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Abstract: Flower thinning is often used during the planting of fruit trees to improve fruit quality
and promote large fruit. Flower buds become an agricultural by-product of the planting process.
Pitaya (Hylocereus undatus) is a popular fruit in many tropical regions, which is widely cultivated in
Southeast Asian countries. Probiotics such as Lactobacillus plantarum have been shown to exhibit an
anti-obesity effect by regulating gut microbiota. This study investigated the effect of polysaccharides
from pitaya flower buds (PFW) extracted with water on the regulation of gut microbiota and body
weight control in mice fed with a high-fat diet. The effects of PFW on the growth of L. plantarum were
analyzed and the propagation of L. plantarum was promoted in an aqueous solution containing PFW.
In an in vivo study, mice were fed with a high-fat diet supplemented with PFW for 12 weeks; PFW
treatment effectively controlled body weight and reduced short bowel syndrome of mice induced by
the high-fat diet. Gut microbiota sequencing revealed that Lachnospiraceae and Lactobacillaceae were
the main bacteria targeted by PFW. Moreover, transcript analysis demonstrated that PFW alleviated
obesity through amino acid metabolism, carbohydrate metabolism, and glycan metabolism. Overall,
PFW is a valuable food supplement that can regulate gut microbiota and may have potential to
ameliorate the physiological damage caused by a high-fat diet.

Keywords: gut microbiota; high-fat diet; Hylocereus undatus; pitaya flower buds; polysaccharide

1. Introduction

Modern dietary patterns are gradually being westernized, and the problem of obesity
is increasingly becoming serious worldwide. The harmful health effects of being obese at
a young age have been discussed in copious studies. Brinkworth et al. (2009) [1] found
that different diets (low-carbohydrate, high-carbohydrate, low-fat diet, high-fat diet, and
high-fiber diet) affected the health and functional index of gut microbiota differently. They
observed that a high-fat diet reduced feces weight and impacted the levels of short-chain
fatty acids (SCFAs) and excretion rate of feces. Therefore, long-term intake of a high-fat
diet increases the risk of gastrointestinal diseases. High-fat diets in mice cause intestinal
metabolic disorders [2]. In Japan, functional constipation in 3–8-year-old children was
reported to be related to a high-fat diet [3]; therefore, strategies for reducing the damage
caused by a high-fat diet have attracted the interest of researchers.
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The gastrointestinal tract naturally has a balanced gut microbiota; however, aging,
stress, environment, and dietary habits change the gut microbiota composition and cause
dominant flora to change. These changes in the intestinal ecological environment are
closely related to the health of the host body and the potential disease risk factors. In
addition, a low-calorie diet modulates the level of beneficial gut microbiota, including
Lactobacillus bacteria [4], which also indicates that patients with diabetes and obesity have a
high Firmicutes/Bacteroidetes ratio.

Although the importance of gut microbiota to health is well known, it is difficult
to maintain the balance of gut microbiota over a long period of time due to the host’s
living environment, dietary habits, and health status [5]. Supplementation of probiotics
is sometimes a way to overcome this issue, however, probiotics viability through the
gastrointestinal tract is not fully successful [6]. Prebiotics are a group of food components
that are not absorbed in the gastrointestinal tract but degraded by gut microbiota, which
selectively stimulate the growth and/or activity of the intestinal bacteria and improve the
host’s health [6]. Prebiotics such as non-digestible polysaccharides are not easily digested
by the human body but maintain a good gastrointestinal environment and may selectively
stimulate beneficial gut microbiota. Therefore, supplementing prebiotics in a daily diet
may promote gut microbiota and consequently human health [6].

Pitaya (Hylocereus undatus), also called dragon fruit, is a nutritious fruit adaptable
to arid areas and is gradually becoming popular in the global market [7]. The exact
native range of pitaya is uncertain but is considered to be in Central America. Since
the late twentieth century, it has been widely planted as a fruit crop in many tropical
regions, particularly in Southeast Asian countries. Several countries have invested in
pitaya production, including Thailand, Indonesia, Taiwan, and Vietnam [7]. In Taiwan, the
production of pitaya exceeds 66 million kilograms per year [7]. The pulp, peel, seeds, buds,
and flowers of pitaya plants contain antioxidants, cellulose, vitamins, and minerals [8].
Active ingredients are extracted from fruit waste to enhance the value of by-products and
reduce waste disposal problems. Pitaya farmers execute defloration during cultivation
to concentrate nutrients on a few fruits to achieve better quality and yield. However, the
removed flowers buds are discarded as agricultural wastes. Thus, centralized management
and recycling mechanisms are essential to reduce environmental contamination [8]. The
structural characteristics of a water-soluble polysaccharide derived from fruit pitaya has
been discussed in a previous study, which had a molecular weight of 2.2 × 103 kDa;→4-
β-D-GlcpA-1→,→6-β-D-Galp-1→, and→4-α-L-Rhap-1→ constituted the backbone and
α-L-Araf -1→5-α-L-Araf -1→ formed the branch chain [9]. Previous studies showed that
probiotics supplementation contributed to improve obesity. Lactobacillus plantarum has been
shown to exhibit an anti-obesity effect in high-fat diet-induced obese mice by regulating
gut microbiota and its metabolites [10,11], which can be considered a single probiotic agent
for preventing or treating obesity. This study investigated whether the polysaccharides
from pitaya flower buds extracted with water (PFW) promoted the growth of L. plantarum
and modulated the gut microbiota of high-fat diet mice.

2. Materials and Methods
2.1. Material Preparation

Approximately 25 g of fresh flower buds of pitaya was mixed with 250 mL of deionized
water and was extracted at 95 ◦C for 30 min. After extraction, the aqueous extract was
filtered, and the filtrate was precipitated with 3 times the volume of alcohol (99%). The
precipitated extracts were collected and decomposed the protein with protease and then
freeze-dried to obtain the extracts sample PFW containing the polysaccharide sample. The
yield of PFW from flower buds is 14%.
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2.2. Cultivation of Lactobacillus plantarum

Ten percent of PFW (w/v) was dissolved in the dH2O. After sterilization by autoclave
and cooling down, Lactobacillus plantarum (1%) was inoculated in MRS medium or 10% of
PFW solution and cultured at 37 ◦C. The absorbance at 600 nm was measured at 0, 3, 6, 12,
24, 48, 60, and 72 h to confirm the number of bacteria. The growth curve was plotted to
assess the growth of L. plantarum.

2.3. Animal Studies

C57BL/6 mice (8-week-old) were purchased from Lesco Biotechnology Co., Ltd.
(Taipei, Taiwan). The breeding environment followed the guidelines for the management
and use of laboratory animals, as stated by the Agricultural Committee of the Executive
Yuan. The temperature was controlled at 20–26 ◦C, the relative humidity was 55 ± 10%,
and the light cycle was 12:12 h (7:00–19:00 h). All mice were fed without restraint during the
experiment. After a 1-week adaptation period, C57BL/6 mice were randomly divided into
3 groups (n = 5 each): group Std, the standard diet; group HF, mice fed with a high-fat diet;
and group HF+PFW, mice fed with a high-fat diet supplemented with PFW (250 mg/kg
body weight (bw)). The study was conducted according to the guidelines of the Declaration
of Helsinki, and approved by the Institutional Animal Care and Use Committee (IACUC)
in National Chiayi University in Taiwan with IACUC approval No. 110026.

The control group Std was given LabDiet 5001, a standard commercial feed containing
10.7% total fat content. Groups HF and HF+PFW received high-fat feed that containing
30% ghee for 12 weeks. In group HF+PFW, 250 mg/kg bw of PFW was orally administered
by oral gavage once a day for 4 weeks from week 9 to week 12. At the end of the study,
the mice were weighed before sacrificing the mice with carbon dioxide. Cecum and colon
tissues from mice were collected and the length of the colon measured with an iron ruler.
Subsequently, colon tissue was cut with a sterile scalpel and the feces were collected from
the colon of mice for further analysis.

2.4. Species Classification of Gut Microbiota by Next-Generation Sequencing

The 16S ribosomal DNA of samples was extracted for next-generation sequencing.
Two grams of fecal specimens were promptly placed in the specimen preservation solu-
tion and stored at −80 ◦C. For DNA isolation, stool samples (180–220 mg) were placed
into microbead tubes, and a Stool DNA kit (CatchGene, New Taipei City, Taiwan) was
used for extraction and purification. The DNA samples were subjected to polymerase
chain reaction (PCR) and the V3-V4 region was amplified by specific primer set (319F:
5′-CCTACGGGNGGCWGCAG-3′, 806R: 5′-GACTACHVGGGTATCTAATCC-3′) according
to the 16S Metagenomic Sequencing Library Preparation procedure (Illumina). The PCR
products were purified by electrophoresis, and 300 bp DNA fragments were recovered for
sequencing. Sequencing was performed using the Illumina MiSeq PE300 platform [12].
After importing the sequencing raw data into QIIME2, the primer was removed to obtain
input reads that can be used for the subsequent DADA2 denoising process. After the
denoising operation is completed, Amplicon Sequence Variants (ASVs) are obtained, and
the species classification is continued in the analysis [13]. Based on the 16S sequencing data,
the GreenGenes database and the KEGG orthology copy the number relationship table,
predicting the metabolic pathway functions of the KEGG database at 3 levels. The number
is the copy of the number of reads in the sample that may be related to the function. The
function of the gut microbiota affecting metabolism was predicted using KEGG level 2.

2.5. Statistical Analysis

Experimental results were performed in five repeats and expressed as the
mean ± standard error of the mean (SEM). The results were examined using one-way
analysis of variance (ANOVA) and Duncan’s multiple range tests. A p value ≤ 0.05 was
considered significantly different. For β diversity of microbiota analysis, pairwise ANOSIM
(analysis of similarities) with 999 permutations were conducted and evaluated using princi-
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pal component analyses (PCA) based on different distance matrices, where p value was
reported after the Benjamini–Hochberg multiple testing correction (q value).

3. Results and Discussion
3.1. Effect of the PFW on the Growth of L. plantarum

To evaluate whether PFW has the potential to modulate gut microbiota and obesity,
whether PFW could promote the growth of probiotic L. plantarum was firstly tested in vitro.
In the present study, the effects of PFW on the growth of L. plantarum were analyzed. The
MRS medium, as a control group, was appropriate for the growth of L. plantarum. The
results show that PFW treatment promotes the growth of L. plantarum, which provides
nutrients for the reproduction of L. plantarum (Figure 1), indicating that PFW acts as a
probiotic promoter and has potential for regulating gut microbiota. Proper supplemen-
tation of the nutrition of the gut microbiota requires enhancement of the probiotics to
resist the growth of pathogens and maintain the intestinal tract in a good state. Probiotics
are microorganisms that provide health benefits to the host. However, probiotics need
to be supplemented with prebiotics, which are not easy to digest but can be utilized by
the microorganisms to grow and colonize in the intestines [14]. Probiotic replenishing
and prebiotic consumption are essential components of a healthy diet. Cummings et al.
(2002) [15] proposed that fructose-based carbohydrates, inulin, and fructooligosaccharides
selectively stimulate gut microbiota and significantly increase the content of bifidobacteria.
Probiotic L. plantarum regulates gut microbiota partially through producing antimicrobial
peptides (bacteriocins) that inhibit the growth of other microorganisms [16]. L. plantarum
also promotes bile acid metabolism and exhibits better colonization and indestructibil-
ity [17]. The postbiotics produced by L. plantarum are cytotoxic to cancer cells without
affecting normal cell survival [18].
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Figure 1. Growth curves of Lactobacillus plantarum grown in MRS medium or PFW solution at 3,
6, 12, 24, 36, 48, 60, and 72 h of incubation. Data were expressed as mean ± standard error of the
mean (SEM).

3.2. Effect of PFW on Body Weight and Colon Length of High-Fat Diet-Induced Mice

Long-term high fat intake can impair gastrointestinal signals such as cholecystokinin,
Peptide YY, and glucagon-like peptide 1, leading to weight gain [19]. In this study, mice
were fed a high-fat diet to explore the effect of PFW on the body weight gain of mice.
After treating for 12 weeks, the weight change during the period showed that the mice in
the high-fat diet group had significantly higher weight when compared with that of the
standard diet mice. However, there was no significant difference between the weight of
mice fed a high-fat diet supplemented with PFW and standard diet mice (Figure 2). After
the mice were dissected, the total length of the cecum and large intestine was measured.
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The high-fat diet group was found to have significant intestinal atrophy, damage, and
shortening; however, feeding of PFW ameliorated intestinal atrophy (Figure 3).
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Figure 2. Effect of PFW on body weight of high-fat diet-induced mice. Mice received standard diet or
high-fat diet for 12 weeks. In total, 250 mg/kg bw of PFW was orally administered once a day for
4 weeks. Data were expressed as mean ± standard error of the mean (SEM). * p < 0.05 compared with
the Std group. Group Std, standard diet; group HF, high-fat diet; group HF+PFW, high-fat diet plus
PFW treatment.
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Figure 3. Effect of the PFW on colon length of mice. After 12 weeks of high-fat diet induction,
the colon tissue of mice was collected and the length calculated. (A) Representative images (scale
bar, 1 cm). (B) Quantified the length of the colon. Data were expressed as mean ± SEM. * p < 0.05
compared with the Std group. Group Std, standard diet; group HF, high-fat diet; group HF+PFW,
high-fat diet plus PFW treatment.

Obesity is a growing global disease epidemic with multiple causes. Patients with
obesity have lifelong weight-loss difficulties, suffer from metabolic disorders and poor
social psychology. Moreover, owing to an altered food cycle, the activities of the biological
clock are also affected [20]. The government has currently formulated many strategies to
deal with one-third of the adult obesity issues by giving advice, guidance, and encourag-
ing public health education and actively promoting the benefits of healthy eating [21,22].
Besides probiotics, prebiotics supplementation also has beneficial effects on host physiol-
ogy [23]. In Canadian children aged between 7–12 years who were obese, supplementing
with oligofructose-enriched inulin for 16 weeks after diagnosis changed the gut microbiota
and reduced the frequency of obesity [24].

The intestinal length not only affects digestion and absorption, but also alters the
living environment of the gut symbionts. C57BL/6 mice fed a high-fat diet for 3 weeks
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showed atrophy of the small intestine, colon, and lymphatic tissue, and a large amount
of free fatty acids produced by a high-fat diet caused intestinal lipotoxicity. Although
unsaturated fatty acids and mid-chain triglycerides are considered healthy free fatty acids
that can prevent metabolic syndrome, they are toxic to the intestines [25]. These findings
suggest that prebiotics such as some polysaccharides and oligosaccharides have potential
for modulating gut microbiota composition. PWF treatment may combat obesity via
regulating the intestinal environment and hence alleviate the colon shortening induced by
a high-fat diet in mice.

3.3. Effect of the PFW on Gut Microbiota in High-Fat Diet-Induced Mice

The human genome contains 26,600 protein-encoding genes [26], while the human
intestine is composed of more than 1000 different microbial species. Gut microbiota has a
total of 4,000,000 protein-encoding genes, which indirectly affect the development of human
diseases [27–29]. A high-fat diet alters the composition of gut microbiota and thereby
accelerates obesity. Moreover, obesity leads to the dysregulation of the gut microbiota,
intestinal permeability, villi and crypt length, intestinal cell tightness, and secretion of
mucus [30].

To access whether PFW has the potential to regulate gut microbiota in vivo, fecal
bacteria of mice were subjected to a 16S metagenomic analysis. The ASVs of fecal samples
in the 3 groups were of good quality, and sufficient DNA sequence fragments were obtained
for analysis. Principal components analysis (PCA) was used to analyze the difference in beta
diversity of fecal bacteria, and it was found that the PFW group had the widest distribution
of microbiota among the three groups. Weighted statistical analysis of the diversity of
the gut microbiota revealed that PFW treatment effectively increased the diversity of gut
microbiota (Figure 4). The HF+PFW group and Std showed a significant difference. The
characteristics of fecal microorganisms revealed that the dysbiosis of the microbial phase
induced by the high-fat diet mainly affects the growth of aerobic bacteria; subsequently,
the HF+PFW group could restore the number of aerobic bacteria in the intestines (Figure 5).
Thus, PFW resisted the decreased in the number and types of gut microbiota caused by the
high-fat diet and resulted in more increased diversity of gut microbiota species than in the
Std group.
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Figure 4. The effect of PFW on gut microbiota distribution in mice fed a high-fat diet. (A) Principal
components analysis (PCA) was used to determine the beta diversity of gut microbiota. Samples with
more similar composition cluster closer together. (B) Beta diversity of the community was calculated
by using the UniFrac distance matrix. * p < 0.05 compared with the Std group. Group Std, standard
diet; group HF, high-fat diet; group HF+PFW, high-fat diet plus PFW treatment.
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Figure 5. The effect of PFW on gut microbiota composition in high-fat diet-induced mice. (A) Alpha
diversity index of the gut microbiota. (B) Relative abundance of aerobic bacteria. * p < 0.05 compared
with the Std group. Group Std, standard diet; group HF, high-fat diet; group HF+PFW, high-fat diet
plus PFW treatment.

Facultative anaerobic bacteria exist in the digestive tract, but the intestine is at the
end of the digestive tract and is an anaerobic environment. Symbiotic microorganisms
can be divided into Bacteroides, Firmicutes, Actinobacteria, and Proteobacteria and are
mainly anaerobic bacteria. Many species have different enterotypes and cause various
health effects [31].

Analysis of gut microbiota at the family level and investigation of feeding intensity
revealed that PFW significantly reduced the ratio of Muribaculaceae and increased the ratio
of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae (Figure 6). Lachnospiraceae
and Ruminococcaceae can ferment carbohydrates from plant materials that cannot be
converted to SCFAs by the host. SCFAs affect the absorption and metabolism of the host [32].
Since PFW treatment increased the ratio of Lachnospiraceae and Ruminococcaceae in the
gut of mice, PFW may have potential for elevating the level of SCFAs via promoting the
ratio of SCFAs producing gut bacteria. Lactobacillaceae has anti-obesity effects [33]. PFW
is a good source of nutrition for Lactobacillaceae, which is consistent with the results of
in vitro tests.

From the perspective of the genus, the heat map analysis showed that high-fat diet in-
duction reduced the ratio of Akkermansia, Mucispirillum, and Parasutterella and increased the
number of Marvinbryantia, Bacteroides, and Ruminiclostridium-9. PFW treatment significantly
increased the types and quantities of various gut microbiota, the most important of which
are Lactobacillus, Lachnospiraceae-NK4A136-group, Ruminiclostridium-5, Ruminococcaceae-UCG-
004, Lachnoclostridium, and Butyricicoccus (Figure 7). Clostridium has many different genera
of microorganisms, including the ones that support human health (such as Clostridium
botulinum and Clostridium acetobutylicum) and those that harm the human body (such as
Clostridium difficile and Clostridium perfringens). Clostridiales-vadinBB60-group increased
significantly due to the induction of the high-fat diet, but the PFW had no enhancement
effect. However, the family level of Lachnospiraceae and Lactobacillaceae were significantly
increased by the addition of PFW (Figure 8).
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Bioactive components in natural products have been shown to be beneficial in pre-
venting or improving the development of metabolic diseases, such as obesity, diabetes, and
steatohepatitis. In addition, possible therapeutic manifestations and beneficial effects in the
health of the host due to the regulation of the gut microbiota through prebiotics can come
from nutrition such as food consumption. Natural bioactive compounds in pitaya may play
roles in modulating metabolic disorders. For example, purified betacyanins isolated from
the peel of pitaya have been demonstrated to have the ability to ameliorate obesity, insulin
resistance, and hepatic steatosis in high-fat diet-induced obese mice [34]. In addition, the
beneficial effect of betacyanins protects from diet-induced obesity and is associated with
the adjustment of gut microbiota, especially its ability to elevate the relative abundance of
Akkermansia [35].
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Figure 8. Relative abundance of the gut microbiota in mice under PFW treatment. The abundance of
Clostridiales (A), Lachnospiraceae (B), and Lactobacillaceae (C) changed significantly among the groups.
* p < 0.05, ** p < 0.01 compared with the Std group. Group Std, standard diet; group HF, high-fat diet;
group HF+PFW, high-fat diet plus PFW treatment.
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3.4. The Effect of the PFW on the Metabolic Function of High-Fat Diet Mice

The miRNAs regulate the gut microbes and human transcriptome, and miRNAs in
the gut mainly affect cell metabolism, not immune function [36]. Gut microbiota is highly
correlated with host metabolism. The results show that high-fat diet induction reduced
amino acid, carbohydrate, and glycan metabolism in mice causing obesity. However, the
microorganisms regulated by PFW are involved in amino acid metabolism, carbohydrate
metabolism, glycan metabolism, and energy metabolism in mice, thereby improving the
symptoms of obesity in mice (Figure 9).
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Figure 9. Violin image of KEGG function prediction based on 16S rRNA gene. Comparison of the gut
microbiota function prediction among different groups. The function of the gut microbiota affecting
metabolism was predicted using KEGG level 2. Group Std, standard diet; group HF, high-fat diet;
group HF+PFW, high-fat diet plus PFW treatment.

4. Conclusions

This study showed that supplementation with PFW restores the physiological changes
caused by a high-fat diet. PFW is an effective material that selectively multiplies Lach-
nospiraceae and Lactobacillaceae. Moreover, it indirectly affects amino acid, carbohydrate,
glycan metabolism, and energy consumption to ameliorate obesity. Simultaneously, it
aided in controlling weight gain and preventing intestinal atrophy in vivo. Therefore, sup-
plementation with PFW may reduce body weight gain due to a high-fat diet and improve
the intestinal environment and gut microbiota composition. Moreover, enhancing the
utilization of PFW to solve the problem of agricultural waste is worth developing to reduce
waste disposal problems in the future.
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