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Abstract: This paper reveals two of the challenges faced by Romania and proposes a sustainable
and simple solution for its wine industry. First, substantial areas with vineyards that may produce
qualitative wine, and second, the very low digitalization rate of industrial sectors. More precisely,
this work proposes a solution for digitalizing the fermentation process of white wine, allowing
it to be adapted for other control techniques (i.e., knowledge-based systems, intelligent control).
Our method consists of implementing a pre-trained multi-layer perceptron neural network, using
genetic algorithms capable of predicting the concentration of alcohol and the amount of substrate
at a certain point in time that starts from the initial configuration of the fermentation process. The
purpose of predicting these process features is to obtain information about status variables so that
the process can be automatically driven. The main advantage of our application is to help experts
reduce the time needed for making the relevant measurements and to increase the lifecycles of sensors
in bioreactors. After comprehensive simulations using experimental data obtained from previous
fermentation processes, we concluded that a configuration that is close to the optimal one, for which
the prediction accuracy is high, is a neural network (NN) having an input layer with neurons for
temperature, time, initial substrate concentration, and the biomass concentration, a hidden layer with
10 neurons, and an output layer with 2 neurons representing the alcohol and substrate concentration,
respectively. The best results were obtained with a pre-trained NN, using a genetic algorithm (GA)
with a population of 50 individuals for 20 generations, a crossover probability of 0.9, and a probability
of mutation of 0.5 that uniformly decreases depending on the generations, based on a beta coefficient
of 0.3 and an elitist selection method. In the case of a data set with a larger number of variables,
which also contains data regarding pH and CO2, the prediction accuracy is even higher, leading to
the conclusion that a larger data set positively influences the performance of the neural network.
Furthermore, methods based on artificial intelligence applications like neural networks, along with
various heuristic optimization methods such as genetic algorithms, are essential if hardware sensors
cannot be used, or if direct measurements cannot be made.

Keywords: white wine fermentation; neural network; genetic algorithm; pre-training

1. Introduction

Romania is in the last position on the 2021 Digital Economy and Society Index
(DESI) [1] classification, with many areas of its economy lagging behind, such as human
talent, public administration, and the adoption of digitalization in the business environ-
ment. Digitalization must penetrate all economic sectors, especially the food industry, in
order to automate, monitor and control processes, thereby responding to two UNESCO
goals, namely, “Implementing sustainable food production systems to obtain zero hunger”
and “Increasing investment in scientific research, innovation, and infrastructure, to reduce
the digital gap between countries and promote sustainable development in industry and
agriculture”, respectively.
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One of the foundations of world civilization, and one that, for thousands of years,
has had numerous economic and cultural impacts, is the drink of the gods known as
wine. With more than 8 million hectares of vineyards across the world, the grape and its
industrialization add significant value to the economy, especially in most wine-producing
countries such as Romania [2].

To increase the profit margin for industrial winemaking, companies need to reduce
their production costs by automation to monitor and control processes, while maintaining
the quality at the same time. The application of mathematical modeling, and the use of
artificial intelligence (AI) tools like artificial neural networks (ANNs), is more and more
common in this industry [3,4]. Their utilization has been found to be successful in terms of
safety and quality checks, and for resolving many real-world problems in the field of food
processing.

Considering these real-world issues, the wine manufacturing industry needs to re-
spond to challenges by increasing the sustainability of its processes and products [2,5]. The
winemaking companies must find their proper and effective place in the mitigation of and
adaptation to climate change on a global scale, using sustainable practices for the long term.

The winemaking process is a complex transformation of small amounts of hundreds
of biological, chemical, and physical compounds that define most of the final organoleptic
characteristics of the wine. The most important process of wine production, and the one
that will directly impact the quality of the final product, is grape must fermentation [6]. To
optimize the fermentation process and quickly respond to deviations from the optimum,
data collection concerning process conditions should be rapid and include an advanced
process control (i.e., one based on neural network (NN) learning techniques) that is to be
completed in a timely manner [7,8].

During the past few years, many types of food items, such as fruits, vegetables, wine-
based products, dairy products, and bakery products have been undergoing processing
using several types of neural networks. A detailed presentation of the usage levels regard-
ing food processing with NNs is illustrated in a previous study [9]. Various applications of
NNs have been developed for understanding many characteristics in the food industry but
in the winemaking industry, there have only been a few of such applications (i.e., in the
determination of the pH and anthocyanin contents of wine grapes [10], in precision viticul-
ture [11], for the recognition of non-linear patterns in wine production [12], computing an
assessment of quality [13], and bioprocess optimization [14]).

The fermentation process in winemaking is more challenging to control, due to: (1) non-
linearity and non-stationarity which make modeling and parameter estimation particularly
difficult and the scarcity of online measurements of the component concentrations (essential
substrates, biomass, and products of interest); (2) a deficiency in reliable and cost-effective
online measuring tools. This paper’s aim is to realize a cost-effective and useful tool for
obtaining indirect information about the state variables of the alcoholic fermentation process
of white wine, in monitoring the fermentation process from a distance, and in controlling it
without the need for online sensors, a very appropriate solution in the post-COVID-19 era,
when teleworking is in a period of transition, which is also linked with the digitalization
of industrial sectors. The need for a software solution to this problem is in response
to the high cost and unreliability of certain hardware sensors, as well as the obvious
disadvantages of the normal procedure involving direct measurements. Furthermore, the
competition to satisfy the demand for alcoholic beverages on the market is quite high, so
an uncontrolled production process is not possible without losing the qualitative attributes
of the product. Considering the existing technologies, we propose a scenario that offers
numerous opportunities to explore and improve the white wine fermentation process.
The research work consisted of creating a flexible tool based on NN that could be pre-
trained, using genetic algorithms (GA) and data from the alcoholic fermentation process,
in such a way that it could predict the output variables as accurately as possible. The
main phases of the alcoholic fermentation process were latent, the exponential growth
phase and the decay phase. The developed application uses genetic algorithms, on the
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one hand, to determine the optimal structure of the neural network configuration (for
which the prediction accuracy is high) and, on the other hand, to dynamically pre-train
the neural network. The performance of neural networks is very sensitive to the initial
weights that are chosen. The initialization of these weights aims to stabilize the training
process. The weights determined after pre-training are reused as the initial weights in the
prediction process. Genetic algorithms have been used frequently for optimizing the control
parameters of complex systems. In our work, we use GA for pre-training the weights of the
NN. Genetic algorithms are based on the idea that crossing over and mutating the weights
of two good neural networks would result in a more performant neural network.

The novelty of this paper comprises the development of a web-based software ap-
plication, one that is flexible and parameterizable, which offers the possibility to test a
wide range of configurations and allows remote monitoring of the fermentation process.
The application’s flexibility is gained by the use of a great number of input parameters,
and the comparative presentation of the results is obtained via the various architectures of
NNs, having different layers and configurations, a different initialization mechanism for
the weights (random vs. trained), different activation functions, or various learning rates.
By using AI tools like neural networks and genetic algorithms, this application allows
for an automatic exploration of the design space, in order to automate the modeling and
management of the accelerated process of white wine fermentation. Pre-training the NN
using GA to increase the accuracy of the control mechanism of the fermentation process is
also an innovative idea in the current work.

The rest of the paper is organized into four sections. Section 2 describes the proposed
approach—the materials and methods—for modeling the alcoholic fermentation process
when making white wines, the application’s architecture and design, the methods of
measurement and data processing, and the implementation of the prediction tool. Section 3
presents the simulation’s prerequisites and analyzes the experimental results obtained,
providing some interpretations and possible guidelines. Finally, Section 4 highlights the
paper’s conclusions and suggests further research directions.

2. Materials and Methods

For this study, the alcoholic fermentation experimental processes have been conducted
in a bioreactor (EVO, 10 L, software NEPTUNE, Pierre Guerin, France) in the research
laboratory and have been divided into four distinct control situations. These concern
the initial concentration of the substrate (210 and 180 g/L), the initial concentration of
the biomass (0.1 and 0.2 g/L), the temperature values (20, 22, 24, and 26 ◦C), and the
fermentation medium characteristics: mash malted, mash malt enriched with B1 vitamin
(thiamine), white grape juice (Sauvignon Blanc must) and white grape must (Sauvignon
Blanc must) enriched with a B1 vitamin (thiamine). For the experiments, the wine yeasts
Saccharomyces oviformis and Saccharomyces ellipsoideus were used, these being seeded on
a culture medium [15]. During the process’s evolution, the cell concentration has been
calculated on the basis of three different measurements: optical density, dry substance, and
the total number of cells. The ethanol concentration has been determined using HPLC-MS
(Agilent, USA, Agilrom, Bucharest, Romania) equipment and the substrate concentration
has been determined with a spectrophotometric technique.

The bioreactor has been equipped with sensors and analyzers to monitor pH, temper-
ature, level and stirred speed control, dissolved O2, and the released CO2 and O2. From the
obtained experimental data, based on the domain knowledge of the authors, 30 “represen-
tative” sets were used, considering the following contexts obtained from a combination of
variables: 210 and 180 g/L as the initial concentration of the substrate, 0.1 g/L as the initial
concentration of the biomass, the four mediums, and the four temperatures.

To be able to predict the process parameters, we followed the steps presented in
Figure 1 algorithmically. The proposed solution was to create a tool based on a neural
network that could be trained by using data from the bioreactor, in such a way that it could
predict the output variables as accurately as possible.
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Figure 1. Experiment organization.

Although neural networks have previously been successfully applied in control pro-
cesses [16], from our experience, we can say that there is no single solution (in terms of
NN configuration) to suit all problems. For this reason, we believe that cross-fertilizing
ideas belonging to evolutionary computing (such as automatic design space exploration,
based on genetic algorithms) with artificial intelligence (neural networks) can lead to better
results. Thus, we tried to improve and enrich the current solution by replacing the manual
design -space exploration for the architecture of the NN with a basic, automatic design
space exploration based on a genetic algorithm. The idea started from the fact that several
parameters of the NN are chosen randomly at the beginning of the process, such as the
weights, the number of hidden layers, the number of neurons on a hidden layer, and the
learning rate. More precisely, the aim is to replace the initial random weights of the NN with
some that are generated by the genetic algorithm, run for between 30 and 50 generations,
in order to increase prediction accuracy. To achieve this goal, an NN has been developed
in Visual Studio C# and trained using the experimental data for an alcoholic fermentation
process from white winemaking; then, based on this NN, we have been predicted the
desired variables of the process.

The application development stages consisted of:
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• The back-end component implements the functionality of the application—the config-
uration of the neural network and its prediction. After compiling this application, a
dynamic library file is obtained that will be included later in the graphical interface.

• The front-end component contains all the design and presentation features of the
application. It was created with the help of dynamic ASP.NET pages, which were
developed using the structure and elements typical of the HTML 5.0 language and
including controls such as buttons, tags, and text boxes, specific to the ASP.NET
standard. To stylize and place these elements on the page, we used CSS and JavaScript.
Through this implementation mode, the application is available remotely, facilitating
its operation without the need to be near the bioreactor.

The neural network was trained using experimental data obtained from the bioreactor
wherein the fermentation occurred. The data were collected either by samples acquisition
and analysis or from the transductors. Different datasets were used in the training and
testing steps, which contain some or all of the following process variables:

• Temperature;
• Biomass concentration;
• Time;
• Initial substrate concentration (glucose);
• Substrate concentration at time t;
• CO2 concentration;
• Evolved oxygen concentration;
• pH.

Based on the input, two different configurations were outlined: the first one used only
4 parameters, such as temperature, biomass, time, and initial substrate, while the second
one used 2 additional inputs of CO2 concentration and pH.

2.1. User Guide and System Requirements

The software application was developed in Visual Studio IDE with C# in 2 different
phases: the so-called “back-end” implementation, wherein the architecture of the over-
all project was designed, and the “front-end” implementation, wherein a user-friendly
interface (UI) was created based on an ASP.NET Web Forms Application in order to re-
motely monitor the fermentation process. This way, we could ensure that the software
solution that is proposed is easily portable and platform-independent; thus, migrating it to
a Linux/Android/iOS machine would require only a new UI, instead of having to create
everything from scratch.

The graphical interface, or the front end, was developed as a website, with one menu
bar and several dedicated web pages so that it could facilitate remote access by an expert.
The menu bar allows the end-user to easily navigate throughout the different stages of the
prediction process, as can be seen in Figure 2.

Through this software application, the user can accomplish the following tasks:

• Choose an Excel (*.xlsx) file in which the training data of the network are structured.
• Choose an Excel (*.xlsx) file for generating a normalized data set.
• Choose the type of network to predict the variables.
• Set up the iteration number that the network will execute in the training process.
• Set up the neuron number for the hidden layer of the network.
• Set up the number of hidden layers of the network.
• Comparatively visualize the graphics of the desired output of the network and the

real output.
• Predict the desired variable functions of several variables, defined as the input network.

From a hardware point of view, to run properly, the application needs systems with
quad-core processors, 8 GB RAM, and a minimum of 850 MB up to 20 GB of HDD available
space, depending on the Visual Studio features installed. We created an archive using the
sources of the applications, which can be accessed at the following web address (http://

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
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webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
(accessed on 20 February 2022)) and downloaded to local computers by any interested
parties. We recommend using Windows 10 or a later version. Further details about the
software’s use are provided by the README.txt file in the archive. This software applica-
tion was developed using the full Visual Studio license provided for academic use, free of
charge, by the Lucian Blaga University of Sibiu, with the full support of the Hasso Plattner
Foundation in Germany. For this reason, those who use our source must do so only for
educational purposes. Besides it being free and easy to use, our tool provides the following
advantages: flexibility, extensibility, interactivity, and performance.

Figure 2. Web application home page.

2.2. Architecture and Design

The menu bar displays all the steps required for the prediction process in a logical and
chronological order, as shown in the diagram in Figure 1. The first step was to configure the
neural network that fits the input dataset. We could perform this intuitively and easily from
the graphical interface by using checkboxes and text boxes, as highlighted in Figure A1 in
Appendix A. The user interface (UI) allows the user to select the type of data they want
to use for the simulation from between the two possible choices previously outlined in
Section 2. Their selection would influence the entire network architecture by changing
the number of neurons on the input layer, denoted henceforth as N1. The application
simulates a feed-forward multi-layer perceptron (MLP) network with a backpropagation
(BP) algorithm. The backpropagation learning model is a learning algorithm used in feed-
forward networks. BP comprises two steps: the first step (forward) is where information is
passed from input to output, followed by a step from output to input. The forward step
propagates the input vector to the first level of the network; the outputs of this level produce
a new vector that will be the input for the next level until it reaches the last level, where the
outputs are the network outputs. The second step backward (backward) is similar to the
forward step, except that errors are propagated backward through the network to cause
the weights to adjust. Based on gradient descent for weight adjustment, the BP algorithm
uses the chain rule to compute the gradient of the error for each unit with respect to its
weights. There are several other parameters that must be customized, such as: the number
of neurons in the hidden layer, the learning rate, which in the literature is usually given the
notation β, the activation function, the weights initialization, and the maximum number of
epochs for which the network has to be trained.

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
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For the activation functions, four of the most well-known functions in feed-forward
neural networks were taken into consideration. Each one has its own advantages and
disadvantages; it is up to the user to choose the function that best suits the input data.
Although the sigmoid (Equation (1)) and hyperbolic tangent (Equation (2)) are two of the
most widely used functions, they both face the problem of vanishing gradients. As an
alternative, there is the ReLU function (Equation (3)), which stands for the rectified linear
unit; this is meant to activate only those neurons that have a significant output (higher than
0). Another option to the well-known sigmoid function would be SoftMax (Equation (4)).

f (x) =
1

1 + e−x (1)

f (x) =
ex − e−x

ex + e−x (2)

f (x) = max(0, x) (3)

so f tmax(zi) =
exp(zi)

∑j zj
(4)

For the weight initialization step, there are two different approaches we considered
that best suited our dataset. The first approach is a pseudo-random initialization that
generates sub-unitary values, called the Xavier initialization [17]. Instead of generating
completely random weights in the (0, 1) domain, this initialization chooses values from a
random uniform distribution, bounded by the following interval:[

−
√

6√
ni + ni+1

,+

√
6√

ni + ni+1

]
(5)

where ni is the number of incomings in terms of network connections and ni+1 is the
number of outgoing network connections from that layer. Assuming that the configuration
selected for the neural network in Figure A1 represents a 3-layer MLP neural network
(Input–Hidden–Output), for the hidden layer, the value of ni would be the number of the
neurons on the input layer and ni+1 the number of neurons on the output layer.

The other approach is the one that brings innovation to our application, i.e., finding
the initial weighting configuration that yields the best results by using a heuristic algorithm,
such as a genetic algorithm. The original premise was that finding an optimal layout for our
network can be narrowed down to a searching problem within an infinite space of solutions.
It has previously been established that an exhaustive search would be time-consuming and
pointless, which is what led us to use heuristic methods, among which the best-known one
is the genetic algorithm.

For this to be possible, we had to exclude the easy and intuitive approach of using the
neural network libraries proposed by MATLAB (also used by us in a previous work [16])
and create our own user-customizable solution, with the help of C# and the ASP.NET
framework. Akin to implementation for the neural network design, the expert user is
given the opportunity to fully customize the genetic algorithm operators using the controls
offered by the ASP web pages, such as text boxes and checkboxes (Figure A2).

The process starts with a population of randomly generated individuals. In our
approach, each individual represents a different neural network, with its own generated
weights. To narrow it down to a simple approach, the individual can be represented as a
linear matrix of weights, as follows:

Here, each weight is generated with the above-mentioned Xavier initialization. In
Figure 3, we are using the NN selected in Figure A1 (from Appendix A), wherein we set
4 neurons on the input layer, 1 single hidden layer with 8 neurons, and 2 neurons on the
output layer. The fitness function used to evaluate each individual is the backpropagation
algorithm itself, while the fitness score is the output of this algorithm, i.e., the network
error that resulted after training the network for the specific number of epochs selected by
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the user. The number of individuals selected for the initial population and the maximum
number of generations is again selected by the user; this must be a trade-off between having
an optimal solution and a proper execution time.

Figure 3. The genetic algorithm (GA) chromosome.

Each individual has a finite number of genes, which in our case are represented by the
linear matrix of weights, where one weight corresponds to one gene. Each string of genes,
also called the chromosome, is a possible solution to the search problem. In order to find
the optimal configuration, we applied the three genetic operators to the initial population.
As previously mentioned, the application is fully customizable, as this is its main purpose
and, although there are many proposals for this type of crossover, mutation, or selection,
we implemented only the ones that best suited our dataset and that provided acceptable
results. Hence, as a parent selection method, either the elitist method, which chooses the
two individuals with the best fitness score, or the tournament method, which selects the
two best-evaluated individuals among several n of randomly selected individuals, can be
chosen. The latter choice follows the principle that it is not always the first, best, 2 parents
that generate the best offspring, giving the chance for weaker evaluated individuals to
participate in the crossover process.

As for the crossover process, there are several well-known methods, such as the k-point
crossover, uniform crossover, or order-based crossover. For our solution, we opted for a
probability-based uniform crossover.

Here, W1
i,j and W2

i,j are the genes of the parents, arising from the selection process.
More precisely, for each gene of the selected chromosome, a random probability P is
generated; if the generated P is less than the crossover probability, denoted as Pcrossover
in Figure 4, or the crossover rate in Figure A2 (in Appendix A), the value of this gene is
exchanged with the value of the corresponding gene of the second selected chromosome.
It is advisable that in all cases, no matter the data set used, the crossover rate needs to
be high enough to ensure that the future generation is somehow distinct and can bring
improvements compared with the previous generation.

Figure 4. Uniform crossover, with Pcrossover probability.

After crossover, the mutation operator will be used in order to bring diversity to the
population with its best-known types: bit-string mutation, flip bit, boundary, uniform, or
Gaussian. Conversely to the high rate of the crossover, the mutation probability must be
low enough not to generate completely new random offspring while still bringing diversity
to the population. We have chosen a probability-based uniform mutation (Figure 5), but it
is dynamically handled this time; we started with a user-defined mutation probability and
adjusted it with each generation, as follows:
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Pmutation_new = Pmutation_old × e(1−generationno)×Beta (6)

where Beta is a sub-unitary coefficient selected by the expert user in the configuration box
(Figure A2).

Figure 5. Uniform mutation with Pmutation probability.

After applying these operators, we have a group of individuals comprising the ini-
tial population and the newly generated offspring. The latter are evaluated using the
same fitness function and, based on the fitness score, we replace the worst-evaluated
individuals with the two derived descendants if they perform better than these individ-
uals. Consequently, the survival of the individuals in the new generation is based on an
elitist approach.

These operators are applied repeatedly to the group of individuals until the population
converges, meaning that it does not produce significantly better-scored offspring, or until
the maximum number of generations has been reached. In the end, the outcome is an
individual representing the best or at least the optimal configuration of initial weights for
our neural network.

2.3. Data-Processing

At the beginning of Section 2, the structure of the input data sets is detailed: we
are using real values, determined by laboratory measurements of temperature, substrate,
biomass, time, CO2 concentration, or pH. There is a clear discrepancy between the high
values for these parameters and the values returned by our activation functions—thus, the
need for normalization.

Based on the lower and upper bounds selected by the user, each value is recomputed
using the following formula:

x′ = minnew +
(x−minold) × (maxnew −minnew)

maxold −minold
(7)

where minnew and maxnew represent the lower values, respectively, from the upper bound
selected in the textboxes in Figure A3 in Appendix A, and minold and maxold represent the
minimum and the maximum values, respectively, of the raw parameters from the input
data. By x we denote the current value that we want to process, and by x’, the resulted
value after normalization. Each value from the original data set from the ith row and jth
column will be saved in the new spreadsheet in the corresponding cell.

If the user already has the processed data set that fits the network’s inputs, this step
can be skipped, either by going directly to the Train and Test section with the aid of the
navigation bar or by pressing the “Next” button in the interface.

2.4. Prediction Tool

The neural network architecture selection is now complete, ready for training, and,
finally, for testing. In order to do that, the spreadsheet format datasets will be used for both
training and testing, as follows: the user must select the sets used for training by checking
the corresponding boxes in the application. In our experiments, the training/testing ratio
is 75/25 because we used 3 data sets for training and one for testing (see the configuration
from Figure A4 in Appendix A). However, if we vary the number of sets on which we
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perform, the practice test, we also change the training/testing ratio of 75/25. Our applica-
tion is flexible and allows having many configurations (for example, 50/50, or even 25/75.
Considering n (n ≥ 2) benchmarks (data sets) and that we use k benchmarks (n > k ≥ 1)
for training, we must have at least one set for training and the rest for testing, with at least
one set for testing, although it is recommended for better results that more than 50% of the
data is reserved for training. The total number of configurations that can be simulated is:

Ck
n·
(

C1
n−k + C2

n−k + . . . + Cn−k
n−k

)
= Ck

n·
(

2n−k − 1
)

(8)

For example, selecting only one benchmark for training the total number of configura-
tions that can be simulated is C1

n·
(

C1
n−1 + C2

n−1 + . . . + Cn−1
n−1

)
= n·

(
2n−1 − 1

)
, because we

may select anyone from all n benchmarks for training, and for testing, one from all n − 1
remaining data sets or select two from all n − 1 for testing, etc. Taking all these into consid-
eration, we consider that the training/testing sets are representative of all combinations of
the experimental conditions.

The expected output can be checked in the results section (Figure 6), designed to
accelerate the interpretation process by laying out both numerical and graphical results.
The training and testing errors give important values for a first evaluation; there are
situations where the training error is very low but the testing error is still high, so that
we can safely conclude immediately that we are dealing with an overfitting problem (the
model learns the detail and noise in the training data, to the extent that it negatively impacts
the performance of the model with new data). Still, for a deeper evaluation, the graphics
containing the results from the test are more meaningful.

Figure 6. Results check interface.

The left-hand chart in Figure 6 highlights the expected ascending curve of alcohol
generation, versus the one predicted by our network in the testing phase. The right-hand
chart displays the expected quantity of the consumed substrate in time, compared to the
one attained within the testing period. The user can switch between different chart types,
for instance, by point, line, bar, column, or area, the main idea being to select the particular
type of chart that better emphasizes the visual differences between the data. With all these
facts being given, the expert can now conclude whether the results are satisfactory or not.
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If yes, the final step is to use the obtained tool for the prediction process of the fermentation
parameters, as the example in Figure 7 indicates.

Figure 7. The output parameter generation, based on the prediction tool.

In the left-hand input section, the user is required to fill in the boxes with the values
of the process parameters, meaning the quantity of biomass and initial substrate at a
certain time and temperature. Temperature is very important because even the slightest
fluctuation can alter the oxidation of the wine and, therefore, significantly affect the quality.
Additionally, information about CO2 and pH can be used if the neural network architecture
is designed and trained with this information from the beginning. This example outlines
the usage of the tool for the neural network built in Figure A1, with only 4 input parameters;
thus, the last two boxes are disabled.

When pressing the “Predict” button in the output section, the numerical values for
the output parameters can be read and further interpreted by the wine technology expert.
Thus, the NN is able to determine the fermentation stage (providing real-time information
regarding the fermentation process without reading the sensors) or predict wine quality
based on the process variables. This can directly affect the productivity of the winery by
saving time and money.

2.5. Core Application

As the overview in Section 2.1 highlights, the application was developed in two stages,
i.e., the front-end part, which was described in depth in the previous sections, and the
back-end part, which contains the core of the application with all its classes, members, and
methods (see Figure 8). The latter component is the one that is meant to be portable; thus,
it was developed as a separate entity from the user interface (UI) by using the .NET core
framework. In order to finally integrate it into the UI, the whole code project was compiled
into a dynamic link library, in other words, a .dll extension file, which was later included in
the front-end ASP.NET Web Forms application project.
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Figure 8. Software application architecture.

3. Results and Discussion

The final results presented in this chapter reflect the best performances that the tool
could achieve, using the architecture and the design that are presented above. Besides
presenting simulation results that are very close to the real measurements, the purpose of
this tool is not only to demonstrate that we were able to design a perfectly working AI tool
but also to show the advantages that an AI hybrid tool comprising an NN and a GA could
bring compared to a basic NN tool.

3.1. Datasets

The simulations were performed repeatedly with different configurations for the
neural network on 2 main types of data sets, as described in Table 1.

Table 1. Data sets used for training and testing the NN (in and out parameters).

DATASET 1 DATASET 2 SIGNIFICANCE

INPUT

T T Temperature (◦C)
t t time (h)

S0 S0 Initial substrate concentration (g/L)
X X Biomass concentration (g/L)

pH pH

CO2
CO2 concentration released

(percentage volume)

OUTPUT
P P Alcohol concentration (g/L)
S S Substrate concentration (g/L)

The input data were previously obtained from experimental measurements and stored
in spreadsheet files, wherein each column would contain the values of the input parameters
at a specific moment in time t. Data were stored separately, depending on the value of the
temperature at which the fermentation took place.

3.2. Simulation Prerequisites

The first simulations were performed as a test, in order to find the range wherein the
parameters could vary, thus determining the configurations that could possibly lead to
the best or the optimum solution. Although the final architecture of the prediction tool is
subject to the discretion of the user, we had to narrow down an infinite number of possible
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parameters into only a few. The final solution was described in Section 2, along with all the
possibilities and variations.

Furthermore, different simulations were performed with several NN configurations,
with or without the GA. Some of the best results provided by our prediction tool, along
with their interpretations, are provided in Section 3.3.

3.3. Graphical Results and Interpretations
3.3.1. Predicted vs. Expected Results

Different types of graphical data were built, in order to best evaluate our developed
tool. In Figure 9, the output for the alcohol concentration and the one for the substrate are
merged in the same graph.

Figure 9. Expected and predicted outputs vs. time.

For this simulation, the biomass (X), the initial substrate (S0), the temperature (T), and
the time (t) were used as the input parameters to the following NN:

1. Input layer N1 = 4 neurons, one for each input parameter;
2. Hidden layer N2 = N1 + 6 neurons, where N1 is the number of neurons on the

input layer;
3. Output layer N3 = 2, one for the alcohol concentration (P) and one for the substrate (S)
4. Maximum number of epochs = 200,000;
5. Training sets: sets with T = 26, 24 and 20 ◦C;
6. Testing set: T = 22 ◦C;
7. Weight initialization: weights that are pre-trained with the GA:

a. Population size = 50 individuals;
b. Crossover probability Pcrossover = 0.9;
c. Mutation probability Pmutation = 0.5;
d. Mutation beta coefficient = 0.3;
e. Selection method: elitist;
f. Maximum number of generations = 50;

8. Activation function: the sigmoid function;
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9. Learning rate = 0.7.

A few points can be extrapolated from this graphical representation, the first one being
the fact that the ascending slope of the expected alcohol concentration (the orange line)
and the descending slope of the substrate concentration (the yellow line) are not smooth at
all, this being the result of the fact that the input data were raw and were not processed in
any way. Still, both the expected and the predicted results are according to the real process:
the alcohol concentration slope is ascending, a result that we expect from the fermentation
process, based on the consumption of the substrate (the yeast produces alcohol with the
consumption of the sugar). The higher the concentration of alcohol, the lower the substrate,
until, at some point in time, the lines cross each other. Very importantly, the accuracy is
also limited by the size of the data set, more precisely by the number of pairs in the training
data presented to the neural network. With a maximum of 200 input-output pairs, the
smallest training error obtained was about 3 × 10−3 for the sigmoid activation function, a
hidden layer with 10 neurons, and pre-training the weights with the genetic algorithm.

On the same figure, we can distinguish the three fermentation phases:

• Lag phase: the first phase of the process, shown in Figure 9, wherein both the alcohol
concentration of alcohol and the substrate stagnate;

• Exponential phase: starting with t = 50 h, where significant growth in the alcohol
content can be noted, based on the substrate consumption;

• Stationary phase: starting from t = 150 h, the output parameters do not undergo
major changes.

Thus, we can conclude that our results comply with the real-world process. Although
there are small differences between the expected and the predicted results, the graphic
of the results generated by the neural network tool cannot reach the spikes of the real
experimental data.

3.3.2. Random Initialization vs. Genetic Algorithm Initialization

The initialization of the weights has a major influence on the performance of the neural
network; therefore, we opted for the implementation of a heuristic optimization method
like the genetic algorithm, in order to obtain a solution close to the optimal configuration.
Comparisons between the best results that were achieved with a pseudo-random Xavier
initialization and the ones that were achieved with GA initialization can be checked in
Figure 10 for the alcohol concentration and in Figure 11 for the substrate quantity.

Figure 10. Alcohol prediction, based on different types of weights initialization.
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Figure 11. Substrate prediction, based on different types of weights initialization.

We achieved better results with the neural network pre-trained with the genetic
algorithm, with a testing error of 0.03 compared to 0.045 in the case of the pseudo-random
Xavier initialization. The previously mentioned error is the mean root square error used
for an evaluation of the performance of the backpropagation algorithm. Although the
integration of a genetic algorithm is time-consuming, the possibility of parallelization
exists, the evaluation of each chromosome being independent one from the other. Thus,
for higher performance and a decreased simulation time, each performance evaluation,
meaning each backpropagation algorithm, could run on a different software thread on
multicore processors in LAN or HPC systems. With this approach, the evaluation time
drops significantly; thus, this approach is achievable. To reduce the simulation time, there
are a number of free resources available from major software developers, such as Google
and Microsoft. Among these resources, we find virtual machines, storage, databases, tools
for developers, etc. These resources are not permanently free; it is only for a limited
number of months. For this work, we used Windows Virtual Machines; these resources
were provided by Microsoft Azure for students of the Lucian Blaga University of Sibiu
(ULBS), free for 12 months, based on authentication with a valid Gmail (ULBS) account.

3.3.3. Data Sets Comparison

There was an increase in the prediction accuracy once the additional information
about the pH and the released carbon dioxide was incorporated, leading to the conclusion
that a larger amount of data positively influences the performance of the neural network
(Figures 12 and 13).

Following analysis of the simulations in Figure 14, we concluded that a large number
of epochs does not guarantee a higher prediction accuracy; on the contrary, for very high
values, the performance decreases because the network error has exceeded the minimum
possible value overall. Our study shows us that in some cases, the hyperbolic tangent
function is more efficient than that of the sigmoid in terms of predictive accuracy. For
both activation functions, the results given by the neural network follow the graph of
the expected function, the alcohol concentration increases over time, and the amount of
substrate decreases. In conclusion, network training with a very large number of epochs
is useless in terms of performance, backpropagation being a slow learning algorithm,
based on the principle of error correction, which initially changes significantly; later, the
difference becomes smaller. Thus, the gain is too small compared to the computing power
consumption required for a large number of epochs.

In terms of activation function, the sigmoid and hyperbolic tangent (tanh) functions
performed similarly but demonstrated different learning rates. The sigmoid function
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performs better for higher learning rates, while the hyperbolic tangent function performs
better for lower learning rates (as Figure 15 reveals). For each pair of output values—
expected value, for each time moment, t, we calculated the difference between the two
values. In the case of alcohol concentration, the largest difference was 11.02 g/L, at the time
t = 212 h, for sigmoid function, and 12.76 g/L at time t = 219 h, for the tanh function. In the
case of the substrate quantity, for tanh, the maximum error is 19.44, and for the sigmoid
function, 26.36. In the case of the latter, the difference is significantly greater, and this can
be seen in the graph of the function.

Figure 12. Alcohol prediction, based on different types of data sets.

Figure 13. Substrate prediction, based on different types of data sets.
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Figure 14. The influence of the number of epochs on the amount of substrate, with a learning
rate = 0.7.

Figure 15. Influence of the activation function on the amount of substrate with a low learning rate
(<0.5).
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4. Conclusions and Further Work

This paper proves the possibility of integrating the field of artificial intelligence and
machine learning into fermentation bioprocesses. This is a hybrid work combining two
different fields, computer engineering and food engineering, showing the usefulness and
necessity of digitalization in the development of processes in today’s industrial climate.
The study consisted of the implementation of a software application that models the func-
tionality of a fully configurable 3-layer feed-forward multilayer perceptron neural network,
which based on previously obtained experimental data, can predict the evolution of the
quantities characteristic of the alcoholic fermentation process of white wines. The main
contribution of this work is that we show the superiority of an AI hybrid tool composed
of a neural network and genetic algorithms, with the advantages it brings compared to a
basic neural network, in predicting the process variables of wine fermentation.

After comprehensive simulations using experimental data obtained from previous
fermentation processes, we concluded that the configuration that is closest to optimal, for
which the prediction accuracy is high, is a neural network (NN) with an input layer having
N (4 or 6) neurons, one hidden layer with N + 6 neurons, and 2 neurons on the output
layer, running for 50,000 iterations and pre-trained with a genetic algorithm. With a larger
number of neurons on the hidden layer, the training time increases, but this is not reflected
in the NN performance and the difference in prediction accuracy is not significant. The
optimal configuration of GA has a population of 50 individuals and runs for 20 generations,
with a crossover probability of 0.9 and a probability of mutation of 0.5 that uniformly
decreases depending on the number of generations, based on a beta coefficient of 0.3 and an
elitist selection method. Although a larger number of individuals means the integration of
more possible solutions in the search space, increasing this also means increasing the time
and computing power consumed; in our case, this increase was not justified by the obtained
results. Using pH and CO2 as inputs of the NN, the prediction accuracy is higher, so we
can conclude that a larger data set positively influences the performance of the artificial
neural network.

The current work discusses one of a variety of research applications in the field of
bioengineering, a field undergoing great development in which the need to find methods
for the control and automatic monitoring of processes is growing. All these methods based
on artificial intelligence and machine learning applications, such as neural networks, fuzzy
logic, and support-vector machines, along with various heuristic optimization methods,
such as genetic algorithms, ant colony model optimization, simulated annealing, etc., are
essential if the hardware sensors cannot be used or if direct measurements cannot be made.
For this reason, further research and development in this area are needed for both the food
industry and other industries that require automatic process supervision. The importance
of existing hardware methods is high, based on using them to obtain the experimental data
needed to develop software solutions.

In further developments, we will consider the modification of the architecture of the
neural network in terms of the number of hidden layers (using a deep neural network)
and the activation function used, like SoftMax, ReLU, or Leaky ReLU. We intend to extend
and model the software’s application so that it can be integrated into other fermentation
processes for automatic management, as well as testing the alcoholic fermentation of red
and rosé wines.
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Appendix A

In this application, “Supervising and Controlling White Wines Fermentation Parame-
ter Evolution”, the expert user can configure a neural network and/or a genetic algorithm
that can simulate white wine fermentation and, based on input data sets, can observe the
“Alcohol Concentration” and “Substrate” evolutions in the fermentation process and, after
training, can test using different parameters to see what results can be obtained. For an on-
line test of the application, please follow the link: http://193.226.29.27/WineFermentation/
(accessed on 20 February 2022). An earlier version of this application can be downloaded
from the following link—http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/
WineFermentationPrediction.zip—the README.txt file from the archive will help the user
to compile his localhost solution.

The expert user is allowed to select any configuration. In the example below (Figure A1)
the NN has 4 neurons on the input layer (temperature, time, initial substrate concentration,
and biomass concentration), 1 single hidden layer with 8 neurons, and 2 neurons on the
output layer, representing the alcohol and substrate concentrations, respectively.

Figure A1. Neural network configuration page.

The expert user is given the opportunity to fully customize the genetic algorithm
operators from the controls offered on ASP web pages, such as text boxes and checkboxes
(Figure A2). The number of individuals selected for the initial population and the maximum
number of generations are again selected by the user; there must be a trade-off between
having an optimal solution and a feasible execution time.

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
http://193.226.29.27/WineFermentation/
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/WineFermentationPrediction.zip
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Figure A2. Genetic algorithm configuration page.

The input data for the simulation were previously obtained from experimental mea-
surements and stored in spreadsheet files, where each column would contain the values of
the input parameters at a specific moment in time t. Data were stored separately depending
on the value of the temperature at which the fermentation took place. Thus, the data were
organized as shown in Table A1.

Table A1. Dataset organization spreadsheet for a fermentation temperature of 24 ◦C.

INPUT OUTPUT

Time [h] X [g/L] T [◦C] S0 [g/L] P [g/L] S [g/L]

0 0.1 24 210 0.2 210
5 0.1 24 210 0.2 210

. . . . . . . . . . . . . . . . . .
127 2.4259 24 210 19.1123 158.7665
. . . . . . . . . . . . . . . . . .
197 1.107 24 210 52.0241 24.135

The tool is designed to mold to any activation function, but it is at the discretion of the
expert user to select the normalization domain (Figure A3). The section “Normalize Data
Set” is used if the user has their own data set that needs to be normalized before being used
in the training network. If the data set is already normalized, this step can be skipped. If
the user decides to normalize, a data set is needed that specifies the following values:

a. Lower boundary: this needs to be “0” if the NN section specifies “Sigmoid Function”
or “−1”, if it specifies “Tanh function” as the activation function;

b. Upper boundary: this needs to specify “1” for all activation functions.

Figure A3. Dataset normalization section.
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By the end of this process, a spreadsheet format file containing the processed data set
is automatically downloaded on the user’s device, next to the original uploaded file.

The selection of the neural network architecture is complete by now, ready for training
and, finally, for testing. There are four different datasets that differ from each other
according to the temperature at which the measurements were taken. It is highly advisable
to select at least 2 sets for training since a larger amount of data results in a better learning
process. We decided to rely on the 75/25 ratio rule, so for our simulations, we selected 3 sets
for the training, and the remaining set was used for testing the accuracy of our network
(see Figure A4).

The file with the data must be uploaded by the user, in a spreadsheet format, by
pressing the “Choose file” button. The values from within the document should be already
normalized to fit the previously designed neural network. In the end, the “Train & Test”
button controls the running of the backpropagation algorithm and provides the results
achieved in the testing phase.

Figure A4. Training and testing section.
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