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Abstract: Responsible for plasma membrane structure maintenance in eukaryotic organisms, sterols
are essential for yeast development. The role of two sterol sources in Saccharomyces cerevisine during
wine fermentation is highlighted in this review: ergosterol (yeast sterol produced by yeast cells under
aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts in the
absence of oxygen). These compounds are responsible for the maintenance of yeast cell viability
during white wine fermentation under stress conditions, such as ethanol stress and sterol starvation,
to avoid sluggish and stuck fermentations.
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1. Introduction

The lipidome of eukaryotic cells consists of hundreds to thousands of lipid species that
integrate membranes, store metabolic energy, and act as bioactive molecules [1,2]. The lipid
classification system, as recently described by Mbuyane et al. [3], consists of eight classes of
lipids, i.e., fatty acids, glycolipids (glycerolipids and glycerophospholipids), sphingolipids,
prenol lipids, polyketides, saccharolipids, sterols and their derivatives [3,4].

Sterols are part of this eukaryotic lipidome diversity and are essential for the mainte-
nance of cell membrane integrity and optimal functionality. They are mainly responsible
for regulating the fluidity, rigidity and permeability of cell membranes, and are surrounded
by proteins and phospholipids and protected by a sphingolipid head [5,6]. In mammals,
the main sterol is cholesterol, while ergosterol is preponderant in fungi. Phytosterols are
plant sterols, the major examples being [3-sitosterol, stigmasterol and campesterol [7-9].

Yeasts are able to synthesize, assimilate and accumulate significant amounts of sterols,
which are associated with their growth, metabolism and viability during alcoholic fermen-
tation [10,11]. Several yeast species can be used in winemaking, depending on their fer-
mentation capacity and the organoleptic characteristics desired in the wine. Saccharomyces
cerevisige is predominantly the first choice of winemakers, due to its good fermentation
capacity and resistance to high concentrations of ethanol and sulfur dioxide and low pH.
In addition, Saccharomyces cerevisiae is a model organism for the study of the molecular
organization and regulation of the eukaryotic lipidome [12-15].

Yeasts are unable to synthesize their own sterols under anaerobiosis [16,17]. However,
they are capable of assimilating sterols from grape must to restore growth, as the solid
particles of grape must are rich in lipids, in particular phytosterols (the lipid fraction of
grapes) [7,18]. The clarification step, often used before fermentation during white wine
production, decreases the levels of aldehydes and herbaceous alcohols in the final product
by removing these particles [19,20].
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On the other hand, excessive clarification leads to the development of undesirable
organoleptic characteristics and to incomplete fermentation due to the lack of lipids [21,22].
The addition of solid particles rich in lipids is therefore often implemented [23].

Wine alcoholic fermentation depends on the interactions between the yeast strain;
the availability of nutrients, such as nitrogen, vitamins, lipids and sugars in the grape
must; and the regulation of key fermentation parameters, such as temperature and oxygen.
During fermentation, yeasts are exposed to stress conditions, such as an acidic pH (between
2.8 and 3.8) [24], high sulfite concentrations, anaerobiosis [25], and the accumulation of
toxic components, such as acetaldehyde, acetic acid, and ethanol [26]. Moreover, nutritional
deficiencies and imbalances in grape must can also lead to other forms of stress.

Sterols, as well as fatty acids, are essential for yeast adaptation to fermentation stres-
sors, such as high sugar levels and ethanol toxicity, to avoid sluggish and stuck fermenta-
tions [27-30]. Indeed, the requirements for ergosterol and unsaturated fatty acids become
more important during fermentation in stress conditions [28,31-33].

The importance and role of lipids in yeast metabolism are well known and were
recently reviewed [3,34]. However, there are no recent reviews focused on the role of
sterols wine fermentation. In this context, this paper provides an overview of the existing
knowledge on the role of sterols in yeast during white wine alcoholic fermentation.

First, the characterization and importance of phytosterols and ergosterol for yeast cell
survival will be highlighted. Then, the review will focus on the importance of sterols in
stress conditions during oenological fermentation with Saccharomyces cerevisiae. Finally, the
possibility to compensate for sterol deficiency and the effect of sterol limitation on flavor
compounds will be discussed.

2. Importance of Sterols in Yeast Cell Survival
2.1. Composition, Structure and Source

Cyclopentanoperhydrophenanthrene, also termed gonan, is the basic structure of
steroids. It is composed of three fused cyclohexane rings and one cyclopentane ring.
Steroids that contain at least one hydroxyl group on carbon 3, one unsaturated bond in
C-5,6 and that do not have a carbonyl group are termed sterols [35]. These non-polar
molecules are essential lipid constituents in animals, fungi and plants.

Ergosterol is the main sterol in fungi (Table 1). It is the equivalent to mammalian
cholesterol, as both correspond to the end product of the sterol biosynthetic pathway [6,36].
These two types of sterols have a structure with four rings, an acyl side chain and a
hydrophilic hydroxyl group. Nevertheless, ergosterol differs from cholesterol by the
presence of two additional double bonds between C7 and C8 in the ring and between C22
and C23 in the side chain [37].

Table 1. Main sterols found in eukaryotic cells.

Eukaryotes Mammals Fungi Plants
Ergosterol
Zymosterol [3-sitosterol
Sterol Cholesterol Fecosterol Stigmasterol
Episterol Campesterol
Lanosterol

Figure 1 shows the molecular structure of cholesterol compared to that of ergosterol. Er-
gosterol is produced by yeasts in the presence of oxygen and corresponds to 90% of the total
content of sterols for Saccharomyces cerevisiae strains and 12% mol of their lipidome [38,39].
Small amounts of intermediates in the sterol biosynthetic pathway, such as zymosterol,
fecosterol, episterol and lanosterol, are also yeast sterols [40].
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Figure 1. Molecular structure of cholesterol (A) and ergosterol (B). Differences between molecular
structures are circled in red [41].

Phytosterols are sterols synthesized by plants and are notably found in grape berries.
The phytosterol content is variable depending on the grape’s genetics, growth conditions,
tissue maturity and the post-harvest conditions [42]. Among more than 200 phytosterol com-
ponents detected in plants, the most common are 3-sitosterol, stigmasterol and campesterol.
In grape berries, (3-sitosterol represents between 85 and 90% of the total sterol content [9].
The structure of these phytosterols is very close to that of cholesterol, but differences are
observed in the alkyl side chain [43], depending on the phytosterol (Figure 2).

HO

Figure 2. Molecular structure of the main phytosterols in grape berries: 3-sitosterol (A), stigmasterol
(B) and campesterol (C). Differences between molecular structures are circled in red [41].

2.2. Location and Role

As shown in Figure 3, eukaryotic membranes are characterized by a lipid bilayer with a
7.5 nm thickness, composed of lipids and membrane proteins [16]. Sterols, along with phos-
pholipids, sphingolipids and glycerolipids, are the major lipid components [10]. Sterols’
main role is to regulate membrane permeability and fluidity, the absorption of exogenous
sterols under anaerobiosis and cell oxygen consumption under aerobic conditions. They
are also essential for vital processes, such as vesicle formation and protein sorting, ensuring
the viability of eukaryotic cells [5,44,45]. Furthermore, these lipid components are energy
sources, signaling molecules and mediators of membrane fusion and apoptosis [46,47].
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Figure 3. Lipid bilayer of eukaryotic membranes and its components: phospholipids, sterols, mem-
brane proteins and glycolipids.

Yeast cell sterols are mostly found in the plasma membrane, although they are also
present in secretory vesicles and lipid particles [40,48]. Ergosterol is the main sterol,
followed by other sterols, such as zymosterol, fecosterol and episterol [40]. They are
required for membrane structuring, the initiation of cell growth, and the regulation of gene
expression [49-51].

The plasma membrane of Saccharomyces cerevisiae is composed of functional compart-
ments, known as microdomains, formed by the association of sterols and sphingolipids
with proteins. In the yeast membrane, lipid rafts are a class of these domains that are rich
in ergosterol. They are composed of proteins that control Na+, K+ and pH homeostasis
and the stress response, influencing yeast cell growth and death [52].

Moreover, these domains allow for the maintenance of the liquid-ordered membrane
state and are therefore responsible for the regulation and alteration of membrane character-
istics [53,54]. The lipid order and a reduction in their fluidity were observed after ergosterol
addition in all-atom and coarse-grained molecular dynamics simulations by Ermakova and
Zuev [55]: the rigidity of ergosterol rings reduced the mobility of the neighboring acylated
lipid chains, which reduced the surface area occupied by lipids and their mobility in the
bilayer. Consequently, ergosterol allowed membrane compaction, as well as an increase in
its thickness [55].

Interestingly, the deletion of genes from ergosterol biosynthesis has also been shown
to have a crucial effect on plasma membrane integrity and dynamics, such as membrane
hyperpolarization, protein compartmentation and a decrease in membrane rigidity [56-59].
In addition, yeast cells lacking Pdr18, a plasma membrane ABC transporter, accumulated
lower levels of ergosterol [60]. As a consequence, their plasma membrane became more
permeable and less ordered, and an increase in cell rigidity was observed [60].

In plants, phytosterols are essential for the regulation of membrane fluidity and
permeability, as well as for their metabolism. Silva et al. [61] showed that 3-sitosterol
and stigmasterol are able to contribute positively to membrane fluidity, owing to a more
compact ordered liquid phase. Otherwise, phytosterols control membrane transport and
the activity of membrane proteins, such as enzymes, receptors and signal transduction
components. As precursors of bioactive steroids, they are also used for the synthesis of
secondary metabolites [62-65].
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2.3. Sterol Synthesis, Metabolism Storage and Transport
2.3.1. Sterol Synthesis and Metabolism

In yeasts, sterol biosynthesis allows for the maintenance of the plasma membrane and
also of mitochondrial morphology [66]. It depends on oxygen and biosynthetic enzymes
(mostly Erg proteins) [15,67,68]. The sterol biosynthetic pathway can be divided into three
parts: (1) the mevalonate pathway, which takes place in the mitochondria and vacuole;
(2) the farnesyl pyrophosphate (farnesyl PP) pathway in the vacuole; and (3) the late
pathway in the endoplasmic reticulum (ER) [15,67], as shown in Figure 4. The final product
for the late pathway is ergosterol, while its precursors are found in yeast cells in low
amounts [6]. In order to produce an ergosterol molecule, 16 NADPH and 24 ATP molecules
are consumed [68].
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Figure 4. Biosynthesis of ergosterol in yeasts: mevalonate pathway in orange, farnesyl pyrophosphate
pathway in green and late pathway in purple. Compounds involved in ergosterol biosynthesis are in
black and genes are in blue.

The starting point for the mevalonate pathway is the condensation of two molecules
of acetyl-CoA by ErglOp, in order to form acetoacetyl-CoA (Figure 4) [69]. Thereafter,
Erg13p condenses this compound with another acetyl-CoA molecule to obtain 3-hydroxy-
3-methylglutaryl-CoA (HMG-CoA); this is then reduced to mevalonate by Hmglp and
Hmg?2p [70,71]. The farnesyl PP pathway starts with two phosphorylation steps: the first
step to synthesize mevalonate 5-P and the second to produce mevalonate-5-pyrophosphate;
these reactions are catalyzed by Ergl12p and Erg8p, respectively. The action of the mevalonate
pyrophosphate decarboxylase Ergl19p results in isopentenyl pyrophosphate (isopentenyl-PP)
synthesis, which is converted to dimethylallyl pyrophosphate by Idip1p. This precursor is
thereafter condensed with a second molecule of isopentenyl-PP to synthesize geranyl py-
rophosphate, and then a third molecule to obtain the final product of this pathway—farnesyl
pyrophosphate—using Erg20p [15].

The late pathway starts with squalene synthesis in the presence of Erg9p, which is con-
verted to epoxy squalene by the Erglp epoxidase in the presence of oxygen [56,67]. There-
after, the lanosterol synthase Erg7p produces lanosterol, which is demethylated, reduced
and desaturated to zymosterol by the action of the enzymes Ergllp and Erg24-28p [15].
This component is converted to fecosterol and then episterol by Ergép and Erg2p, respec-
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tively. Finally, the latter compound is desaturated and reduced to ergosterol by the actions
of Erg3p, Erg4p and Erg5p [15,72].

Yeast requires oxygen for sterol synthesis, as Erglp, Ergllp, Erg25p, Erg3p and
Erg5p are O,-dependent enzymes [15]. The regulation of transcription, translation and
post-translation mechanisms is thus essential for the maintenance of sterol levels in yeast
cells [73]. The transcription factors Ecm22p and Upc2p activate the transcription of sterol
synthesis enzymes when yeast strains experience sterol deficiency by binding to the regu-
latory element of sterols in the promoter region [74]. The endoplasmic reticulum-related
degradation pathway is responsible for recognizing the levels of lanosterol and oxys-
terol. When an excess of lanosterol is detected, Erglp is degraded by the ubiquitin ligase
DoalOp [75]. HMG-CoA reductase (HMGR) degradation also helps to prevent sterol
accumulation [76].

2.3.2. Sterol Storage and Transport

An excess of free sterols in the cell can be toxic. To prevent this, the level of sterols in
yeast cells is regulated, and any excess sterols are stored in the cell in lipid droplets as steryl
ester or secreted into the medium as sterol acetate. Specific lipases are involved in the release
of these sterols, depending on the balance between the synthesis, transport and esterification
of free sterols, essential for the maintenance of sterol homeostasis [77,78]. The biogenesis of
lipid droplets is controlled by the TOR and SNF1/AMPK pathways [79]. Moreover, another
alternative consists of the acetylation of these sterols and the deacetylation of sterol acetates
by the alcohol acetyltransferase Atf2p and the sterol deacetylase Say1lp, respectively [80].
The acetylated sterols are then transported by pathogen-related yeast (PRY) proteins to the
plasma membrane, where the highest concentration of yeast cell sterols is found [40,81].

ATP-dependent vesicular and non-vesicular transport pathways transport sterols
synthesized in the endoplasmic reticulum to the plasma membrane [18,82]. The insoluble
lipid compounds could likely be transported by contact with the membranes of organelles
or by transport proteins, capable of solubilizing sterols during transport. In yeast, seven
proteins have this function, i.e., the Osh proteins, mainly located on membrane contact
sites. The absence of these proteins leads to cell death, while the absence of Osh functions
changes the distribution of sterols within cells [83,84]. Osh6p and Osh7p regulation is
mediated by the ATPase Vps4p [85].

In addition, other proteins encoded by the ARV1 gene are also involved in sterol
transport, as well as in the absorption of exogenous sterols. When this gene is deleted,
sterol levels in the ER and vacuolar membranes increase and sterol incorporation into the
plasma membrane is reduced [86]. On the other hand, the deletion of the NCR1 or NPC2
genes, associated with the transport enzymes Ncrlp and Npc2p, respectively, has no impact
on the distribution of sterols in yeast cells [87-89].

The non-vesicular transport of sterols to membranes is achieved by lipid transfer
proteins (LTPs). LIPs are also capable of facilitating the exchange of sterols between the
plasma membrane and the ER from membrane contact sites, depending on the sterols’
affinity with their lipid rafts [90,91]. Auslp might be able to facilitate the capture of
sterols by LTPs [78]. The Yehlp, Yeh2p and Tgllp hydrolases involved in the release of
sterols located in lipid droplets are responsible for regulating free ergosterol levels in the
cell [92]. The Arvlp membrane protein becomes essential under conditions where sterol
esterification is not possible. Therefore, growth difficulties are observed for those strains
unable to synthetize this protein [86].

ER membrane homeostasis is also dependent on Apql2p, as this protein allows yeast
to grow at a low temperature, regulates mRNA export and ensures nuclear membrane
flexibility [93]. Brr6p is mainly responsible for assembling functional nuclear pores, which
allows for the esterification of free sterols [94]. Moreover, these proteins may be associated
with lipid synthesis [95]. Figure 5 shows the pathways, cellular compartments and proteins
associated with the transport of sterols within yeast cells.
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Figure 5. Pathways for the intracellular transport of sterols in yeast. Arrows indicate sterol transport
pathways. Major cellular compartments are indicated: plasma membrane; endoplasmic reticulum
(ER); nucleus; and lipid droplets (LD). Sterol transport proteins are represented by ABC transporters
Auslp and Pdr11p and Osh lipid binding proteins; Arelp/Are2p acyltransferases convert free sterols
into steryl esters (stored in lipid droplets); Yehlp/Yeh2p/Tgllp steryl ester hydrolases control the
release of sterols located in lipid droplets; Atf2p acetyltransferase for FS (free sterol) acetylation; Saylp
deacetylase for AS (acetylated sterol) deacetylation. Transcriptional regulators Ecm22p and Upc2p
induce the expression of AUS1 and PDR11 and Sutlp of AUST under a deficiency in sterol uptake.

2.4. Phytosterol Assimilation

External sterol sources are not assimilated by yeast under aerobic conditions, as
Mot3 and Rox1 inhibit the expression of sterol uptake genes (UPC2 and ECM22) [15].
Concurrently, in presence of oxygen, cell wall properties may also prevent exogenous
sterols from reaching the plasma membrane [96]. In contrast, under anaerobiosis, UPC2
and ECM22 genes are activated, as the heme-dependent transcription factor Hap1 represses
ROX1 and MOT3 [15]. Phytosterols are then consumed, allowing for the maintenance of
cell growth. They can be directly incorporated into the plasma membrane by flip-flop
mechanisms or be esterified and then stored in lipid droplets [96,97].

The absorption of phytosterols involves two ABC transporters (ATP-binding cassettes)
located in the plasma membrane: Auslp and Pdrllp [90,98-100]. Furthermore, these
transporters are able to modify membrane properties for the insertion of sterols into the
outer leaflet, their flip-flop across the bilayer, or their extraction from the cytoplasmic
leaflet [90]. The expression of AUSI is induced by the transcription factor Sutlp [101].
Mutant cells that lack the Pdr11p and Auslp transporters or the Danlp cell wall protein are
not able to take up and esterify exogenous sterols in the absence of oxygen, highlighting
the importance of ABC transporters in the flow of sterols [90,100]. This is an advantage
of Saccharomyces strains, since non-Saccharomyces strains are unable to import exogenous
sterols, as they do not harbor Auslp and Pdr1lp transporters [102].

3. Impact of Sterols in White Wine Alcoholic Fermentation

Next, the impact of sterol starvation in wine fermentation medium (mostly synthetic
medium inoculated with pure S. cerevisiae strains in high quantities) will be discussed.
First, the importance of sterols to avoid stuck and sluggish fermentations (characterized as
long fermentations that are difficult to complete) will be presented. Then, their influence
on fermentation kinetics, cell viability, biomass production, nitrogen assimilation and the
production of central carbon metabolism (CCM) metabolites will be detailed. The positive
effect of sterols on ethanol stress and low temperature resistance and the strategies used to
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compensate for the lack of this lipid nutrient, such as the addition of oxygen, solid particles
or dry yeasts, will also be presented. In the end, the effect of sterols on aroma production
will be highlighted.

3.1. Sterol Starvation

A lack of lipids in the fermentation medium results in sterol stress and induces the
production of metabolites from lipid biosynthesis, such as acetic acid and medium chain
fatty acids [103,104]. In particular, a lack of sterols and saturated fatty acids makes it difficult
for cells to multiply [11,105]. Furthermore, anaerobiosis prevents ergosterol biosynthesis,
which has an impact on membrane functionality and cell viability [15,106]. Under anaerobic
conditions, the sterols present in the medium are incorporated into the plasma membrane,
and, subsequently, into intracellular membranes [107]. From 2 to 8 mg/L of phytosterols
(depending on the strain used) are necessary for normal yeast growth at the beginning of
alcoholic fermentation [22,108].

A shortage of sterols, fatty acids and oxygen leads to low viability due to the ac-
cumulation of large amounts of squalene in cell membranes [109-111]. In these specific
conditions, the fermentation time is very long, and, in some cases, this results in incomplete
fermentations [22,98].

Da Costa et al. [112] evaluated S. cerevisiae fermentation parameters under anaerobic
conditions with and without the anaerobic factors (AFs) ergosterol and oleic acid. Cell
growth was much lower without the AFs, despite a residual growth due to the presence
of a reserve of sterols in commercial active dried yeast strains [113]. Ergosterol was the
major neutral lipid found in yeast cells under aerobic and anaerobic conditions with AFs,
whereas squalene and lanosterol (ergosterol precursors) were predominant in anaerobic
conditions without AFs. In addition, a significant drop in viability was observed under
anaerobic conditions without AFs (no living cells after 2 h) [112].

Some authors evaluated the growth and fermentation performances of S. cerevisiae
under sterol deficiency and their impact on nitrogen metabolism during alcoholic fermen-
tation in a synthetic medium [114,115]. Tesniéere et al. [114] showed a better cell viability
at the end of fermentation when the nitrogen level was low, while its excess favored cell
death. For Duc et al. [115], a limited ergosterol content led to incomplete nitrogen assimi-
lation, losses of viability and incomplete fermentations. Moreover, cells were not able to
accumulate glycogen and to develop resistance to thermal shock in this condition.

In the case of sterol starvation and anaerobiosis, the cell reacts by inducing those genes
involved in sterol biosynthesis and importation: ERG28, ERG26, ERG25, ERG1, ERG11,
NCP1, ERGY, ERG3, ERG27, ERG6, ERG2 and ERG24 for the biosynthesis of ergosterol
and TIR1, TIR3, DAN1, DAN4, TIR4 and TIR2 genes encoding mannoproteins involved
in the importation of sterols. Normally, these genes are overexpressed in anaerobic condi-
tions [116-119]. Surprisingly, Duc et al. [120] showed that they were also overexpressed
under ergosterol deficiency conditions, showing that their expressions are dependent on
sterol availability. In addition, both AUST and PDR11 genes, involved in the transport of
sterols, and the MCA1 gene, associated with yeast apoptosis (programmed cell death), were
strongly expressed [120].

Very few studies have evaluated the impact of the nature of sterols (phytosterols
versus ergosterol) on alcoholic fermentation. Luparia et al. [121] studied the effect of
phytosterol (90% [3-sitosterol, 5% campesterol and 5% stigmasterol) and ergosterol supple-
mentation in fermentations in a synthetic must with S. cerevisiae. Incomplete fermentations
and low biomass were observed in the absence of sterols under anaerobiosis. Complete
fermentations and a higher amount of biomass were observed in the presence of 15 mg
ergosterol/L or different doses of phytosterols. Moreover, the assimilation of phytosterols
led to an increase in yeast viability at the end of fermentation. The fact that the ergosterol
and phytosterols were not provided in the same amounts in this study makes it difficult
to compare the effectiveness of these two sources of sterols and to understand their roles.
Further studies are needed to confirm the hypotheses that yeasts prefer to incorporate
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ergosterol into their cell membranes and store phytosterols, and that ergosterol is more
effective than phytosterols in maintaining membrane integrity.

Sterol deficiency impacts yeast metabolism by triggering lipid synthesis. This results
in an overproduction of acetic acid and the accumulation of NADPH (Figure 6). Indeed,
it increases the flow of pyruvic acid towards the PHD bypass for the production of cy-
tosolic acetyl-CoA, of which acetate is an intermediate [104]. Moreover, a-ketoglutarate,
an intermediate in succinic acid biosynthesis, can be consumed for metabolizing amino
acids linked to nitrogen-lipid imbalance [22]. As a consequence, a reduction in succinic
acid synthesis by the Krebs cycle is observed. Surprisingly, in this condition, glycerol
synthesis is increased (which corresponds to a non-correlation with succinate production).
A hypothesis to explain this glycerol behavior would be that the synthesis of triglycerides
is strongly activated in order to make up for the lack of lipids, which entails the production
of L-glycerol 3-phosphate (an intermediate component of glycerol). Therefore, the exces-
sive flow of this component would be converted into glycerol, which would increase its
biosynthesis [22].
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Figure 6. Biosynthesis of CCM metabolites (green), aroma compounds (purple) and associated
pathways (gray). Reduction reactions are in orange and pink, oxidation reactions are in blue.

Finally, phytosterols and inactive yeast cell additions in the fermentation medium are
capable of increasing sterol availability and reducing the cellular demand for lipids, which
entails a decrease in the production of acetic acid [22,122-124].

3.2. Ethanol Stress in S. cerevisiae

Lipids are among the main components of the cell membrane and are essential to
resist osmotic stress and high concentrations of ethanol during fermentation. Indeed,
membrane fluidity is modulated by adjusting the concentration of sterols and unsaturated
fatty acids [125,126].

Ethanol increases membrane permeability and has a negative impact on the trans-
port/retention of protons and essential nutrients, such as amino acids and sugars [28,127,128].
A concentration of 2% v/v ethanol is capable of inhibiting 65% of endocytosis by membrane
transport proteins, negatively impacting the transport of sugars and amino acids [129,130].
Similarly, 4 to 6% v/v ethanol has an influence on protein synthesis [131].

The contact of yeast cells with higher concentrations of ethanol (more than 10% v/v)
in the medium leads to the diffusion of polar molecules from yeast cells, cellular ATP
depletion and a decrease in membrane thickness [128,132,133].

In addition, ethanol modifies the structure and fluidity of the lipid bilayer, increasing
the surface area occupied by lipids and resulting in interdigitation [134,135].

Ethanol tolerance in S. cerevisiae strains was associated with their lipid content in
many studies [136,137]. For example, Lucero et al. [29] showed that strains with high oleic
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acid (18:1) and low palmitic acid (16:0) contents were more resistant to ethanol. Likewise,
Dinh et al. [30] observed a higher concentration of palmitic acid in strains adapted to high
concentrations of ethanol, compared to non-adapted strains, and Alexandre et al. [138]
noticed a reduction in oleic acid and an increase in palmitic acid due to ethanol exposure.

Changes in lipid composition is one of the mechanisms developed by cells to sur-
vive stress conditions. In fact, yeast membrane fluidity increases when it is constituted
by unsaturated fatty acids (as unsaturated bonds decrease the strength of hydrophobic
interactions), allowing a greater tolerance of S. cerevisiae to stresses linked to temperature
and ethanol [31].

S. cerevisiae strains with a higher ergosterol content have also been shown to be
more ethanol-tolerant [28,32,139]. Indeed, studies have shown that ergosterol reduces
the interdigitation of lipid bilayers in the presence of ethanol [133,140-142]. Interestingly;
a decrease in ethanol tolerance was seen for strains deficient in enzymes involved in
ergosterol biosynthesis, such as Erg3p, Ergbp or Erg6p [143,144].

These results show that sterols, as well as unsaturated fatty acids, contribute to the
ethanol-tolerance of yeast cells, as they maintain optimal membrane thickness in the
presence of ethanol, avoiding interdigitation.

3.3. Effect of Temperature on Sterols

The vinification of white and rosé wines at lower temperatures, between 10 and 15 °C,
allows a better preservation of volatile aromas, such as higher alcohols and esters [107,145].
However, these temperatures entail longer lag phases and increase the risk of sluggish and
stuck fermentations [146]. Indeed, cold stress reduces membrane fluidity and alters the
activity of membrane-associated enzymes and transporters [33,107,147].

Redon et al. [33] studied the addition of ergosterol to YPD medium for commercial
wine yeast cells grown before their inoculation in a synthetic grape must at 13 °C under
anaerobiosis. It was noted that ergosterol favored the synthesis of unesterified fatty acids,
increasing membrane fluidity. Moreover, during fermentation, strains that grew in an
ergosterol-complemented medium were able to complete fermentation earlier than the
control strains grown without sterols [33].

The expression of ergosterol biosynthesis genes, such as ERG3, ERG6 and IDI1, is
affected by temperature variations [145,148]. Indeed, Aerg3 and Aerg6 mutant strains were
not able to complete fermentation at 12 °C, and stuck fermentations were even observed
at 28 °C [145]. Better growth was observed in case of IDI1 overexpression, although
delays in fermentation still occurred when ERG3 and ERG6 were overexpressed at a low
temperature [145].

Saccharomyces strains adapted to low temperature were shown to accumulate less
squalene, an ergosterol precursor [149]. Moreover, the accumulation of another ergosterol
precursor, fecosterol, and the increased expression of UPC2 (a gene activating enzymes
under sterol deficiency) were both observed in a thermotolerant S. cerevisiae strain after
either mutation in ERG3 or ERG2 deletion [44,59].

These results suggest that the adaptation of yeast to low and high temperatures is
associated with the expression of ergosterol biosynthesis genes. Thus, the ergosterol content
of yeast cells plays an important role in the adaptation of wine strains during white wine
fermentation at low temperatures.

3.4. External Sources: The Addition of Grape Solid Particles, Exogenous Phytosterols, Inactive Dry
Yeast Cells and Oxygen

Insufficient dissolved oxygen (lower than 7nM) does not allow adequate sterol syn-
thesis and can provoke a high mortality rate, leading to difficulties in achieving complete
alcoholic fermentation, particularly in musts with a low phytosterol content [150-153].
External sources of sterols can then be used to make up for this sterol starvation.

When there is low sterol content inside the cell, yeasts can import phytosterols from
the fermentation medium by the production of Auslp and Pdrllp transporters, induced
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by Upc2p and Ecm22p [102,154-156]. The clarification of grape musts leads to a depletion
of their phytosterol content [157]. In highly clarified musts, the addition of grape solids
decreased the duration of fermentation and exerted a significant and positive impact on
yeast cell viability and maximum population [98]. This impact is due to the phytosterol
content of grape solids, which allows for the consumption of a greater quantity of assim-
ilable nitrogen by yeasts and a shift from a lipid-limited to a nitrogen-limited situation.
The addition of solid particles in such musts is therefore used as a source of lipids to allow
better nitrogen uptake, achieve a high yeast biomass and lower the risks of sluggish fermen-
tations [23,98,114]. Similarly, the addition of exogenous phytosterols to the fermentation
medium also has a positive impact on the fermentation kinetics, maximum cell population
and viability [11,123].

The addition of inactive dry yeasts (IDY) and yeast hulls to a synthetic and a natural
must, respectively, with a high nitrogen content and a low lipid content, also allowed
an increased biomass, promoting more efficient fermentations due to their ergosterol
content [122,158]. Indeed, sterols from IDY can be transferred to active dry yeasts during
rehydration. The addition of 150 g/L (dry weight) of IDY during rehydration would
correspond to the addition of 40 ng/L of ergosterol to the fermentation medium [158].

In the absence of phytosterols, the addition of 5 to 10 mg/L oxygen permits the
restoration of a normal fermentation rate [113,152,159]. Oxygen additions (10 mg/L) at the
end of the growth phase made by Ochando et al. [22] in a sterol-deficient synthetic medium
mimicking champagne must under anaerobic conditions made it possible to compensate
for the lack of lipids through ergosterol and fatty acid synthesis by yeasts, as well as a
higher nitrogen consumption. As a result, an increase in maximum fermentation rate, the
production of more cells and high viability maintenance were observed, especially for
fermentations in must with an insufficient phytosterol content. For the strain studied in
this specific work, a concentration of more than 2 mg/L of phytosterols maintained a high
viability (more than 80% of living cells) for up to 97% of alcoholic fermentation.

3.5. Effect of Sterols on Aroma Compounds

The production of fermentative aromas during alcoholic fermentation is mostly de-
pendent on the yeast strain [160], assimilable nitrogen [161,162], fermentation tempera-
ture [124,163] and must lipid composition [104,164,165]. The nitrogen/lipid balance is a
main parameter that influences both fermentation kinetics and the synthesis of fermentation
aromas [124].

Medium and long chain fatty acids, higher alcohols, acetate esters and ethyl esters
(derived from higher alcohols and fatty acids, respectively) are the main components
that contribute to wine fermentative aromas, providing fruity and floral notes [166,167].
Central carbon metabolism (CCM), as well as lipid metabolism and amino acid catabolism
by the Ehrlich pathway, have a fairly significant influence on the production of these
components [168]. Part of the sugars present in the fermentation medium is directed
towards the biosynthesis of CCM metabolites, which contribute to wine sensory aspects:
glycerol, acetic acid, pyruvic acid, as well as, in smaller amounts, aldehydes, higher alcohols
and their esters (Figure 6).

Supplementation with sterols can increase the production of volatile aroma com-
pounds, such as higher alcohols [124,169-172]. Indeed, a positive correlation between
higher alcohol production and sterol content has been observed for ergosterol as well as
for phytosterols [124,170,171], as shown in Table 2. One possible explanation would be the
repression of alcohol acetyltransferases, responsible for the conversion of higher alcohols to
their corresponding esters, in the presence of lipids [173]. However, propanol biosynthesis
(a nitrogen marker) is not impacted by the addition of phytosterols [124].
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Table 2. Positive impact of sterols (ergosterol and phytosterols) on higher alcohol biosynthesis.

Sterol with Positive Impact on

Higher Alcohols Higher Alcohol Biosynthesis References
Propanol Ergosterol [169,171]
3-ethoxy-1-propanol Ergosterol and phytosterols [171]
Isoamyl alcohol Ergosterol [169,171]
Isoamyl alcohol Phytosterols [124,171]
2-phenylethanol Ergosterol [169-171]
2-phenylethanol Phytosterols [172]
Propanol and 2-phenylethanol Phytosterols [171]
meinylbdtanel Ergosterol 170]
Isobutanol Ergosterol [169-171]
Isobutanol Phytosterols [124,171,172]

Lipids also impact the production of esters. Indeed, acetyl-CoA (an intermediate in the
synthesis of lipids) is associated with both acetate and ethyl ester production. Acetyl-CoA
can bind higher alcohols through alcohol acetyltransferases (Atflp and Atf2p) to form
acetate esters [174-176]. Studies have shown that unsaturated fatty acids and oxygen
repress ATF1 expression, despite the fact that the impact of sterols on this gene is not
known [171,177-179]. Regarding ATF2, its expression should be linked to sterols, as sterol
acetylation for the regulation of yeast cell sterol content is mediated by the acetyltrans-
ferase Atf2p [80]. Ethyl esters are also associated with lipid metabolism, as the ethanol
acyltransferase Eebl1 is capable of esterifying short-chain fatty acids [165].

The impact of sterols on ester production is complex. Varela et al. [170] and
Fairbairn et al. [171] noticed an increase in the concentrations of acetate esters and ethyl
esters due to sterols (Table 3). Yet, opposite results were found by Rollero et al. [124,164].
A hypothesis to explain the increased content of ethyl esters would be the inhibition of
acetyl-CoA carboxylase and thus of long-chain fatty acid formation, which would allow
the release of medium-chain fatty acids for the biosynthesis of ethyl esters [175]. Strains
with different genetic backgrounds and different fermentation conditions, as well as the
varying nitrogen/lipid balance, could explain the divergence of these results.

Table 3. Sterols (ergosterol and phytosterols) and their impact on ester biosynthesis. (+) indicates an
increase and (—) indicates a decrease in ester concentration.

Sterol and Its Impact on Ester

Esters Biosynthesis References
Isoamyl acetate (+) Ergosterol and phytosterols [171]
Ethyl acetate, isobutyl acetate,
Acetate 2-methylbutyl acetate, isoamyl acetate and (+) Ergosterol [170]
esters phenylethyl acetate
Ethyl acetate, isobutyl acetate and isoamyl (—) Phytosterols [164,172]
acetate

Ethyl hexanoate and ethyl octanoate (—) Phytosterols [124,164]

Ethyl acetate (+) Ergosterol and phytosterols [171]

Ethyl esters  Ethyl propanoate, ethyl butanoate, ethyl
hexanoate, ethyl octanoate and ethyl (+) Ergosterol [170]
decanoate

The sterol content, as well as the strain used and the fermentation temperature, have an
impact on the release of varietal aromas in white wines, such as thiols [180,181]. 3-mercapto-
hexanol (3MH), 4-mercapto-4-methylpentan-2-one (4MMP) and 3-mercapto-hexyl acetate
(BMHA) are responsible for the development of fruity citrus, woody aroma and passion
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fruit flavors, respectively [182]. According to Saharan et al. [180] and Deroite et al. [104],
sterol deficiencies entail the production of low amounts of 3MH and 4MPP and higher
amounts of SMHA. The antioxidant properties of lipid nutrients could explain the reduction
in 3MH and 4MMP, whereas the higher levels of SMHA could result from an increase in the
acetylation of 3MH to 3SMHA [183,184]. Indeed, the activation of lipid synthesis pathways
by the ATF1 gene stimulates the production of acetyl-CoA, which is acetylated with SMH
to form 3MHA [184].

4. Conclusions

This review integrated the latest findings about sterols in white wine alcoholic fermen-
tation with S. cerevisiae strains. We highlighted the key role of sterols in enabling yeast cells
to cope with stressful conditions. Indeed, these lipid compounds allow a better nitrogen
uptake, leading to higher viability and biomass, and faster fermentations. Interestingly, the
significant effect of sterols on yeast physiology also impacts the production and balance
of aroma compounds and makes it a major factor of yeast nutrition. However, further
studies are required to answer the questions raised in this paper, notably in order to bet-
ter understand the mechanisms involved in the assimilation of ergosterol compared to
phytosterols.
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