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Abstract: Postbiotics are functional bioactive substances manufactured during fermentation in a
food matrix, which can be used to improve human health, but their influence on the adhesion
potential and physicochemical cell surface of probiotics is still unclear. We examined the postbiotic
influence produced by Escherichia coli Nissle 1917 in functional labneh on cell surface properties
(auto-aggregation, hydrophobicity, and co-aggregation) and the adhesion capacities of three probiotic
strains. The most commonly detected effects of probiotics, particularly Lsyn−7, were an increase
in auto-aggregation, hydrophobicity, co-aggregation, and adhesion ability of the tested strains.
Lactobacillus rhamnosus with Lsyn−7 (59%) presented the highest hydrophobicity, whereas the least
adhesion to xylene was detected in L. rhamnosus with LHM. Lactobacillus casei with Lsyn−7 showed
the highest auto-aggregation after 24 h (60.55%). Moreover, it also has a strong adhesion to Caco-2
cells and effectively prevents the binding of Salmonella Typhimurium to Caco-2 cells. Lactobacillus
plantarum with Lsyn−7 presented the strongest co-aggregation with Staphylococcus aureus (85.1%), S.
typhimurium (85. 02%) and Listeria monocytogenes (77.4%). The adherence potential of tested probiotic
strains was highly correlated with auto-aggregation, hydrophobicity, co-aggregation, and competitive
inhibition of L. monocytogenes and S. typhimurium. The findings suggest that Lsyn−7 can be a candidate
to promote the adhesion potential of selected probiotic strains. For the reason that the application of
probiotic strains has been more interested in their positive influences in the gastrointestinal tract, it is
essential to use some functional compounds, such as postbiotics, to improve adhesion abilities and
cell surface properties in terms of bacterial binding.

Keywords: adhesion; auto-aggregation; Caco-2 cells; co-aggregation functional labneh; hydrophobicity;
postbiotics; probiotics

1. Introduction

The word “-biotics” indicates strategies that fit with proper nutrition that can be
used to modulate the colonic microflora towards healthy benefit on the host. The word
‘biotic’ is formed from the Greek term “biotikós”, which means “relating to life”. It can
be used to describe the biological ecosystem consisting of organism communities joined
with their natural environment [1]. Probiotic strains modify the intestinal microbiota and
were particularly used to improve the health of humans and animals [2]. Presently, many
well-characterized strains of bifidobacterial and lactobacilli are available for human use
for the benefit of the host [2]. Besides lactic acid bacteria, Escherichia coli Nissle 1917 (EcN)
have also been used as a probiotic and therapeutic agent for over a century [3]. It was
isolated by Alfred Nissle in 1917 from a German soldier who remained healthy, whereas
his companions were subjected to infections caused by Shigella spp. [3]. Nissle is the unique
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probiotic active ingredient in Mutaflor, a licensed pharmaceutical broadly available in
Australia, Europe and Canada [3].

EcN has immunomodulatory influences, including upregulation of beneficial re-
sponses, as well as suppression of immune-mediated damage, and it can enhance the
function of the intestinal barrier [3]. Moreover, it could produce some novel type of colicin
that decrease the growth of pathogens [3]. The efficacy and safety of EcN have been widely
studied. Several previous studies have presented that EcN is efficient for the prevention
and treatment of gastrointestinal disorders, including chronic constipation, ulcerative col-
itis, irritable bowel syndrome, and Crohn’s disease. It has also been exhibited to be safe
when administered to infants [4]. Although EcN is able to utilize lactose [5], there was no
evidence in the literature that reported the possibility using of EcN as starter culture for the
production of fermented milk.

Prebiotics refers to compounds that are particularly used by probiotics to confer health
benefits [6]. Prebiotics can modulate the colonic microflora composition by activating the
growth of the probiotic, thereby promoting health benefits in the host [7]. These compounds
included phytochemicals, phenolics, polyunsaturated fatty acids, conjugated linoleic acids,
human milk oligosaccharides, many oligosaccharides, and several dietary fiber types [1].
Galactooligosaccharides (GOS) are lactose-derived ingredients that are synthesized during
hydrolysis by the enzyme β-galactosidase in a side reaction called transglycosylation [8].
GOS are particularly used in human nutrition as they are compositionally identical to a
complicated variety of structures in breast milk [9]. GOS are extensively utilized in infant
formulas because bovine milk has small concentration of oligosaccharides (0.005%) [10].
However, human colostrum includes about 2.0–2.5% g/L, which decreases to 0.5 to 2.0% in
mature breast milk [10]. Lactose is used as a precursor for GOS by β-galactosidases pro-
duced by fungi, bacteria, or yeast [9]. When probiotics and prebiotics are integrated, their
influences are considered in the form of synergism, and they are denominated synbiotics [9].

The newest member of the biotics family, postbiotics, refers to bioactive ingredients
produced by probiotic strains during the process of fermentation. Postbiotics contain
metabolites and cell components [1].

Historically, the knowledge and discovery of beneficial microbes or probiotics are
associated with commonly consumed fermented foods, and it was approved that probiotic
strains have been transferred to us since the first food raw materials were subjected to
fermentation process [11]. Cultured dairy products were probably the first functional
food supplemented with probiotics. They are the best carrier of probiotic strains in the
production of dairy products. Several studies presented the idea that probiotic cultures
have been effectively used in milk fermentation and where they induced preferable sensory
and textural properties, apart from beneficials effects on human health [11]. Labneh is an
artisanal culture milk product. It is a popular dairy product in different parts of the world,
particularly in the regions of the Middle East, in which it plays an essential role in the
family diet [12].

There were many studies dealing with the effect of prebiotics on probiotic strains.
However, so far, only a few studies have highlighted the correlation between the adherence
of probiotics and prebiotics addition [2,13].

Prebiotics could enhance the adherence of probiotics, proposing that the production of
novel synbiotic dairy products might be a potential agent to increase probiotic colonization
in the human gut [14]. Moreover, prebiotics could also present as decoy receptors, prevent-
ing the attachment of the pathogen to the intestinal mucosa, as reported by Hickey [15].
To our knowledge, no prior findings have investigated the influence of postbiotics on the
adhesion of probiotics.

This study aimed to investigate the effect of postbiotics on the adhesion abilities
of many probiotics, thus increasing our knowledge about their interactions. This was
conducted by examining the influence of postbiotics manufactured by E. coli Nissle 1917
in functional labneh enriched with GOS, the adhesion potential and physicochemical cell
surface features of three probiotic strains.
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2. Materials and Methods
2.1. Production of Hydrolyzed Lactose Cow’s Milk

Hydrolyzed lactose milk was used in this study as a prebiotic, which was produced
by treating with 0.1% (w/w) β-galactosidase (3.2.1.23; Sigma-Aldrich, St. Louis, MO, USA)
at 37 ◦C for 60 min. The resultant milk contained galactooligosaccharides (GOS) that
were synthesized during the reaction with β-galactosidase [9]. The lyophilization of the
hydrolyzed milk (LHM) was considered a control.

2.2. Production of Labneh

Labneh was manufactured as previously described with slight modification [16].
Briefly, hydrolyzed lactose cow’s milk was heated for 15 min at 94 ◦C and then inoculated
with 2% of E. coli Nissle 1917 at 45 ◦C, then the mixture was incubated at 37 ◦C for complete
coagulation. The resultant curd was then slowly stirred and put into cloth bags stacked
on top of each other and left for 24 h at 5 ◦C. Labneh was obtained from cloth bags, mixed
with 2% NaCl, put into plastic containers, and stored at 5 ◦C for two weeks. Samples for
the preparation of lyophilized supernatant were taken at zero-time (Lsyn−0), 7 (Lsyn−7), and
15 (Lsyn−15) days during refrigerated storage. Subsequently, sterile distilled water (2.5 mL)
was added to the 10 g labneh sample, then adjusted to pH 4 with 0.1-NHCl, followed
by ten minutes of incubation at 45 ◦C. The crude extract (CE) was centrifuged (4000× g,
15 min, 5 ◦C). NaOH (0.1 N) was used to adjust the pH of supernatants to 7.0, followed by
re-centrifugation (4000× g, 15 min, 5 ◦C) for further salts and protein precipitation. The
supernatants were obtained and filtered with sterilized 0.22 µm Millipore filters. The final
supernatants were lyophilized and used within ten hours of preparation [17].

2.3. Culture Condition of Selected Probiotic Strains

All used microbial strains were obtained from the food microbiology laboratory at
the dairy department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
(Escherichia coli Nissle 1917, Lactobacillus rhamnosus DML182, Lactobacillus casei DML191,
Lactobacillus plantarum DML23, Listeria monocytogenes DML34, Salmonella Typhimurium
DML113, and Staphylococcus aureus ATCC 25923).

The selected strains were grown overnight in Lactobacillus MRS broth o/w dextrose
(dextrose is not involved in this culture media). 2-gL−1 postbiotics (Lsyn−0, Lsyn−7, and
Lsyn−15) or LHM (control) were added to culture media as a carbon source followed by
incubation at 37 ◦C. However, E. coli Nissle 1917 and pathogenic strains of S. aureus, L.
monocytogenes and S. typhimurium were cultivated in tryptone soy broth supplemented with
0.1% yeast extract for overnight at 37 ◦C.

The pellets were obtained by centrifugation for ten minutes at 5000× g at laboratory
temperature. The phosphate buffer (pH 6.6) was used to wash the pellets thrice and it was
also used to adjust the optical density 0.60–0.65 at 600 nm (A0, H0).

2.4. Bacterial Adhesion to Solvents (BATS)

The adhesion of tested bacterial strains to solvent assay was conducted to investigate
the features of physicochemical cell surface [18]. Briefly, adherence to a polar solvent
(xylene) describes bacterial cell surface hydrophobicity. The affinities to basic solvent (ethyl
acetate) and acidic solvent (chloroform) show the electron acceptor features and electron
donor of the cell surface of bacteria, respectively. Cell pellets were washed thrice and resus-
pended in PBS (phosphate-buffered saline; 7.2) to obtain suspensions of 108 CFU mL−1. The
1.5 mL bacterial cell suspension was mixed with postbiotic solution (1.5 mL; 5% (wt/vol)),
followed by addition into a solvent (1 mL); ethyl acetate as an electron acceptor, chloroform
as an electron donor and xylene as an apolar solvent. The blend was mixed by vortexing
for two minutes and incubated at room temperature (20 ◦C) without agitation for 30 min
to split into two layers. The absorbance of the collected aqueous layer was measured at
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600 nm. The affinities to various solvents were expressed as adhesion percentages based
on the subsequent formula

BATS (%) = (1 − A/A0 min) × 100,

where A and A0 are the absorbances after and before extraction using different solvents,
respectively.

2.5. Assessment of Auto-Aggregation of Selected Probiotics

The determination of the auto-aggregation was performed following the Zuo et al. [19]
with minor modifications. Concisely, for the assay of the auto-aggregation, each bacterial
suspension (2 mL) was mixed using postbiotic solution (2 mL; 5% (wt/vol)) at laboratory
temperature for 20 s, followed by incubation at 37 ◦C. The absorbance of mixtures was
measured at 600 nm after 3, 6, and 24 h (At). The values of auto-aggregation were calculated
depending on the subsequent equation:

Auto-aggregation (%) = (1 − At/A0) × 100

2.6. Co-Aggregation Determination of Pathogens with Lactobacilli Strains

The co-aggregation ability of tested strains was determined according to the method
previously described [18] with slight modification. Briefly, suspensions of tested strains
were prepared as reported for auto-regulation analysis. Equal cell volumes (1.5 mL) of the
different pathogens and probiotics were mixed with postbiotic solution (3 mL; 5% (wt/vol))
and incubated for three hours at 37 ◦C without agitation. The mixture’s absorbance
was measured after three hours at 600-nm. The co-aggregation (%) was calculated by
subsequent equation:

Co-aggregation (%) = [1 − Amix/(Aprobiotic + Apathogen)/2] × 100

2.7. Adhesion of Probiotic or Pathogenic Strains to Caco-2 Cells

The influence of postbiotics on the adhesive activity of foodborne pathogens or pro-
biotic strains were determined using an intestinal epithelial cell model (Caco-2 cells) as
an intestinal epithelial cell model based on the previous study reported by Nueno-Palop
and Narbad [20] with minor modification. Briefly, Dulbecco’s modified Eagle’s minimal
essential medium was used as culture media for the Caco-2 cell line (ATCC HTB-39). This
medium fortified with L-glutamine (2 mmol L−1), 10% fetal bovine serum (Sigma-Aldrich),
penicillin (100-U ml−1) and streptomycin (100-µg mL−1) and then incubated (37 ◦C, 5%
CO2 (v/v) and 95% (v/v) humidified air) until the formation of confluent monolayers.

The Caco-2 cell monolayers on the 24-well plates were washed with phosphate-
buffered saline (PBS) at pH 7.2 before adhesion assay of selected strains. Bacterial pellets
were obtained using centrifugation at 7500× g for 20 min at 7 ◦C, followed by washing
thrice with PBS (pH 7.2). The bacterial pellets were resuspended in Dulbecco’s modified
Eagle’s minimal essential medium (fetal-bovine-serum-free and antibiotic-free). In total,
500 mL of bacterial suspension were blended with an identical volume solution of post-
biotics (5%). The mixture was poured into the 24-well plates, followed by incubation for
one hour at 37 ◦C in 5% CO2. The free or nonattached bacterial cells were eliminated from
Caco-2 cells by washing each plate’s well with PBS (pH 7.2). Finally, 1 mL Triton X-100 (1%
(v/v) was put to each well. Then, the mixture was mixed to separate the attached microbial
cells from monolayers of Caco-2 cells. A series of sequential dilutions of S. typhimurium, S.
aureus, L. monocytogenes, and lactobacilli strains were plated on xylose lysine deoxycholate
agar, Baird-parker agar, modified oxford agar, and MRS, respectively, followed by incuba-
tion at 37 ◦C for 48 h. The adhesion percentage was calculated using the adhesion potential
of pathogens or probiotics numbers to Caco-2 cells when matched with the inoculum level.
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2.8. Determination of Competitive Inhibition of Pathogens Binding

To evaluate the ability of competitive inhibition of pathogen binding, 250 µL pathogenic
bacterial suspension was mixed with lactobacilli strains at a ratio of 1:1. Five hundred mi-
croliters of postbiotics solution (5%) was added. The combination of lactobacilli-pathogens
with/without postbiotics was added to 24-well plates, including monolayers of Caco-2
cells. The plates were incubated at 37 ◦C for one hour. These steps are the same steps
that are used for the adherence potential of probiotics or pathogenic strains to Caco-2
cells. The inhibition of pathogenic strains adhesion was determined by the number of
pathogens attached to Caco-2 cells compared with the number of pathogens attached to
Caco-2 without lactobacilli strains [18].

2.9. Statistical Analysis

All experiments were conducted in triplicate. ANOVA test with a significance level of
p < 0.05 was used to assess the parameters of physicochemical cell surface and adhesion
ability of tested strain. The results are indicated as average ± standard deviation. Significant
divergences among mean values were evaluated using Duncan’s multiple range tests.
SPSS Statistics software version 16 (SPSS Inc., Chicago, IL, USA) was applied to assess
all statistical tests in this study. Principal component analysis (PCA) was conducted to
present the relationship between selected lactobacilli strains’ cell surface properties and
their adhesion to Caco-2 cells.

3. Results
3.1. The Effect of Postbiotics on Cell Surface Properties of Probiotic Strains

Microbial adhesion to hydrocarbon (MATH) methods are the main prevalently used
protocol for determining the cell surface hydrophobicity of probiotics [21]. This protocol
appreciates hydrophobicity as the adhesion of selected probiotic strains to apolar solvent
(e.g., xylene, toluene, and hexane). In this study, the affinity of tested strain to xylene
was performed to determine bacterial hydrophobicity. The adhesive features of tested
strains associated with postbiotics (Lsyn−0, Lsyn−7, and Lsyn−15) to aromatic hydrocar-
bon (xylene), halogenated aliphatic hydrocarbon (chloroform), and aliphatic ester (ethyl
acetate) are indicated in Figure 1. All tested probiotics grown in MRS broth enriched
with Lsyn−7 showed significantly (p < 0.05) higher hydrophobicity than other treatments
(Figure 1). The hydrophobicity of all probiotic strains grown with postbiotics was in the order
Lsyn−7 > Lsyn−15 > Lsyn−0 > control (Figure 1). The high hydrophobicity (>50%) was de-
tected for the L. rhamnosus with Lsyn−7 (59.53%), L.plantarum with Lsyn−7 (52.91%), and
L.casei with Lsyn−7 (52.19%) (Figure 1). For the test strains with different postbiotics, non-
significant (p < 0.05) differences in affinities with chloroform and ethyl acetate, except
for L. rhamnosus associated with Lsyn−7, where its affinity with chloroform was shown
to be relatively higher than control (Figure 1). The adhesion rate of tested strains to an
aliphatic ester (ethyl acetate) was lower than xylene or chloroform, within a range between
6.2% and 8.9%.

3.2. The Influence of Postbiotics on Auto-Aggregation Activity of Probiotic Strains

The auto-aggregation features of selected probiotics are shown in Figure 2. In the
recent work, after incubation for 24 h, all selected probiotic strains showed a high ability of
auto-aggregation compared with their ability incubated at three or six hours (Figure 2). A
time-dependent rise in this auto-aggregation capacity was detected (Figure 2). All strains
associated with Lsyn−7 presented significantly (p < 0.05) higher values of auto-aggregation,
within a range from 56.1% to 60.5%, than other treatments (Figure 2). L. casei exhibited
the greatest auto-aggregative ability at the end of incubation (24 h), whereas L. rhamnosus
showed the lowest ability of auto-aggregative (56.1%) (Figure 2).
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3.3. The Effect of Postbiotics on Co-Aggregation Activity of Pathogens with Probiotic Strains

The co-aggregation between foodborne pathogens and probiotics is indicated in
Figure 3. The high co-aggregation (>70%) was observed for almost all probiotics associated
with Lsyn−7 and Lsyn−15 against foodborne pathogens (Figure 3). Among the tested strains,
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L. plantarum with Lsyn−7 showed significantly (p < 0.05) highest abilities of co-aggregation
with L. monocytogenes (85.02%) and S. aureus (85.1%), but no significant difference between
the effects of L. plantarum and L. rhamnosus are associated with Lsyn−7 against S. Typhimurim
(Figure 3). The probiotic strains associated with LHM demonstrated the least co-aggregation
capacity against all foodborne pathogens. Predominantly, the co-aggregation was related
to auto-aggregation and hydrophobicity.
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3.4. In Vitro Assessment of Postbiotics on Adhesion of Probiotic or Pathogenic Strains

The effect of postbiotics on adhesion capacities of selected strains of foodborne
pathogens and probiotics in Caco-2 cells is indicated in Figure 4 and Table S1. The adher-
ence ability highly varied between the tested strains. Generally, all selected strains can
bind to Caco-2 cells under in vitro conditions; their ability of adherence ranged between
5.76% and 26.82%, with L. casei, L. plantarum, and L. rhamnosus associated with Lsyn−7

adhering most effectively at 26.82%, 26.69%, and 23.66%, respectively (Figure 4; Table S1).
In contrast S. Typhimurim, S. aureus and L. monocytogenes associated with Lsyn−7 were least
efficient, with adhesion ability of 5.7%, 6.01%, and 6.3%, respectively (Figure 4). In our
research, Lsyn−7 induced a two-way adjusting influence on the adherence to Caco-2 cells,
where Lsyn−7 significantly increased the adhesion potential of lactobacilli strains to Caco-2
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cells compared with other treatments. Still, the same treatment significantly reduced the
adhesion potential of pathogens to Caco-2 compared with other treatments (Figure 4).
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3.5. In Vitro Evaluation of Postbiotics on Competitive Inhibition of Pathogens Adhesion to Caco-2
Cells by Probiotic Strains

The competitive inhibition of adherence of S. aureus, S. typhimurium, L. monocytogenes to
Caco-2 cells by selected lactobacilli strains is indicated in Figure 5. The selected lactobacilli
strain enhanced inhibition of the adhesion abilities of S. aureus (1.3%–4.8%), S. Typhimurim
(5.3%–27.55%) and L. monocytogenes (1.8%–31.18%) to Caco-2 cells. Lsyn−7 significantly
increases the rate of competitive inhibition of the adhesion of L. monocytogenes and S.
typhimurium compared with other treatments, regardless of the lactobacilli strain, was
used in this test. However, the competitive inhibition of S aureus was not significantly
observed in the presence of selected lactobacilli strains associated with different postbiotics
(Figure 5).

3.6. Multivariate Analysis of Adhesion Potential and Cell Surface Characteristics of Selected
Lactobacilli Strains

PCA of the influence of postbiotics on cell surface properties (bacterial adhesion to
solvent, auto-aggregation, and co-aggregation) and adhesion potential of selected probiotic
strains explained 78.06% of the variability on two PC (Figure 6A). PC1 (56.31%) comprised
bacterial adhesion to xylene (%BATS-x), bacterial adhesion to chloroform (%BATS-C),
auto-aggregation (Agg) after 3, 6, and 24 h, co-aggregation, (Coagg), adhesion to Caco-2
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cells (Adhesion) and competitive inhibition of L. monocytogenes (L. inhibition). However,
the second dimension (21.75%) was primarily associated with competitive inhibition of S.
typhimurium and S. aureus (Figure 6A). Four groups, groups (2 and 3) were positioned at
the left side of PC1. However, group one and four were put on the positive value side of
PC1. Group one presented high values of cell surface properties and adhesion potential of
selected strain. In contrast, group four is characterized by high values of all parameters
except the competitive inhibition of S. typhimurium and S. aureus (Figure 6A). All values
of tested parameters are decreased in groups two and three compared with other groups,
but the rate of competitive inhibition of S. typhimurium and S. aureus in group three is
higher than group four (Figure 6A). Figure 6B is used to define the relationship between cell
surface properties of selected strains and their adhesion to Caco-2 cells. The gastrointestinal
tract adhesion (Caco-2 cells) is strongly correlated with hydrophobicity and co-aggregation.
The auto-aggregation (3, 6, and 24 h) and competitive inhibition of L. monocytogenes is
strongly correlated with the adhesion rate, whereas the rate of adhesion is moderately
correlated with bacterial adhesion to chloroform. Finally, the degree of correlation between
adhesion of tested strains and bacterial adhesion to ethyl acetate and competitive inhibition
of S. typhimurium is weak. The competitive inhibition of S. aureus is negatively correlated
with the rate of adhesion to Caco-2 cells (Figure 6B).
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Figure 6. (A) Principal component (PC) analysis biplot of physicochemical cell surface properties and
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correlation of principal component analysis variable. The following abbreviation C, 0, 7, 15, Agg
and Coagg refer to control, zero-time, 7 and 15 days of storage periods, auto-aggregation, and
co-aggregation respectively.

4. Discussion

An optimization of the enzymatic synthesis was performed to result the maximum
contents of GOS, the enzymatic treatment was performed with ß-galactosidase concen-
tration of 0.1% (w/w) and incubated at 37 ◦C for 60 min. generally, such as in previous
studies, similar enzymatic synthesis process for GOS productions was performed [9,22]. Oh,
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Kim, Oh and Kim [9] reported also that catalyzed reaction of transgalactosylation resulted
GOS with different linkages such as ß1-6, ß1-4 and ß1-3. Moreover, the concentration of
residual lactose after 60 min of enzymatic reaction had reduced by 98.16% and the total
content of GOS was 0.71 g/100 g. GOS mainly comprised allolactose, 6-galactobiose and
6-galactosyllactose.

To the best of the authors’ knowledge, no study has been conducted on determining
the postbiotics effect on the cell surface properties (auto-aggregation, hydrophobicity, and
co-aggregation) and the adhesion potential of selected probiotic strains.

This study determines the effect of postbiotics on adhesion abilities, and cell surface
characteristics, of selected probiotics. Previous studies have confirmed that higher adhesion
to Caco-2 cells because of higher hydrophobicity of the cell surface and vice versa [12].

The basic solvent (ethyl acetate), non-polar (Xylene) and acidic solvent (chloroform)
were used to determine the electron acceptor, hydrophobic/hydrophilic, and electron donor
properties of bacterial cell surface, respectively (Figure 1), which resulted from Lewis’s
acid-base and carboxylic groups interactions [23].

The hydrophilic and hydrophobic features are attributed to polysaccharides and
proteins on the bacterial surface [24]. The selected strains exhibited weak adhesion to ethyl
acetate, which demonstrated the particularity of selected strains having the nonacidic and
poor electron acceptor property [25], compared with their affinities to an acidic solvent
(chloroform), which showed the specialty of selected strains to have an acidic character and
essential electron donor.

The saccharide concentration in the culture medium plays a critical role in measuring
the hydrophobicity of cell surface. When the presence of lactose as a sole carbon source in
culture media positively influences hydrophobicity of cell surface [26]. The culture media
enriched with prebiotic levan also enhances the hydrophobicity of the probiotic strain L.
acidophilus La5 [26]. In contrast contrary, the presence of hydrochloric acid and bile salts is
inversely proportional to the hydrophobicity of bacterial cell surface [26]. Substantially, the
MATH method does not determine the cell surface’s hydrophobicity; instead, it reflects van
der Waals and electrostatic forces as substantial factors interacting with overall adhesion
capacity [27]. The relationship between hydrophobicity and adhesion has been detected in
many studies with conflicting results because cell adhesion features are affected by different
factors such as pH, temperature, and culture media composition. [21,23,28].

According to Falah et al. [29], investigation of hydrophobicity may be considered a
preliminary test of the ability of probiotics to bind to epithelial cells. They also consider
hydrophobicity as one of the significant features enhancing the first contact between
host cells and probiotic strains. Some authors also consider that probiotics with high
hydrophobicity have better potency to bind to the human intestinal [30].

Bacterial auto-aggregation is an approach by which bacterial strains physically react
with each other and precipitate from static liquid suspension [31]. Bacterial ability to form
cellular aggregates through the bacterial aggregation of the same strain (auto-aggregation)
can also participate in colonization in the intestine. Furthermore, aggregation may act an-
tagonistically against potentially pathogenic microorganisms [28,32]. The auto-aggregation
ability of probiotics is directly proportional to their adhesion to intestinal mucosa [33].
To succeed in the required advantage of probiotic bacteria, they need to create an ade-
quately large biomass through aggregation [33]. Some studies have found a relationship
between adhesion and aggregation [33]. However, other studies did not find such a link
and correlation between these two characteristics [33]. Depending on these results, pro-
biotic strains had perfect auto-aggregation characteristics, usually having good adhesion
abilities to cell culture, usually had good auto-aggregation properties. This correlation
could have been seen in the case of tested strains, particularly when they are associated
with Lsyn−7. A strong correlation was found between hydrophobicity and auto-aggregation
of selected strains in this study (Figure 6B). This finding corresponds to the study by
Tuo et al. [34], who reported that auto-aggregation levels of the 15 L. plantarum strains
strongly correlated with hydrophobicity. However, our findings do not correspond to the
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study by Vlková et al. [35], who described that no significant correlations existed between
hydrophobicity and auto-aggregation ability of bifidobacteria. The correlation between
hydrophobicity and auto-aggregation may be species-specific.

Co-aggregation of probiotics plays a critical role in preventing pathogenic strains from
surface colonization [36]. It was recently reported that probiotics aggregation efficiently
produced various antimicrobial compounds [37], suggesting that co-aggregation and auto-
aggregation are closely associated with the antagonistic influence of probiotic strains.

Co-aggregation of probiotics with a potential pathogen allows them to produce an-
timicrobial compounds in very close proximity to pathogens, which may prevent the
growth of the pathogenic strain in the gastrointestinal tract [34]. It was reported that
the ability of co-aggregation with potential pathogens and auto-aggregation properties
can be used for preliminary selection of probiotic bacteria [34,36]. Co-aggregation and
auto-aggregation are significant in biofilm formation to protect the host from colonization
by potential pathogenic strains [34]. The co-aggregation of the selected strains was highly
correlated with auto-aggregation and hydrophobicity. These results are inconsistent with
those by Collado et al. [38], who reported that auto-aggregation properties are related to
co-aggregation capacities. Xu, Jeong, Lee and Ahn [18] also showed that the co-aggregative
was strongly correlated with hydrophobicity.

Adherence to epithelial cells and following colonization of the gastrointestinal tract is
a characteristic that gives a significant advantage to probiotic strains and supports them
to proliferate and compete in the gut effectively. The enterocyte-like Caco-2 cell model
is particularly used to determine the competitive inhibition, displacement, adhesion rate
because the ability of adhesion to epithelial cells is significantly considered an important
standard to select while isolating novel probiotic bacteria [18,33]. Kadlec and Jakubec [39]
reported that Enterococcus durans, Bifidobacterium animalis ssp. lactis and L. rhamnosus
exhibited increases in adhesion abilities after prebiotic (vivinal or P95) addition. Different
results from multiple combinations of prebiotics and probiotic strains suggest that different
adhesion mechanisms in the probiotic strains play a critical role. These modes of action
are reported only in general terms, and so far, no evidence occurs as to why two kinds of
prebiotics can have a different influence on adhesion properties of the same strain.

Many previous studies have investigated probiotic strains for their adhesion abilities;
however, their studies are hardly comparable because of differences in tissue models [33].
Previous studies have shown a correlation between hydrophobicity and adhesion ability
in some lactobacilli strains [40]. In our study, the adhesion of the selected strains was
highly correlated with co-aggregation, auto-aggregation, and hydrophobicity, as indicated
in Figure 6B. These results are not in accordance with the results of other studies [34,41].

The influence of these three postbiotics (Lsyn−0, Lsyn−7, and Lsyn−15) on the adhesion
ability of selected probiotic strains were generally positive and, as mentioned above,
particularly the addition of Lsyn−7 to tested strains. It is, thence, potential that hydrolyzed
GOS, particularly Lsyn−7, is better at enhancing adhesion ability because raw, prebiotic
GOS in this study had the lowest effect on cell surface features and adhesion potential of all
monitored probiotics compared with other treatments. The highest impact of postbiotic on
cell surface features and adhesion abilities of selected strains up to day seven (Lsyn−7) and
then a reduction after day 15 (Lsyn−15) but L syn−15 is still higher than Lsyn−0 or control.
This finding is consistent with previous reports [39]. The positive effect of Lsyn−7 on
adhesion abilities of selected probiotic strains might be attributed to high concentration
of calcium and other divalent cations [42]. The concentration of diffusible calcium in
fermented milk increased along with progress of cold storage period compared with casein-
bound calcium [43]. Additionally, a previous study reported that prebiotics was added to
probiotic strain (L. rhamnosus), the ζ-potential was increased by about 10 mV. Modification
in negative charge intensity is probably one of the essential factors affecting adhesion
ability [39].

All selected lactobacilli strains associated with Lsyn−7 significantly (p < 0.05) inhibited
the adhesion of L. monocytogenes and S. typhimurium (Figure 6). This finding suggests a
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correlation between adhesion of probiotic strains to Caco-2 cells and competitive inhibi-
tion, which is competitively preventing pathogenic bacteria. The mechanism of bacterial
adhesion to the gastrointestinal tract is more complicated, including extracellular and cell
surface receptors [18]. The adhesion of foodborne pathogens may also be affected by the
direct effect of postbiotics against invading pathogens or indirect effect by stimulating
probiotic metabolites, such as bacteriocins, polysaccharides, peptides, hydrogen peroxide,
and organic acids, where many studies have reported the effect of probiotic metabolites
on the adhesion of pathogens [18,44]. The decline in the adhesion of L. monocytogenes and
S. typhimurium by selected probiotic strains with or without postbiotics may be due to
steric hindrance that selected lactobacilli strains to compete with foodborne pathogens
for adhesion sites (adherence-receptor interactions) [45]. The general correlation between
in vivo colonization and in vitro adhesion ability has been proposed [46].

Therefore, the most important finding in the current study was that postbiotic (Lsyn−7)
can promote GI colonization by probiotic strains. Once a stable and balanced gut flora
is attained, the microflora and their metabolites may contribute to the colonization and
homeostasis with competitive inhibition of pathogens in the gastrointestinal tract. This
study would provide significant information for the effect of postbiotic on the adhesion of
probiotic strains, according to the correlation between cell surface properties and adhesion
to Caco-2 cells. Therefore, further studies are required to understand the use of postbiotic
as an improvement tool for probiotic colonization and how to select a suitable postbiotic
for variations in strains, species, and genera of probiotics in terms of adhesion, cell surface
properties, and competitive inhibition of pathogens in GIT.

5. Conclusions

Because the usage of probiotic bacteria has been more interested with their beneficial
influences in the gastrointestinal tract, it is important to investigate essential factors that
effect on physicochemical cell surface and adhesive features of selected probiotic strains.

We found, under the present study conditions, that the influences of postbiotics
produced by EcN, particularly Lsyn−7 on cell surface and adhesive properties of selected
probiotic strains are positive and that they could improve on the competitive inhibition
of foodborne pathogen adhesion to Caco-2 cells by probiotics. The effect of postbiotic
on the adhesion of probiotics is strongly strain-specific and each incorporation should be
investigated before application. However, the mechanisms of the effects of postbiotics on
auto-aggregation, adhesion, co-aggregation, cell surface characteristics of probiotic strains
should be further studied.
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