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Abstract: Pentostatin (PNT), a nucleoside antibiotic with a 1,3-diazo ring structure, is distributed in
several actinomycetes and fungi species. Its special structure makes PNT possess a wide spectrum of
biological and pharmacological properties, such as antibacterial, antitrypanosomal, anticancer, an-
tiviral, herbicidal, insecticidal, and immunomodulatory effects. Because of the promising adenosine
deaminase inhibitory activity of PNT, its extensive application in the clinical treatment of malignant
tumors has been extensively studied. However, the fermentation level of microbial-derived PNT
is low and cannot meet medical needs. Because the biosynthesis pathway of PNT is obscure, only
high-yield mutant screening and optimization of medium components and fermentation processes
have been conducted for enhancing its production. Recently, the biosynthesis pathways of PNT in
actinomycetes and fungi hosts have been revealed successively, and the large-scale production of
PNT by systematic metabolic engineering will become an inevitable trend. Therefore, this review
covers all aspects of PNT research, in which major advances in understanding the resource microor-
ganisms, mechanism of action, and biosynthesis pathway of PNT were achieved and diverse clinical
applications of PNT were emphasized, and it will lay the foundation for commercial transformation
and industrial technology of PNT based on systematic metabolic engineering.

Keywords: pentostatin; nucleoside antibiotic; biosynthesis pathway; application; biological and
pharmacological property

1. Introduction

There are numerous types of antibiotics, and most of the antibiotics currently used are
mainly derived from microorganisms in nature [1–3]. Based on the different chemical struc-
tures, antibiotics are mainly divided into several groups, including polypeptides, amino-
glycosides, tetracyclines, polyenes, nucleosides, polyethers, macrolides, and β-lactams [4].
Among them, nucleoside antibiotics are biologically active microbial secondary metabolites
that are formed by a series of post-structural modifications of nucleosides or nucleotides,
and they have shown remarkably broad biological activities, mainly including antibacterial,
antitrypanosomal, anticancer, antiviral, herbicidal, insecticidal, and immunomodulatory
effects [5–7].

PNT, as a member of nucleoside antibiotics, has attracted widespread interest due to
its specific biological activity. PNT was first isolated from Streptomyces antibioticus in 1974,
its specific structure also was analyzed, and PNT especially was first reported as a potent
adenosine deaminase inhibitor [8]. Subsequently, more and more researchers became inter-
ested in PNT and its application. In 1975, Warner-Lambert applied for a patent, US 3923785,
which provided a new fermentation process of PNT from Streptomyces antibioticus, but the
yield was still very low [9]. In order to increase the yield, in 1982 the chemical synthesis
of PNT was first achieved by Warner-Lambert [10]. Afterward, the chemical synthesis
of PNT was studied in depth over the years, and significant results in terms of reaction
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routes and production feasibility were achieved, but the chemical synthesis of PNT showed
serious disadvantages, such as long synthetic routes, harsh reaction conditions, very low
production efficiency, high cost of consumption, and difficulty in industrial production
compared to microbial fermentation. With the rapid development of chromatography and
structural analysis methods, PNT in Streptomyces antibioticus NRRL 3238, Actinomadura sp.
ATCC 39365, Aspergillus nidulans, Cordyceps militaris, and Cordyceps kyushuensis Kobayasi was
discovered successively [11–15]. Nowadays, the industrial production of PNT is mainly
obtained from the fermentation broth of high-yield mutants. However, it is inefficient to
obtain high-yield mutant strains by traditional breeding methods. Though the pharma-
ceutical and physiological importance of PNT is known, understanding of its biosynthesis
pathways remains limited [16]. Therefore, it is necessary to study the biosynthesis mech-
anism of PNT for improving the yield of PNT through a further metabolic engineering
strategy [17]. With the rapid development of synthetic biology and genome sequencing
technology, the mechanism of PNT biosynthesis has been preliminarily elucidated in the
Streptomyces antibioticus NRRL 3238, Actinomadura sp. ATCC 39365, and Cordyceps militaris,
but the functions of some key genes in these gene clusters have been uncovered. Since
PNT has been approved by the US Food and Drug Administration (FDA) as a commercial
drug against hairy cell leukemia, and as attention increases, its extensive application in
the clinical treatment of malignant tumors has been extensively studied [18,19]. Moreover,
the therapeutic field of PNT has been expanding in recent years, including Waldenstrom’s
macroglobulinemia, Trypanosoma, and so on [20,21].

As a consequence, this review aims to cover all the key research areas of PNT in recent
years. It will place particular emphasis on the resource microorganisms, mechanism of
action, biosynthesis pathways, and diverse clinical applications of PNT. Furthermore, this
review also has included a list of key functional genes of PNT production in the biosynthesis
gene cluster, which will present the foundation and insights for the sustainable metabolic
engineering of PNT production in multifarious organisms.

2. Resource Microorganisms of PNT

Actinomycetes and fungi are the main resource microorganisms of PNT. PNT was
first isolated from the fermentation broth of Streptomyces antibioticus [8]. Purine nucleoside
antibiotic 2′-amino-2′-deoxyadenosine was first isolated from the fermentation broth of
Actinomadura sp. ATCC 39365 in 1979, and then PNT and 2′-chloropentostatin (2′-ClPNT)
also were obtained subsequently [13,21,22]. The biosynthesis gene cluster of PNT and its
associated product arabinofuranosyladenine (Ara-A) in Streptomyces antibioticus NRRL3238
was discovered in 2017 [13]. It was firstly reported in 1979 that Aspergillus nidulans could
produce cordycepin (COR) and PNT in the meanwhile [15]. Subsequently, it was reported
that the Emericella nidulans (the asexual form of Aspergillus nidulans) also could produce
PNT [22]. With the development of genome sequencing technologies, some key functional
genes in the biosynthesis gene cluster of PNT were discovered based on the genome
sequence of the fungi Cordyceps militaris in 2017, and PNT and COR were also obtained
in its fermentation broth [12]. By comparing with the PNT biosynthesis gene cluster
of Cordyceps militaris, later studies demonstrated that four key genes involved in the
biosynthesis of COR and PNT were identified in Cordyceps kyushuensis Kobayasi in 2019 [11].
In summary, the resource microorganisms of PNT and its associated products are shown in
Table 1 and Figure 1.

Table 1. The resource microorganisms of PNT and its associated products.

Species Resource Microorganisms Associated Products References

Actinomycetes Streptomyces antibioticus NRRL3238 Ara-A [13,21,22]
Actinomadura sp. ATCC 39365 2′-ClPNT, 2′-amino-2′-deoxyadenosine [8,13]

Fungi Aspergillus nidulans COR [15]
Cordyceps militaris COR [12]

Cordyceps kyushuensis Kobayasi COR [11]
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Figure 1. The structure and resource microorganisms of PNT and its associated products.

3. Action Mechanism of PNT

PNT is a transition of an intermediate in the adenosine deaminase reaction path-
way [18]. Thus, PNT has the effect of inhibiting adenosine deaminase, which leads to the
accumulation of intracellular adenosine or deoxyadenosine, resulting in blocked DNA
synthesis in cells. Therefore, the FDA approved PNT as an injection, named Nipent,
for the treatment of acute T-cell lymphoblastic leukemia, hair-cell leukemia, and chronic
lymphoblastic leukemia in 1992 [23–25]. Its mechanism of action is as follows: adeno-
sine deaminase (ADA), a key enzyme involved in the complementary pathway of purine
metabolism, catalyzes the degradation of adenosine and deoxyadenosine to inosine and
deoxyinosine in cells. ADA activity is abnormally elevated in the lymphocytes of patients
with chronic lymphocytic leukemia, and PNT binds closely to ADA and inhibits its activ-
ity [26]. When ADA activity is inhibited, adenosine accumulates in large amounts, which is
catalyzed by adenosine kinase and ribonucleotide reductase in lymphocytes to produce
deoxyadenosine triphosphate (dATP). dATP can inhibit the activity of nucleotide reductase
and produce feedback inhibition on lymphocyte proliferation and differentiation [27,28].
The action mechanism of PNT is shown in Figure 2.
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4. Biosynthesis Pathways of PNT
4.1. The PNT Biosynthesis Pathway in Streptomyces antibioticus NRRL 3238

In 1984, adenosine was shown to be a precursor of PNT in the Streptomyces antibioticus
NRRL 3238 by an isotope feeding experiment, where glycine, adenine, and adenosine were
chosen as feeding ingredients [29]. The one-carbon unit between purine ring C-6 and N-1
is derived from ribose C-1. It is speculated that the PNT biosynthesis pathway is closely
related to histidine synthesis in primary metabolism [30]. Later, cell-free enzymatic reaction
confirmed that 8′-keto-PNT was converted to PNT by NADPH reductase. Thus, 8′-keto-
PNT is deduced to be an intermediate in the biosynthesis of PNT, which only preliminarily
speculated the biosynthesis pathway of PNT, and the specific biosynthesis mechanism of
PNT has not been elucidated [16].

With the rapid development of genome sequencing technology, it has played a very
important role in promoting the discovery rate of novel biosynthesis gene clusters of natural
products [31,32]. The whole genome sequencing of Streptomyces antibioticus NRRL3238
was completed in 2017 [13]. Given that the biosynthesis of PNT correlates with the initial
steps of the L-histidine biosynthesis pathway, HisG from Streptomyces coelicolor A3(2), an
enzyme required for the first step of the L-histidine pathway, was utilized as a probe to
screen the Streptomyces antibioticus NRRL3238 genome data [16,33]. Therefore, PenA, which
is a homologous gene of HisG, has been found. Based on this, the genomic library of
Streptomyces antibioticus NRRL3238 was constructed, and the Cosmid12H4 containing the
PenA gene was filtered out. The upstream and downstream sequence of the PenA gene
in the Cosmid12H4 was analyzed, and the putative whole gene cluster was included in
the Cosmid12H4. Then, Cosmid12H4 was introduced into Streptomyces aureochromogenes
CXR14 for heterologous expression, which successfully produced PNT and its associated
product Ara-A. Therefore, Cosmid12H4 contains the whole gene cluster for the biosynthesis
of PNT and its associated products. Then, ten key functional genes in the biosynthesis
gene cluster were knocked out one by one by PCR targeting, and heterologous expression
of mutant gene cluster was performed in Streptomyces aureochromogenes CXR14, and the
minimal boundary of the gene cluster was determined [34]. This gene cluster contains
10 genes from PenA to PenJ, with a total of 10.0 kb (Figure 3A and Table 2). The results
confirmed that PenA, PenB, and PenC were related to the biosynthesis of PNT, and the genes
of PenD to PenJ were related to the biosynthesis of Ara-A.
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Table 2. The proposed functions of proteins in the biosynthesis gene cluster of PNT and Ara-A in the
Streptomyces antibioticus NRRL 3238.

Protein Size (aa) Proposed Function

PenG 387 SAH hydrolase
PenF 358 Phosphohydrolase
PenE 401 membrane transport protein
PenD 396 SAH hydrolase
PenC 247 SAICAR synthetase
PenB 234 Short-chain dehydrogenase
PenA 302 ATP phosphoribosyl-transferase
PenJ 161 Dehydrogenase
PenI 189 Dehydrogenase
PenH 213 Dehydrogenase

Previous metabolic labeling studies established that PNT biosynthesis is related to
L-histidine biosynthesis [35]. About the histidine biosynthesis pathway, ATP/dATP and
phosphoryl pyrophosphate (PRPP) were supposed to be starting compounds [16,29]. PenA
(ATP phosphoribosyl-transferase) is proposed to regulate the initial step by the conden-
sation of dATP/ATP and PRPP to produce compound 1. Subsequently, compound 1 is
converted to compound 2 by the three enzymes HisI (phosphoribosyl-AMP cyclohydrolase),
HisE (phosphoribosyl-ATP pyrophosphatase), and HisA (phosphoribosyl isomerase) from
the histidine biosynthesis pathway. Compound 2 underwent a series of rearrangement and
breakage reactions to generate the unstable intermediate compound 3 and compound 4.
Compound 4 was catalyzed by the PenC (SAICAR synthetase) to generate compound 5
(5′-p -6′-keto PNT). This enzymatic reaction has never been previously reported. Then,
compound 5 is dephosphorylated by a phosphatase to produce compound 6 (6′-keto-PNT).
Finally, compound 6 is reduced by PenB (short-chain dehydrogenase) to accomplish com-
pound 7 (PNT) biosynthesis. Previous studies have confirmed that SAH hydrolase catalyzes
the reversible hydrolysis of SAH to form adenosine, and the precise reaction mechanism has
been well established [36]. Studies of the pen gene cluster identified two SAH hydrolases
(PenD and PenG) and three dehydrogenases (PenH, PenI, and PenJ) as suitable candidates
for Ara-A biosynthesis. Subsequent results confirm that the biosynthesis of Ara-A is ini-
tiated by PenG (SAH hydrolase), which hydrolyzes SAH to adenosine, and PenD (SAH
hydrolase) controls the reverse reaction [36]. Then, the adenosine is dehydrogenated at
C′-2 to the intermediate 2′-keto adenosine by PenH (heteromeric dehydrogenase), PenI
(heteromeric dehydrogenase), and PenJ (heteromeric dehydrogenase), followed by reduc-
tion to form the end product Ara-A (Table 2). Therefore, a biosynthesis pathway of PNT
and its associated product Ara-A in the Streptomyces antibiotic NRRL 3238 was proposed
(Figure 4A,B). Meanwhile, it also revealed that this gene cluster had an unusual protector–
protégé strategy. PNT, as an ADA inhibitor, could protect its associated product Ara-A
from deamination by ADA [13].
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Figure 4. Biosynthesis pathway of PNT and associated products in the Streptomyces antibiotic NRRL
3238 and Actinomadura sp. ATCC39365 (modified from reference [13,14,37]. (A): biosynthesis pathway
of PNT in the Streptomyces antibiotic NRRL 3238 and Actinomadura sp. ATCC39365. (B): biosynthesis
pathway of Ara-A in the Streptomyces antibiotic NRRL 3238. (C): biosynthesis pathway of 2′-CLPNT
in the Actinomadura sp. ATCC39365. (D): biosynthesis pathway of 2′- amino -2′-deoxyadenosine in
the Actinomadura sp. ATCC39365. The red fonts indicate the biosynthesis pathway in Streptomyces an-
tibiotic NRRL 3238. The blue fonts indicate the biosynthesis pathway in Actinomadura sp. ATCC39365.
The dashed arrows indicate that this step is a speculative process. The solid arrows indicate that this
step is a determination process.

4.2. The PNT Biosynthesis Pathway in Actinomadura sp. ATCC39365

Actinomadura sp. ATCC39365 has been previously characterized as a 2′-Cl PNT and
2′- amino-2′-deoxyadenosine producer, but this strain has never been reported to produce
PNT [38,39]. In 2017, to address this question, Gao et al. investigated the metabolite profiles
of Actinomadura sp. ATCC 39365 by liquid chromatography–mass spectrometry (LC-MS),
and the results unquestionably demonstrated that Actinomadura sp. ATCC39365 is also
a PNT producer [14]. Subsequently, three key genes (PenA, PenB, and PenC) of the PNT
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biosynthesis pathway in Streptomyces antibioticus NRRL 3238 were employed as probes,
and the genome sequence of Actinomadura sp. ATCC 39365 was screened, which revealed
that the protein sequences of AdaA (ATP phosphoribosyltransferase), AdaB (short-chain
dehydrogenase), and AdaC (SAICAR synthetase) from Actinomadura sp. ATCC39365 had
high identities to PenC, PenB, and PenA from Streptomyces antibioticus NRRL 3238 with
59%, 71%, and 73%, respectively. Therefore, this target gene cluster including the gene
of AdaA, AdaB, and AdaC is to be involved in the biosynthesis of PNT in Actinomadura sp.
ATCC 39365. Based on this, the genome library of Cosmid3G12 containing the gene of
AdaA, AdaB, and AdaC was obtained and introduced into Streptomyces aureochromogenes
CXR14 for heterologous expression, which successfully produced PNT and associated
products. Then, based on the Cosmid3G12 terminal sequence, by using bioinformatics
analysis and gene knockout strategy, the minimal boundary of the Ada gene cluster was
determined. Subsequently, the function of each gene in the Ada gene cluster was verified by
using PCR targeting, and heterologous expression of the whole gene cluster was performed
in Streptomyces aureochromogenes CXR14 [34]. This result confirmed that there was one gene
cluster for the biosynthesis of PNT and its associated products; however, their biosynthesis
pathways are independent. This gene cluster contains 13 genes from AdaA to AdaM,
with a total of 14.4 kb. It is confirmed that AdaA, B, C, E, K, and L were related to the
biosynthesis of PNT, and AdaF, G, J, and M were related to the biosynthesis of 2′-amino-
2′-deoxyadenosine. However, the gene for the biosynthesis of 2′-ClPNT has not been
discovered among 13 genes, it is necessary to further clarify how the chlorine is bound to
the precursor to synthesize 2′-ClPNT. Subsequently, the biosynthesis gene cluster of PNT
and associated products of Actinomadura sp. ATCC39365 was updated in 2019 [37]. The
updated gene cluster was named Ade, from gene AdeA to AdeV with a total of 25.0 kb
(Figure 3B). In addition, this study deduced that AdeA, B, C, Q, R, S, and V were related to
the biosynthesis of 2′-ClPNT (Figure 4C).

Based on previous studies, the 2′-ClPNT/PNT biosynthesis pathway was deduced to
be closely related to the pathway of primary L-histidine [13]. The results of this study are
consistent with previous work on the PNT biosynthesis pathway in the Streptomyces antibi-
oticus NRRL 3238. In Actinomadura sp. ATCC39365, the PNT biosynthesis pathway would
begin with dATP/ATP and PRPP to form compound 1 by AdeC (ATP phosphoribosyl-
transferase) and AdeL (ATP phosphoribosyltransferase). Subsequently, compound 1
would be converted to compound 2 through the histidine pathway by three enzymes,
HisI (phosphoribosyl-AMP cyclohydrolase), HisE (phosphoribosyl-ATP pyrophosphatase),
and HisA (phosphoribosyl isomerase). However, it had been found that the PNT biosynthe-
sis pathway contains a HisA homolog-AdaK (phosphoribosyl isomerase), which performed
the same function as HisA. Under the action of AdeA (SAICAR synthetase), compound 2
was catalyzed to form compound 5 (5′-p -6′-keto PNT) via the intermediate compound 3
and compound 4 by a series of complex reactions. Compound 5 (5′-p -6′-keto PNT) was
dephosphorylated by AdeM (hydrolase) to generate compound 6 (6′-keto-PNT). Finally,
compound 6 (6′-keto-PNT) is dehydrogenated by AdeB (short-chain dehydrogenase) to
generate compound 7 (PNT). Previous studies have demonstrated that adenosine is the
direct precursor for the biosynthesis of 2′- amino -2′- deoxyadenosine [29], and adenosine
is dehydrogenated to form 2′-keto adenosine, which is subsequently transaminated to
produce the final product 2′-amino-2′-deoxyadenosine. In recent studies, the biosynthesis
of 2′-amino -2′-deoxyadenosine is initiated by AdeJ (Nudix hydrolase), which catalyzes the
hydrolysis of ATP to AMP. Then, the AdeM catalyzes intermediate AMP to form adenosine
by dephosphorylating. The adenosine undergoes dehydrogenation to form the 2′-keto
adenosine by AdeG (dehydrogenase). Finally, 2′-keto adenosine is catalyzed by AdeF
(aminotransferase) to accomplish the biosynthesis of the 2′-amino-2′-deoxyadenosine. An-
other associated product, 2′-ClPNT, is a natural nucleoside analog containing chlorine
in the Actinomadura sp. ATCC39365. However, its chlorination origin and the molecular
mechanism of chlorination have been unclear for decades. Recently, it has been deduced
that the initial substrate dATP undergoes dephosphorylation to generate 2′-dAMP. Sub-
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sequently AdeV (halogenase) catalyzes the conversion from 2′-dAMP to 2′-Cl-2′-dAMP
with Fe2+ and α-KG. Then, 2′-Cl-2′-dAMP and PRPP are catalyzed by AdeA, AdeB, AdeC,
AdeQ (N,N-dimethylformamidase), AdeR (glucosamine-6-phosphate deaminase), and
AdeS (ribokinase) to form 2′-Cl-2′-deoxyadenosine (Table 3) [37]. Finally, it undergoes
dephosphorylation to form 2′-ClPNT. The proposed biosynthesis pathways of PNT and
its associated products 2′-ClPNT and 2′-amino-2′-deoxyadenosine in the Actinomadura sp.
ATCC39365 are shown in Figure 4A, C, and D. Similar to Streptomyces antibiotic NRRL 3238,
a gene cluster exists in Actinomadura sp. ATCC39365 that can synthesize PNT, 2′-ClPNT, and
2′-amino-2′-deoxyadenosine separately. Meanwhile, a similar protector–protégé strategy to
Streptomyces antibiotic NRRL 3238 exists in Actinomadura sp. ATCC39365, where 2′-ClPNT
could inhibit ADA and prevent 2′-amino-2′-deoxyadenosine from being deaminated [14].

Table 3. The proposed functions of protein in the biosynthesis gene cluster of PNT, 2′-CLPNT, and
2′-amino-2′-deoxyadenosine in the Actinomadura sp. ATCC39365.

Protein Size (aa) Proposed Function

AdeE 479 Cation/H+ antiporter
AdeD 402 MFS transporter
AdeC 295 ATP phosphoribosyl-transferase
AdeB 234 Short-chain dehydrogenase
AdeA 239 SAICAR synthetase
AdeF 425 Aminotransferase
AdeG 351 Dehydrogenase
AdeH 595 ABC transporter, partial
AdeI 592 ABC transporter
AdeJ 161 Nudix hydrolase
AdeK 257 Phosphoribosyl isomerase A
AdeL 288 ATP phosphoribosyl-transferase
AdeM 264 Hydrolase
AdeN 347 ABC transporter substrate-binding protein
AdeO 363 Sugar ABC transporter permease
AdeP 406 Nucleoside ABC transporter
AdeQ 700 N, N-dimethylformamidase
AdeR 303 Glucosamine-6-phosphate deaminase
AdeS 309 Ribokinase
AdeT 241 Bacterial regulatory protein, gntR family
AdeU 231 Bacterial regulatory protein, luxR family
AdeV 310 2OG-Fe (II) oxygenase

4.3. The PNT Biosynthesis Pathway in Cordyceps Militaris

The biosynthesis pathway of PNT has been studied not only in Actinomycetes but
also in fungi. It was previously reported that cordycepin and PNT were produced by
Aspergillus nidulans, Cordyceps militaris, and Cordyceps kyushuensis Kobayasi [15,22]. To
predict the gene cluster of PNT and the associated product COR in Cordyceps militaris,
it is assumed that the biosynthesis genes may be conserved between the genomes of
Cordyceps militaris and Aspergillus nidulans (Figure 5B), and then four linked genes were
identified by genome-wide reciprocity analysis. Then, the four genes in Cordyceps militaris
were designated as Cns1, Cns2, Cns3, and Cns4. BLAST analysis indicated that the pro-
teins encoded by these four genes contain different conserved structures, such as the
oxidoreductase/dehydrogenase domain in Cns1, the HDc family of metal-dependent phos-
phohydrolase domain in Cns2, and the N-terminal nucleoside/nucleotide kinase (NK)
and C-terminal HisG domains in Cns3. Cns4 is a putative ATP-binding cassette type of
transporter (Table 4). This gene cluster contains four genes from Cns1 to Cns4, with a total
of 10.3kb (Figure 5A). To determine whether this gene cluster is responsible for cordycepin
and PNT biosynthesis, the serial gene deletions and complementation of Cns1–Cns4 in
Cordyceps militaris were carried out. To further validate the function of the genes, the
heterologous gene expression in Saccharomyces cerevisiae and Metarhizium robertsii were
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performed. First, the cDNA sequences of Cns1–Cns3 and Cns1–Cns2 were cloned, and
then the two gene cluster fragments were transferred into Saccharomyces cerevisiae. The
Cns1–Cns3 gene cluster fragment was transferred into Metarhizium robertsii. These results
confirmed that Cns1–Cns3 are responsible for COR biosynthesis and the essential roles
of Cns1 and Cns2 genes in COR production. In addition, to verify the function of Cns3,
the heterologous expression of Cns3 in Metarhizium robertsii and Cordyceps bassiana was
employed. It is confirmed that the Cns3 knockout mutant strain could not produce PNT. In
addition, they further attempted a partial cDNA sequence, encoding either the NK or the
HisG domain of Cns3 to complement the knockout mutant Cordyceps militaris. The results
revealed that the complementation with the HisG sequence was able to produce PNT, but
the NK domain did not.
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Table 4. The proposed functions of proteins in the biosynthesis gene cluster of PNT and COR in the
Cordyceps militaris.

Protein Size (aa) Proposed Function

Cns1 792 Oxidoreductase/dehydrogenase
Cns2 345 Metal-dependent phosphohydrolase
Cns3 871 Phosphoribosyltransferase
Cns4 1364 ATP-binding cassette (ABC) transporter

In summary, the biosynthesis of PNT is initiated by the HisG domain of Cns3 from
adenosine and PRPP. However, the NK domain of Cns3 converts precursor adenosine
to 3′-AMP [40,41]. Subsequently, the conversion of 3′-AMP to 2′-C-3′-dA is catalyzed by
Cns2, and 2′-C-3′-dA will be further converted to COR by Cns1 [42]. Cns4 (ATP-binding
cassette transporter) is a transport protein, which mainly transports PNT out of the cell.
Finally, the biosynthesis pathways of PNT and its associated product in Cordyceps militaris
are shown in Figure 6. Although PNT could be produced in eukaryotes in previous
studies, the PNT-dependent protector–protégé strategy had not been reported in eukaryotes.
However, the subsequent result confirmed that PNT protected COR from deamination in
the Cordyceps militaris similar to Streptomyces antibiotic NRRL 3238. It was the first time the
protector–protégé strategy in eukaryotes was reported [12].
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5. Applications of PNT
5.1. Treatment of the Hairy Cell Leukemia

Hairy cell leukemia (HCL) is a relatively unusual chronic B-cell lymphoproliferative
disorder that clinically presents with bone marrow and the spleen being infiltrated [43,44].
Interferon-α (IFN-α) was the first effective treatment for HCL. Based on its effect on HCL,
IFN-α was granted by the FDA [45]. However, with the discovery of new natural drugs,
PNT has attracted increasing attention for the treatment of HCL [46]. After comparing the
treatment effects on HCL, PNT was significantly more effective than IFN-α [47,48]. For
several years, subcutaneous IFN-α was the drug of choice for the treatment of HCL, but it
was later replaced by PNT. PNT was the first purine analog to undergo extensive testing
as an anticancer agent and the first medicine to receive FDA approval for a treatment
indication [43]. As a first-line treatment for HCL, PNT therapy is very effective, and PNT
has offered good long-term prospects for HCL patients in recent years [49,50]. Different
researchers have simultaneously demonstrated that PNT leads to complete remission
rates of over 75% and 10-year overall survival rates of over 80% in HCL patients [50,51].
During the treatment of HCL, PNT is generally well tolerated due to lymphocytopenia and
inhibition of adenine deaminase [52].

5.2. Treatment of the Chronic Lymphoblastic Leukemia

Lymphocytic leukemia is a common tumor of the blood system, which can be divided
into acute lymphocytic leukemia and chronic lymphocytic leukemia. Acute lymphocytic
leukemia is common in children, and chronic lymphocytic leukemia is common in the
elderly [53]. Chronic lymphocytic leukemia (CLL) is the most prevalent B-cell lymphopro-
liferative disorder. The B-cell of CLL is characterized phenotypically by co-expression of
the B-cell proteins CD19, CD20, CD22, and CD5 [54].

The first evidence for the anti-CLL effects of PNT appeared in reports and trials [55].
Great progress has been made in the treatment of CLL, and the most widely used drug
for CLL is Fludarabine. Subsequent studies demonstrated that PNT was also clinically
active against CLL and less toxic than Fludarabine [49]. PNT in conjunction with cy-
clophosphamide and rituximab as first-line therapy for lymphocytic leukemia proved to be
effective in inducing remission with acceptable toxicity in older and younger patients [56].
An experimental protocol was designed using PC chemotherapy in combination with the
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fully human anti-CD20 monoclonal antibody, and the protocol specifically designed for
untreated CLL patients aged over 65 years showed that the combination of PNT with
cyclophosphamide was better tolerated and less myelosuppressive than fludarabine [53].
PNT was an effective and well-tolerated nucleoside therapy for CLL patients with a re-
lapsed/refractory (R/R) condition after extensive pretreatment in 120 patients with a mean
age of 64 years [25].

5.3. Treatment of Waldenstrom’s Macroglobulinemia

Waldenstrom’s macroglobulinemia (WM) is an indolent lymphoma, and commonly
used therapeutic drugs mainly include alkylating agents, rituximab, and nucleoside. Nu-
cleosides, such as fludarabine and cladribine, are considered to be the appropriate first-line
drugs for WM [57,58]. However, PNT is effective in several lymphoid malignancies. Recent
studies have demonstrated the efficacy and safety of PNT in combination with other drugs
to treat WM better than a single drug. A phase II trial was initiated to determine the safety
and efficacy of a regimen containing PNT, cyclophosphamide, and rituximab in patients
with WM. Twenty-one patients received PER as first-line therapy. The results demonstrated
that the combined use of PNT, cyclophosphamide, and rituximab was a safe and effective
treatment for WM [20,59].

5.4. Inhibition of the Trypanosoma

Trypanosoma evansi and Trypanosoma cruzi pose a threat to human and animal life.
Therefore, it is crucial to study drugs that kill or inhibit trypanosomes. Chagas disease was
a neglected disease, which was caused by the protozoan parasite Trypanosoma cruzi [60].
Trypanosoma evansi is a flagellated protozoan that can infect a variety of hosts and cause
devastating diseases in horses. It is the most popular pathogenic Trypanosoma in tropical
and subtropical regions of the world [61]. Clinically, the infection manifests as rapid weight
loss, varying degrees of anemia, intermittent fever, edema of the hind limbs, progressive
weakness, and dyskinesia, which eventually leads to death [62].

In recent years, research on the inhibitory effect of PNT on trypanosomes was con-
ducted on mice. It was found that 2 mg/kg of PNT was effective in suppressing Try-
panosomes evansi, and the livers and kidneys of the mouse model were damaged. Subse-
quently, the results demonstrated the effectiveness and low toxicity of the treatment for the
mouse model [63,64]. In addition, by studying the dosage of PNT alone or in combination
with COR to inhibit or kill Trypanosoma cruzi in vivo and in vitro, it was found that the
combined use of PNT and COR has an obvious effect on killing Trypanosoma cruzi in vitro,
but it has no therapeutic effect in the in vivo experiment of the infected Trypanosoma cruzi
mouse model [21]. At the same time, it was found that these treatments could regulate
purinergic enzymes of the mouse model, which could help to reduce inflammatory damage
to the heart [65].

6. Conclusions

The nucleoside antibiotic PNT has been very effective in the treatment of tumors,
especially in the treatment of hairy cell leukemia. In recent studies, it has turned out
that the application of PNT has become more widespread, and as a result the usage
of PNT might be increased. According to the available studies, the synthesis of PNT
includes chemical synthesis and biosynthesis. However, the chemical synthesis of PNT
has major disadvantages compared to biosynthesis. Therefore, PNT is now produced in
large quantities mainly through fermentation. Initially, the way to increase the yield of PNT
was mainly by optimizing the composition of the culture medium and the fermentation
parameters. With continuous advances in high-throughput sequencing and synthetic
biology technology, the biosynthesis gene clusters of PNT and its associated products
have been elucidated in recent years in three typical strains. The functions of most genes
in the gene cluster have been verified. Thus, the mechanism of PNT biosynthesis has
been uncovered, and the biosynthesis of PNT can be regulated in the hope of obtaining
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mutants with high PNT yield. Although the functions of most genes mentioned in the PNT
biosynthesis gene cluster have been verified, there are still a small number of genes with
obscure functions, only predicted by using bioinformatics tools, so further investigation is
still required to complete the verification of all gene functions.

Based on the discussion, we summarized the following prospects and future trends.
First of all, to explore the regulators of PNT biosynthesis and analyze its regulatory mecha-
nism, to lay the foundation for the construction of a high-yielding PNT mutant. A metabolic
engineering approach can be employed to modify the strains and construct high-yield PNT
mutants with stable genetic traits based on the clear biosynthesis and regulation mecha-
nism. For example, the functions of regulatory genes of AdeT and AdeU in the biosynthesis
gene cluster of PNT in the Actinomadura sp. ATCC39365 remain unclear, both of which
may regulate PNT synthesis. Therefore, after function identification of AdeT and AdeU, by
knocking out the negative regulatory genes or overexpressing positive regulatory genes,
the high-yielding mutant strains of PNT can be obtained. The global regulatory genes also
can be predicted by whole-genome sequencing, and multigene knockout mutants can be
constructed. In addition, microbial cell factories can be constructed in mature chassis cells
based on a heterologous expression strategy for directed biosynthesis of PNT, for example,
Streptomyces lividans, Streptomyces coelicolor, and Streptomyces aureochromogenes CXR14 can
be employed as the chassis cells for the larger quantities’ production of PNT. All in all, this
review provides insight for researchers who will further investigate the biosynthesis of
PNT for commercial transformation.
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