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Abstract: Due to increased fraud rates through counterfeiting and adulteration of wines, it is impor-
tant to develop novel non-invasive techniques to assess wine quality and provenance. Assessment of
quality traits and provenance of wines is predominantly undertaken with complex chemical analysis
and sensory evaluation, which tend to be costly and time-consuming. Therefore, this study aimed to
develop a rapid and non-invasive method to assess wine vintages and quality traits using digital
technologies. Samples from thirteen vintages from Dookie, Victoria, Australia (2000–2021) of Shiraz
were analysed using near-infrared spectroscopy (NIR) through unopened bottles to assess the wine
chemical fingerprinting. Three highly accurate machine learning (ML) models were developed using
the NIR absorbance values as inputs to predict (i) wine vintage (Model 1; 97.2%), (ii) intensity of
sensory descriptors (Model 2; R = 0.95), and (iii) peak area of volatile aromatic compounds (Model 3;
R = 0.88). The proposed method will allow the assessment of provenance and quality traits of
wines without the need to open the wine bottle, which may also be used to detect wine fraud and
provenance. Furthermore, low-cost NIR devices are available in the market with required spectral
range and sensitivity, which can be affordable for winemakers and retailers and can be used with the
machine learning models proposed here.

Keywords: near-infrared spectroscopy; machine learning modelling; authenticity; wine fraud

1. Introduction

Wines are composed of complex chemical compounds that contribute to quality traits
such as colour, clarity, body, taste, flavour, and aroma profiles. Quality traits and sensory
characteristics of the wine depend on many factors, such as grape cultivars, climate,
canopy and irrigation management, geological regions, soil types, winemaking practices,
and the complex interactions between these [1,2]. Quality attributes of grapes related
to optimal ripening and harvest conditions include sugar content, alcohol content, total
anthocyanins, pH, and tannins [3,4]. Aroma is one of the most important sensory attributes
of wine, with hundreds of volatile organic compounds that contribute to the chemical
complexity of wines [5,6]. Phenolic compounds also determine the quality and contribute
to wine colour, antioxidant properties, taste, acidity, flavour, and mouthfeel [7–9]. There are
high complexities in the attempt to define wine quality. However, physical–chemometric
techniques can objectively assess wine quality traits [10]. Sensory analysis using trained
panels can also identify specific wine characteristics to define quality traits [11]. These
techniques have also been implemented to assess the provenance and counterfeiting of
wines or to detect mislabelling from wineries.

There has been an increase in the employment of emerging digital technologies to
assess quality traits for food and beverages. These include near-infrared spectroscopy
(NIR), electronic noses (e-nose), and computer vision algorithms (CV) that are integrated
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with machine learning as an artificial intelligence approach for data analysis [12]. These
technologies have been utilised to assess: beer quality traits, including chemometrics,
aroma, foam parameters, bubble attributes, colour, and common beer faults [13–16]; faults
or off-aromas/flavours in wine [17]; smoke taint in wine and berries [18–22]; aroma and
rancidity in olive oil [23]; and quality traits of sourdough bread [24].

Specifically, NIR can offer a complete chemical fingerprinting profile of wines depend-
ing on the spectral range and sensitivity of different instruments. For berries, NIR has
been used to assess ripening parameters such as total soluble solids, pH, and total antho-
cyanins, with limited success for texture parameters [25–27]. Furthermore, NIR analysis
has been conducted for wine quality traits such as alcohol content, sugar content, pH,
volatile phenolic compounds [28–30], and sensory descriptors [31]; it has also been used
for the detection of smoke-related compounds [19] and the detection of adulteration with
water and sugar [32]. Recent advances in chemometric analysis integrated with machine
learning algorithms have identified key attributes for classifying wine based on varietals
and geographic origins [33–35].

However, most of this research is based on wine samples extracted by direct measure-
ment of the final products before bottling or after opening wine bottles, along with principal
component analysis (PCA) for statistical analysis or modelling using partial least squares
(PLS). Therefore, this research presents the implementation of NIR spectroscopy measured
through the bottles of unopened wines in parallel with ML techniques to assess wine quality
traits, and provenance, as a potential method to evaluate counterfeiting and mislabelling.

2. Materials and Methods
2.1. Sites and Sample Description

For this study, thirteen different vintages of Shiraz (Table 1) from 2000–2021 produced
at Dookie College Winery from The University of Melbourne, Victoria, Australia (36◦38′ S,
145◦71′ E) were used. This vineyard region had a mean annual rainfall of 496 mm with
monthly extremes within 1.4–119 mm and an average daily solar exposure of 17 MJ/m2

with extremes within 6–31 MJ/m2 according to weather reported from 2000 to 2021 and ob-
tained from the Dookie Agricultural College station 081013 and the Bureau of Meteorology.

Table 1. Shiraz vertical vintages used for this study, including abbreviation, closure type, and
alcohol content.

Vintage Label/Abbreviation Closure Alcohol Content %

2000 S00 Cork 14.2
2007 S07 Cork 14.9
2008 S08 Screw Cap 14.5
2010 S10 Cork 13.8
2013 S13 Cork 13.8
2014 S14 Cork 13.8
2015 S15 Cork 14.3
2016 S16 Screw Cap 14.3
2017 S17 Screw Cap 14.5
2018 S18 Cork 14.5
2019 S19 Screw Cap 14.5
2020 S20 Screw Cap 14.2
2021 S21 Cork 14.5

All wines underwent the same production techniques as they were produced in the
same winery; the only difference was the vintage. The wine bottles were all the standard
for red wine, with standard 750 mL size, Bordeaux shape, and amber colour. The only
variation in the bottle within vintages was the closure type (Table 1).
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2.2. Near-Infrared Spectroscopy

A hand-held near-infrared (NIR) spectroscopy device (MicroPHAZIR™RX Analyzer;
Thermo Fisher Scientific, Waltham, MA, USA) was utilised to measure the samples through
the bottle from three different positions (i) top, (ii) middle, and (iii) bottom, and from
three sides of the bottle (three readings per position/location, n = 27). A custom-made
attachment for the NIR was used to ensure no variations in light and environment. The
device was calibrated using a white standard at the beginning and every 10 measurements
(Figure 1). The chemical fingerprinting was obtained within 1596–2396 nm (every 7–9 nm).
NIR absorbance measurements of the glass were subtracted to obtain values for the wine.
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Figure 1. Near-infrared spectroscopy hand-held device, including the custom-made attachment to
avoid external light, and sample of the Bertie Shiraz wine bottle from 2021 vintage.

2.3. Gas Chromatography–Mass Spectroscopy

A 5 mL sample for each wine vintage in triplicate was transferred to a 20 mL vial
with a magnetic screw cap. As described by Gonzalez Viejo et al. [14,15], samples were
analysed with a gas chromatograph with a mass-selective detector 5977B (GC–MSD; Agilent
Technologies, Inc., Santa Clara, CA, USA) linked with an autosampler system PAL3 (CTC
Analytics AG, Zwingen, Switzerland). An HP-5MS column (Agilent Technologies, Inc.,
Santa Clara, CA, USA; length: 30 m, inner diameter: 0.25 mm, and film: 0.25 µ) was used,
and the carrier gas was helium at 1 mL min−1 flow rate. The headspace method was
used with a solid phase microextraction (SPME). A blank sample was used at the start to
ensure no carryover from previous measurements. The samples were analysed with the
National Institute of Standards and Technology (NIST; National Institute of Standards and
Technology, Gaithersburg, MD, USA) library and identified the volatile compounds with
greater than 80% certainty.

2.4. Descriptive Sensory Evaluation

A sensory panel with 12 participants from The University of Melbourne (UoM; Ethics
ID: 1953926.4) completed training using a combined method from the International Stan-
dard methodology (ISO 8586-1: 1993E) and quantitative descriptive analysis (QDA®)
method as outlined by Gonzalez Viejo et al. [16] with relevant red wine samples and ref-
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erences. Once trained, a blind sensory session was conducted in the sensory laboratory
in a focus group-type room located in the Faculty of Veterinary and Agricultural Sciences
(FVAS) of the UoM. Samples (30 mL) were served at 20 ◦C in clear plastic cups, follow-
ing COVID-19 safety measures, and labelled with 3-digit random codes; panellists were
provided with palate cleanser options of water and plain water crackers. The sensory de-
scriptors (Table 2) evaluated by the participants in the questionnaire were displayed in the
BioSensory Application (App; The University of Melbourne, Parkville, VIC, Australia; [36])
that consisted of rating the intensity of sensory attributes in a 15 cm non-structured scale.

Table 2. Sensory descriptors evaluated and anchors used during sensory session.

Descriptor Anchors

Clarity Light–Dark
Colour Intensity Absent–Intense
Aroma Truffle Absent–Intense
Aroma Smoke Absent–Intense

Aroma Blackberry Absent–Intense
Aroma Blackcurrant Absent–Intense

Aroma Prune Absent–Intense
Aroma Butter Absent–Intense
Aroma Pepper Absent–Intense
Aroma Cedar Absent–Intense
Aroma Violet Absent–Intense

Aroma Redcurrant Absent–Intense
Bitter Absent–Intense

Sour/Acidic Absent–Intense
Sweetness Absent–Intense

Astringency Absent–Intense
Body Light–Full

Warming Absent–Intense
Tingling Absent–Intense

Perceived Quality Unacceptable–Excellent

2.5. Statistical Analysis and Machine Learning Modelling

The data were analysed with ANOVA for statistically significant differences between
wine samples using Fisher’s least significant difference (LSD) post hoc test (α = 0.05) using
XLSTAT 2020.3.1 (Addinsoft, New York, NY, USA). Multivariate data analysis based on
principle component analysis (PCA) was developed in Matlab R2021a® based on covariance
to find relationships between variable and their associations with the samples.

Three ML models were developed using artificial neural networks (ANN) with a
code developed in Matlab® 2021a [37], automatically testing 17 training algorithms to
find the most accurate models with no under- or overfitting. Model 1 was developed for
classification using the absorbance values of NIR data through the bottle (1596–2396 nm) as
inputs to predict wine vintage (Figure 2a). Model 1 was constructed using the Bayesian
Regularization algorithm. Data were divided using the interleaved method, with 70% used
for training and 30% for testing. Performance was analysed using means squared error
(MSE). Model 2 was developed using regression ANN with absorbance values of NIR data
through the bottle (1596–2396 nm) to predict 20 sensory descriptors (Figure 2b). This model
was constructed using the Levenberg–Marquardt algorithm. Data were randomly divided
for training (70%), validation (15%), and testing (15%) using a performance algorithm
based on MSE. On the other hand, Model 3 was also developed using regression ANN with
absorbance values of NIR data through the bottle (1596–2396 nm) to predict the peak area of
17 volatile aroma compounds (Figure 2c). Similar to Model 1, the Bayesian Regularization
algorithm was used to construct the model with a random data division using 70% of
samples for training and 30% for testing. A neuron trimming test (3, 5, 7, and 10 neurons)
was conducted for the three models to assess the optimal number of neurons with no under-
or overfitting. The optimal values for the neurons in each model are shown in Figure 2.
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3. Results and Discussion
3.1. Near-Infrared Spectroscopy

Figure 3 shows the PCA with the NIR absorbance values (1596–2396 nm) through
the bottle for all vintages. The PCA accounted for 100% of the total data variability, with
principal component one (PC1) representing 99% and principal component two (PC2)
accounting for 1%. It can be observed that some samples from vintages S07, S14, S15,
and S19 grouped visibly; however, most cannot be properly differentiated using PCA
constructed from the NIR. The lack of discrimination of samples using PCA may be because
it only assesses the linear relationships between variables and samples [38]. These results
may also be reflected in modelling strategies such as PLS, not only to classify different
vintages but also intrinsic chemometry from different wines, which has shown lower
accuracies in modelling different wine compositions [39,40].
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y-axis representing principal component two (PC2). Abbreviations are shown in Table 1.

3.2. Gas Chromatography–Mass Spectroscopy

There were 17 volatile aromatic compounds (VAC) associated with the wine samples
identified by GC–MS (Table 3; Table S1). Most of the compounds were associated with
aromas such as fruity, floral, and liquor [41]. VAC14 Butanedioic acid (aroma cooked apple)
had the highest peak area for vintages 2000, 2008, 2010, 2013, 2014, 2015, and 2018; VAC15
Octanoic acid (aroma fruity, winey, waxy, apricot, banana, and brandy) for vintages 2007,
2016, 2017, 2019, and 2021; and VAC10 Benzenemethanol (aroma fresh, sweet, and gardenia)
for vintage 2020. Butanedioic acid was reported in Syrah [42] and Saperavi red wine [43],
Octanoic acid in Syrah from Brazil [44] and Australian Shiraz [45,46], and Benzenemethanol
in Cabernet Sauvignon [21].

3.3. Descriptive Sensory Evaluation

Figure 4 shows the ANOVA results for the sensory descriptors. There were significant
differences (p < 0.05) in all descriptors, except for aroma smoke and pepper, warming,
tingling, and perceived quality. Vintage 2014 had the highest intensity for descriptors
of clarity (12.72), aroma blackcurrant (9.73), and aroma prune (10.88); for vintage 2021,
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these were aroma blackberry (8.94), aroma butter (8.14), and aroma redcurrant (10.05). The
lowest intensities for cedar (3.10), blackberry (3.60), redcurrant (4.75), and blackcurrant
(5.38) aromas were for vintage 2020. Vintage 2017 had the highest perceived quality (9.41),
with lower intensities for sour/acidic (4.88) and astringency (4.60), while vintage 2010
was lowest for perceived quality (5.23), with lower intensities for sour/acidic (4.82) and
astringency (4.93). The typical descriptors for Shiraz, as described in other studies, include
dark fruit, red fruit, prune, pepper, cedar, woody, and smoke [45,46,48].

Table 3. Volatile aromatic compounds identified by GC–MS for wine samples.

Label Volatile Aromatic Compound Aroma *

VAC1 Silanediol, dimethyl- NR
VAC2 Methane, isocyanato- NR
VAC3 Propanoic acid, anhydride Like acetaldehyde
VAC4 Ethylbenzene Sweet/Fruity
VAC5 Benzene, 1,3-dimethyl- Plastic
VAC6 Styrene Sweet/Balsam/Floral/Plastic
VAC7 Furfuryl ethyl ether Sweet/Spicy
VAC8 4-Ethylbenzoic acid, decyl ester NR
VAC9 Hexanoic acid, ethyl ester Sweet/Pineapple/Waxy/Green Banana

VAC10 Benzenemethanol, alpha.-methyl- Fresh/Sweet/Gardenia
VAC11 Phenylethyl Alcohol Floral/Rose
VAC12 Phenol, 4-ethyl- Castoreum/Smoke
VAC13 Ethyl hydrogen succinate Chocolate **
VAC14 Butanedioic acid, diethyl ester Cooked Apple
VAC15 Octanoic acid, ethyl ester Fruity/Winey/Waxy/Apricot/Banana/Brandy
VAC16 Naphthalene, 1,2-dihydro-2,5,8-trimethyl- NR
VAC17 Decanoic acid, ethyl ester Sweet/Waxy/Apple/Grape/Brandy

Abbreviations: VAC—volatile aromatic compounds; NR—not reported. * Associated aromas were obtained from
The Good Scents Company [41]. ** Associated aroma from Feng et al. [47].
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are denoted by different letters (a–g) based on ANOVA and post hoc test Fisher’s least significant
difference (LSD) at α = 0.05. Sample abbreviations are displayed in Table 1. Error bars = standard
error (range: 0.32–1.82).
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3.4. Machine Learning Modelling

Model 1 had a high overall accuracy of 97% for the classification of wines according to
vintage with inputs of NIR absorbance values through the bottle (Table 4). This model did
not present signs of under- or overfitting as the performance (MSE) value of the training
(<0.01) stage was lower than the testing (0.01).

Table 4. Results from the classification machine learning model to predict wine vintages. Abbrevia-
tions: MSE—means square error.

Stage Samples Accuracy Error Performance
(MSE)

Training 246 99.2% 0.8% <0.01
Testing 105 92.4% 7.6% 0.01
Overall 351 97.2% 2.8% -

Due to the high accuracy and no signs of overfitting, the ML models obtained are highly
replicable since the bottle material and thickness are usually consistent with the commercial
source by the winery used in this study. Models would need to be retrained for wineries
using different shapes of bottles or internal and external diameters. The receiver operating
characteristics curve (Figure 5) shows that all the vintages were close to the true-positive
(sensitivity) rate, with 2010 as the lowest sensitivity (0.89) followed by 2000, 2016, and 2017
(all with 0.92), confirming the model accuracy and suitability to classify the samples according
to their vintage. A possible explanation for the slightly lower sensitivities for the vintages
2010, 2000, 2016, and 2017 is seasonal variability. For vintage 2010, there was lower rainfall
than average from winter to early summer and higher rainfall than average from February to
March. Similarly, for vintage 2000 and 2016, there was lower rainfall than average for January
to March and higher for November and December. However, vintage 2017 had higher rainfall
than average for winter, with the other months like the average [49].
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It is well known that the variability of weather conditions and water availability
within seasons directly impact the quality traits of grapes produced and the subsequent
winemaking process [50]. Seasonal variability made it possible for the ML models to
establish a pattern of analysis to distinguish different vintages from the same winery,
which can be used to establish consistency and traceability of different bottles to avoid
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mislabelling. Furthermore, by incorporating vintage weather variability, these models can
achieve better predictions for extreme seasonality or climatic anomalies, such as droughts,
high rainfall, heatwaves, and others. Previous studies have incorporated these variables
obtaining highly accurate predictions of seasonality effects on aroma profiles of Pinot Noir
wines in Victoria [51].

Table 5 shows that Model 2 had high accuracy based on the correlation coefficient
(R = 0.95, Figure 6) to predict the intensity of 20 sensory descriptors. It can be observed
that the slopes of all stages were high (≥0.88), and the performance value of the testing
stage (MSE = 0.26) was lower than the validation and testing stages (MSE = 0.56 and 0.63,
respectively), with the last two values being very close, confirming no signs of overfitting
of the models. Figure 6 shows the predicted (y-axis) and observed (x-axis) values of the
20 descriptors from the sensory analysis. It can be observed that, based on the prediction
bounds, 5% of the data were outliers (351 out of 7020 data points), with most outliers from
clarity and colour intensity. This is expected since the NIR spectral range is above the
UV–VIS, which is the colour spectra.

Table 5. Regression machine learning model results in predicting wine sensory descriptors using NIR
absorbance values as input. Abbreviations: R—correlation coefficient; MSE—means squared error.

Stage Samples Observations R Slope MSE

Training 245 4900 0.97 0.93 0.26
Validation 53 1060 0.92 0.89 0.56

Testing 53 1060 0.92 0.88 0.63
Overall 351 7020 0.95 0.91 -
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The prediction of 17 volatile aromatic compounds depicted for Model 3 (Table 6),
which had high overall accuracy based on correlation coefficient (Figure 7; R = 0.88;
slope ≥ 0.84). It can be observed that there were no signs of under- or overfitting since the
MSE value of the training stage was lower (0.91 × 1013) than the testing stage (2.37 × 1013).
Figure 7 shows the overall model with 95% prediction bounds and presented 4.67% out-
liers (284 out of 5967 data points), with the highest number of outliers being octanoic
acid, ethyl ester—which may be due to the fact that the NIR spectral range in which
it is usually found (1177–1210 nm) is below the measured range (1596–2396 nm) [52].
Likewise, phenylethyl alcohol had some outliers because this is usually found within
1415–1445 and 2445–2505 nm [53]. However, despite these outliers, it can be seen that the
ANN model can find patterns within the inputs and predict these compounds using the
1596–2396 nm range.

Table 6. Regression machine learning model results in predicting 17 volatile aromatic compounds
using NIR absorbance values as input. Abbreviations: R—correlation coefficient; MSE—means
squared error.

Stage Samples Observations R Slope MSE

Training 246 4185 0.92 0.84 0.91 × 1013

Testing 105 1785 0.80 0.85 2.37 × 1013

Validation 351 5967 0.88 0.84 -
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Table S2 in supplementary material shows the optimal parameters obtained as a result
of the models to attain high accuracy and performance. The proposed method of measuring
NIR through the bottle for wine assessment provided highly accurate and robust models
for classifying vintages and predicting sensory descriptors and aroma profiles. Results
are comparable to those obtained with NIR absorbance values (1596–2396 nm) from direct
wine samples to predict sensory profiles (R = 0.92; slope = 0.85) [31] for the classification of
faults for red wine (94–96%) and white wine (96–97%) [17] and from direct beer samples
for the prediction of important aromas (R = 0.91, slope = 0.87) [13]. Other authors have
reported methods to assess wine authenticity through the bottle using a frequency-swept
electrical field with statistical analysis such as PCA [54]; however, this method is not as
affordable, portable, or easy to use as the NIR method proposed in this study.

4. Conclusions

The novel application of NIR spectroscopy through the bottle coupled with machine
learning modelling can effectively and accurately assess wine quality traits and provenance.
Since this method is non-invasive, seeing as the wine bottle does not need to be opened to
obtain chemical fingerprinting, the application could be utilised by wineries and retailers to
provide a rapid and robust tool for the acceptability and quality traits of wine; monitoring
of wines during transport, storage, and ageing; assessment of provenance; and for the
detection of adulteration, counterfeiting, and mislabelling. Furthermore, it is recommended
to incorporate further information, such as vintage weather and management (water
balance) information, in order to increase the accuracy of models related to sensory and
aroma profile prediction using NIR through bottles. These technologies will offer an
advantage to the wine industry, retailers, and consumers to verify the provenance and
authenticity of wines throughout the production and value chains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9010010/s1, Table S1: Mean values± standard error
of the volatile aromatic compounds identified in the shiraz wine samples using gas chromatography
mass spectroscopy.; Table S2: Statistical parameters resulting from the machine learning models.
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