (2)

2.5. Pulp Fiber Characterisation prior and after Enzymatic Hydrolysis

To determine fiber dimensions, original never-dried pulps were suspended in water
to a dry fiber concentration of 0.5% and analyzed using L&W Fiber Tester. Objects less than
0.1 mm wide and more than 0.2 mm long were counted as fibers [15].

The degree of polymerization (DP) of cellulose in initial pulps and lyophilized biomod-
ified residue was calculated from intrinsic viscosities of 0.1% cellulose solutions in cadmium
ethylenediamine according to Shevchenko et al. [27]. Pulp crystallinity was determined
according to the previously published method [40] using a XRD-7000S (Shimadzu, Japan)
powder X-ray diffractometer. The X-ray diffractograms of pressed pellets were recorded
using a non-reflective silicon sample holder and X-ray tube with Cu target that operated at
50 kV and 30 mA.
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3. Results
3.1. Enzymatic Hydrolysis at Low Pulp Concentrations

We compared cellulose conversion in sulfite and kraft pulp, taking into account
differences in their polysaccharide composition. The saccharification was performed at
fiber concentrations of 2.5 and 5.0% (w/w, dry weight) with 10 FPU/g of P. verruculosum
enzymes for 24 h. The concentration of 2.5% was chosen to ensure complete hydrolysis.
The concentration of 5% was chosen to increase sugar concentrations in hydrolysates while
hydrolysis levels were still high. Kraft pulp showed a high level of cellulose conversion up
to 93% (Figure 1). Sulfite pulp demonstrated a lower level of cellulose conversion; however,
50% of the theoretical glucose yield was reached in 12 h (Figure 1, concentration 2.5%).
Increasing the substrate concentration from 2.5 to 5% reduced cellulose conversion for
both pulps, with the largest decrease of 33% for kraft pulp, which is related to a decrease
in stirring efficiency and the presence of residual lignin causing enzyme inhibition [41].
The total amount of reducing sugars over 48 h was at the level of 27.2–51.9 g/L for both
pulps (Table S1). The maximal pulp conversion was achieved at the lowest substrate
concentration (2.5%), 99% and 94% for kraft and sulfite pulp, respectively (Table S1). Thus,
at low substrate concentration, both pulps demonstrated high hydrolyzability since they
were almost completely hydrolyzed by the P. verruculosum enzyme complex.
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Figure 1. Cellulose conversion by P. verruculosum enzymes at low pulp concentrations.

3.2. Enzymatic Hydrolysis at High Pulp Concentrations

Enzymatic hydrolysis of lignocellulosics at high substrate concentration of 10% will
provide higher concentrations of sugars in resulting hydrolysates, which is crucial for subse-
quent biosynthesis of organic acids and amino acids. However, higher pulp concentrations
require more intensive stirring. In that case, several GHs can be inhibited by corresponding
end products. We also observed a significant decrease in the hydrolysis efficiency, by
10–30%, with an increase of the pulp concentration from 5 to 10%. Hydrolysates of kraft
and sulfite pulp differ in the composition and content of soluble sugars. As shown in
Figure 2, glucose, being a cellulose monomer, dominated in hydrolysates over the course of
hydrolysis. The final glucose concentration after 48 h reached 50 g/L for sulfite pulp, while
4% less glucose concentration was obtained from the kraft sample under the same condi-
tion. The hydrolysates differed most significantly in content of xylose, a xylan monomer.
After 48 h, the ratio of xylose to glucose was 0.35 for kraft pulp and only 0.06 for sulfite
pulp. In addition, the concentration of reducing sugars was also different for two types of
hydrolysates, reflecting the mannan content in two pulps. For kraft pulp, the concentration
of reducing sugars was 71.1 g/L at a total pulp conversion of 74% (Table S1). The final
conversion of sulfite pulp was lower at 70%; however, sulfite pulp produced glucose-rich
hydrolysates, and minor sugars represented less than 18% of hydrolysate monosaccharides.
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(a) and kraft (b) pulps at high pulp concentration.

3.3. Transformation of Non-Hydrolysed Residue

As hydrolysis proceeded deeper with the accumulation of large amounts of soluble
sugars, significant changes occurred in the composition and properties of insoluble residue.
Such biomodified pulps consist of low DP cellulose, remaining hemicelluloses, and non-
carbohydrate compounds [27]. As shown in Figure 3, the initial DP of cellulose in pulps
after sulfite delignification was higher compared to kraft pulp—1025 ± 122 versus 950 ± 92,
respectively. After hydrolysis with P. verruculosum enzymes, the average length of cellulose
chain significantly decreased in 24 h and further; however, this modification proceeded
differently for two pulps. While the DP for sulfite pulp decreased almost twice in 48 h
(DP 550), at the same time for kraft pulp at a conversion level of 74% the DP reduced more
drastically and reached the level of commercial microcrystalline cellulose (DP 290).

Crystallinity is another important parameter that is crucial for possible further appli-
cations of biomodified pulps. As shown in Figure 4, the initial values of the crystallinity
for two pulps were quite similar and equaled 46–47%. At the initial stages of hydrolysis,
up to 24 h, crystallinity of commercial pulps generally increases due to the action of en-
zymes, especially hemicellulases and endo-β-1,4-glucanases, which predominantly digest
amorphous cellulose [27]. We also observed an increase in crystallinity of 1.3–2.2% in
both pulps after 24 h of hydrolysis. The resulting crystallinity was slightly higher than
the previously obtained values for commercial microcrystalline cellulose (47.2%) [27,33].
The final hydrolysis stages (48 h) contributed to a decrease in the crystalline areas, with
more significant changes for sulfite pulp (Figure 4). The crystallinity of kraft pulp after
prolonged hydrolysis remained at a high level, higher than that of initial kraft pulp and
commercial microcrystalline cellulose.
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4. Discussion
4.1. Feasibility of Industrial Pulping for Enzymatic Hydrolysis of Wood Polysaccharides

Wood lignocellulosics contain a significant amount of lignin, an aromatic heteropoly-
mer, that binds polysaccharides into a complex matrix and in the meantime hinders the
cellulase attack on the cellulose. The enzyme inactivation occurs during the non-productive
binding of cellulases on lignin due to electrostatic or hydrophobic interactions [15,41,42].
Enzyme inhibition with an excessive amount of acetyl groups or some extractives can
also contribute to a decrease in the hydrolysis efficiency [43]. Thus, for successful en-
zymatic saccharification of wood lignocellulosics, it is necessary to minimize the factors
during the pretreatment stage. On a laboratory scale several methods are used to delignify
wood, such as steam explosion [44], treatment with mineral acids [45] or organic acids [46],
sodium hydroxide [46,47], and organosolv pulping [48]. Despite the high efficiency of
these methods, technological and economic difficulties arise when scaling them up. An
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industrially available alternative is the thermochemical processing of wood chips aimed
at obtaining fibrous wood pulps for the manufacturing of paper, cardboard, and other
paper products. Enzymes that have already found an application in the pulp and paper
industry include endoglucanases for pulp viscosity control and xylanases for kraft pulp
prebleaching [20]. This creates a background for a deeper introduction of enzymatic steps
into the production process.

Commercial pulps contain more than 92% of polysaccharides, consisting of cellulose
as the major component and hemicelluloses (up to 30%) that were partially destructed
during cooking. Compared to original wood, commercial pulps have lower lignin content,
improved accessibility to cellulases and hemicellulases, and a lower content of fermentation
inhibitors after hydrolysis. The toxic inhibitors are mostly products of monosaccharide
thermal degradation, furfural and 5-hydroxymethylfurfural, phenolic compounds derived
from lignin, and organic acids, which can cause significant inhibition of industrial microbial
strains [49]. Since these compounds are concentrated mainly in spent cooking liquors,
the hot washing of commercial pulps removes most of the inhibitors from the fibers.
Furthermore, alkaline treatment stages using sodium, calcium, or ammonium hydroxide,
at a pH higher than 10, significantly enhances the detoxification of cellulosic pulps [50].

Historically, sulfite pulping was developed earlier than other methods of industrial
delignification [51]. The most common process is acid sulfite cooking (Figure S1), which
applies acidic cooking liquor produced by burning sulfur or pyrites. Under the action of
sulfur dioxide in the cooking liquor, lignin is transferred into a solution in the form of
lignosulfonates [52]. High temperatures and the action of sulfurous acid and its salts lead
to an efficient extraction of lignin, partial destruction of hemicelluloses and, to a lesser
extent, cellulose. As a result, cellulose-rich pulps are produced which contain less than 20%
mannan and xylan in total (Table 1). Sulfite spent liquor, a by-product of sulfite pulping,
contains a mixture of oligo-, di-, and monosaccharides with a total content of 26–30%
of the dry weight, as well as lignin derivatives and sugar decomposition products [53].
Further treatment of spent liquor at sulfite plants includes neutralization, evaporation,
and other chemical and thermomechanical treatment, leading to liquor detoxification. For
more than 85 years, spent liquor sugars have been utilized by yeast fermentation to obtain
feed protein or ethanol [54]. Among industrial strains, yeasts are the most resistant to the
highly inhibitory liquor-based media, but poor substrate quality results in low fermentation
productivity and low overall technology efficiency.

To date, kraft pulping is one widespread and straightforward way to obtain cellulosic
pulps. It involves treatment with a sodium hydroxide and sodium sulfide (Figure S2) and
ensures the extraction of most of the lignin, acetyl groups, uronic acids, and partially hemi-
celluloses [55,56]. The disruption of lignin–carbohydrate linkages during kraft pulping
results in the subsequent liberation of fibers with an increase in their inner surface area. This
and subsequent bleaching (Figure S3) positively affect the pulp papermaking properties,
and also determines the high accessibility of kraft pulps to enzymatic hydrolysis, accord-
ing to present and previous studies [15]. A well-designed recovery system for cooking
chemicals and heat eliminates lignin utilization issues. Spent black liquor contains 30–35%
lignin and 30–35% sugar decomposition products; its combustion provides energy to heat
the digester. The green liquor produced after combustion is subjected to causticization
to obtain white liquor, an active reagent for the cooking of a new batch of wood chips
(Figure S2).

Both sulfite and kraft pulping produce fibrous paper-grade pulps, however, the result-
ing pulps differ significantly in fiber properties and composition, which directly depends
on the cooking process, cooking reagents, and on the species of wood [13]. During sulfite
pulping, polysaccharides, mainly hemicelluloses, are partially degraded and released into
the solution in the form of dextrins, oligo-, and, to a lesser extent, monosaccharides [57].
The acidic environment causes deacetylation of hemicelluloses; deacetylation and cleavage
of galactopyranose units in softwood glucomannans lead to their consolidation, which,
together with the high resistance of cellulose to cooking acid, contributes to an increased
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yield of sulfite process comparing to kraft pulping. For these reasons softwoods, containing
mainly cellulose and mannans, are used to obtain high pulp yields. Alkaline delignification
is characterized by a higher loss of cellulose, which is less resistant to alkaline peeling
compared to hemicelluloses. Hardwoods are considered the most suitable for kraft pulping,
mainly due to the unique behavior of xylans during cooking. In an alkaline medium,
most of the xylans dissolve, however, after the cleavage of glucuronic acid units, xylan
quickly stabilizes on cellulose fibers, which increases both the mechanical strength and the
yield of the kraft fibers. Such modified xylan becomes more accessible for hemicellulases;
we observed its deep hydrolysis under the action of the P. verruculosum xylanases. Since
xylan destruction made pulp fibers more accessible to cellulases, the close to complete
saccharification of hardwood kraft pulp became possible due to the synergistic action of
cellulases and hemicellulases in the enzyme mixture. As a result, we obtained a hydrolysate
with a predominantly higher content of monosaccharides (glucose and xylose) compared
to oligosaccharides.

4.2. Characterization of Hydrolysis Products of Commercial Pulps and Their Potential Application

Most of the publications on enzymatic saccharification of raw wood give general
time-yield dependences for glucose and reducing sugars [58,59]. Only a few studies have
analyzed the monosaccharide composition of hydrolysates [42,46,60], while concentrations
of cellobiose, xylobiose, and oligosaccharides are rarely reported [16,17,46]. Finally, data
on the content of oligosaccharides with DP ≥ 5 are practically not found in the literature.
However, these data are important characteristic of hydrolysates and their potential in
subsequent fermentation using selected bacteria or yeasts. The identification of various
oligomers by chromatography is tricky, since their concentrations in hydrolysates against
major components are close to the detection limit. Here we propose determination based
on the amount of monomers formed from oligomers after acid inversion (Section 2.3). The
increase in concentration of the main sugars (glucose, xylose, and mannose) after acid
inversion allows for calculating the oligomer content in hydrolysates and their proportion
in the total amount of soluble sugars. This approach reveals composition differences in
hydrolysates of pulps with similar hydrolyzability.

During hydrolysis by P. verruculosum enzymes, kraft pulp hydrolysates accumulated
glucose and xylose as major products, while glucose predominated in sulfite pulp hy-
drolysates (Figure 2). Cellobiose was found to be the second main product of cellulose
hydrolysis after glucose (Table 3); an increase in the concentration of xylose and mannose
after acid inversion of hydrolysates indicated the presence of soluble oligomeric xylans and
mannans. After 48 h of conversion of kraft pulp, the accumulation (up to 4.5 g/L) of xylo-
biose and xylooligomers with a higher DP was observed, mostly from reprecipitated xylan,
highly accessible for P. verruculosum endoxylanases. A significant amount of xylooligomers
can inhibit β-glucosidase [61], which might explain the observed high cellobiose content
in kraft pulp hydrolyzates. The level of pentose oligomers, and especially xylose and
xylobiose, must be considered when selecting a fermentation strain for further microbi-
ological conversion. The most complete fermentation of kraft pulp sugar hydrolysates
can only be carried out with strains assimilating xylose along with glucose, for example
Bacillus vallismortis [62], Candida guilliermondii FTI 20037 [63], and B. coagulans Azu-10 [64].
In addition, to increase the yield of target fermentation products, research is being carried
out on the genetic design of Saccharomyces cerevisiae [65,66], Gluconobacter oxydans [67], and
Lactobacillus plantarum NCIMB [68].
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Table 3. Concentrations (g/L) of cellobiose and hemicellulose oligomers in pulp hydrolysates.

Pulp Hydrolysis Time Cellobiose
Monosaccharides from Hemicelluloses

Oligomers after Acid Inversion

Xylose Mannose

Sulfite
24 3.7 3.4 6.5
48 3.3 4.2 6.8

Kraft
24 4.2 4.6 1.7
48 4.7 5.3 2.0

In the production of easily assimilated hexose sugars, sulfite pulp is more promising
over kraft pulp due to the initial softwood composition and cooking method. Sulfite pulp
hydrolysates accumulated a significant amount of mannan hydrolysis products, mainly
di- and oligomers, since after acid inversion the concentration of mannose increased by
1.7 times. The fermentability of hydrolysates can be improved by increasing the activity
of β-mannosidase in the enzyme cocktail; the total amount of easily assimilated hexoses
can reach over 93% of the reducing sugars. The high hexose ratio in hydrolysates of wood
polysaccharides facilitates microbiological conversion, since most industrial strains pref-
erentially consume hexoses. Yeast strains used in spent sulfite liquor fermentation are
known to metabolize in toxic liquor media, assimilating little sugars produced through acid
hydrolysis during sulfite cooking [53,66]. For the complete fermentation of media based on
enzymatic hydrolysates of sulfite pulp, it is important to use industrial strains capable of
utilizing mannose, for example, Candida yeasts or genetically modified Corynebacterium glu-
tamicum [69] and Rhodosporidium toruloides-1588 [70].

A large amount (average 10 g/L) of soluble poorly assimilated oligosaccharides in the
hydrolyzates of kraft and sulfite pulp provokes the search for their alternative applications.
One possible alternative is prebiotics based on cellooligosaccharides (COS), xylooligosaccha-
rides (XOS), and mannooligosaccharides (MOS). These generally indigestible compounds
can represent a special type of prebiotics, providing a carbon and energy source for gut
microbiota [70,71].

When choosing the best pulp substrate, we should also consider the amount and
properties of non-soluble product along with fermentable sugars. Generally, in industrial
trials, the insoluble fraction remains significant, which is related to reasonable enzyme
dosages and hydrolysis time. Compared to initial polysaccharide composition (Table 1),
pulps underwent significant changes after 24 and 48 h of hydrolysis with P. verruculosum
enzymes (Figure 5). Cellulose remained the main component of unhydrolysed residue; for
kraft pulp its content increases to 76%, while for sulfite pulp, after an increase up to 80%
(24 h), it then decreased by 1% (48 h). In kraft pulp the hydrolysis rate of xylan, considering
its accessibility on the surface of the fibers, can exceed the hydrolysis rate of cellulose. In
sulfite pulp xylan content is lower, and its localization significantly decreases its accessibility
to xylanases. Furthermore, the content of non-polysaccharide components increased in
the sulfite pulp. These two effects contributed to the decrease in the crystallinity of sulfite
pulp at the final stages of enzymatic hydrolysis (Figure 4). For kraft pulp, due to intensive
hemicelluloses hydrolysis, an enzymatic purification of cellulose took place, increasing
both the content of cellulose and its crystallinity.

4.3. Complex Processing of Industrial Pulps Including Enzymatic Hydrolysis and Microbial
Fermentation

As discussed earlier, spent sulfite liquors undergo biotechnological conversion to
obtain bioethanol and single cell protein. The low efficiency of fermentation with yeasts
can be increased by increasing the quality of the liquor-based media. Hydrolysates of
sulfite pulps obtained with P. verruculosum enzymes are glucose-rich solutions with a
sugar concentration 3–5 times higher than in the spent liquor. The content of hexoses in
hydrolysates can be further increased by increasing the mannanase activity of the enzyme
cocktail. Combining even a small amount of hydrolysate with the main stream of spent
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sulfite liquor will significantly increase the total hexose content and favorably affect the
production of microbial protein or ethanol by yeasts, or various valuable products, if non-
yeast strains are used. The unhydrolyzed residue from sulfite pulp contains a mixture of
polysaccharides, with cellulose being the major component and hemicelluloses providing
good papermaking properties. The addition of this biomodified pulp to the main pulp
flow can increase the strength of the resulting paper, ensuring integrated processing of all
saccharification products (Figure 6). Thus, this technological solution can preserve a few
remained sulfite pulp productions through the introduction of enzymatic hydrolysis and
the modernization of the already-applied fermentation processes.
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Kraft pulp production has historically lacked fermentation technology. The present
work proposes the ways for their implementation, simultaneously increasing the number of
products one can obtain from well-studied and widely used commercial kraft pulp. For the
enzymatic saccharification of kraft pulp, P. verruculosum GHs complexes with sufficiently
high xylanase activity can be used without modifications. The resulting solutions containing
mostly glucose and xylose should be fermented by industrial strains capable of efficient
assimilation of xylose along with glucose. It will allow the most complete conversion of
simple sugars into bioproducts for the pharmaceutical, food, or energy industry, such as
organic acids, amino acids, and alcohols (including biofuels) (Figure 7). Unfermented
XOS and MOS, when skillfully separated from the culture medium after fermentation, can
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be used as prebiotics in nutrition, and this topic currently evokes increased interest [72].
Biomodified kraft pulp, an insoluble residue after enzymatic saccharification, has DP and
crystallinity close to commercial MCC, obtained by acid hydrolysis of plant cellulose. Further
development of enzymatic modification and unhydrolyzed pulp properties will create a
background for its applications similar to MCC, including adsorbents, drug carriers, and
formulation fillers [73], as well as hydrogel matrix for tissue engineering purposes [27,74].
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5. Conclusions

When choosing the best cellulosic substrate for industrial saccharification, it is necessary
to consider the specific needs of particular pulp manufacture. For the generation of highly
concentrated glucose-rich fermentation media, it is better to use kraft pulp. Advanced and
cost-effective kraft pulping allows for heat and reagent recovery, as well as the production
of cellulosic pulp suitable for additional applications, in contrast to the direct production of
cardboard and paper. A part of the mill’s pulp flow can be directed to enzymatic sacchar-
ification to produce new products, such as biomodified pulp, which increases biorefining
efficiency. While kraft pulp hydrolysis allows for the production of highly concentrated media,
the media based on sulfite pulp hydrolysates have enhanced fermentability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9110936/s1, Table S1: Reducing sugar yield and
pulp conversion after 48 h of hydrolysis at fiber concentrations of 2.5, 5 and 10%; Figure S1: Scheme
of sulfite-pulping process; Figure S2: Scheme of kraft-pulping process; Figure S3: Scheme of pulp
bleaching process.
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