
Citation: Vaitkeviciene, R.; Burbulis,

N.; Masiene, R.; Zvirdauskiene, R.;

Jakstas, V.; Damasius, J.; Zadeike, D.

Fermentation as a Promising Tool to

Valorize Rice-Milling Waste into

Bio-Products Active against

Root-Rot-Associated Pathogens for

Improved Horticultural Plant

Growth. Fermentation 2022, 8, 716.

https://doi.org/10.3390/

fermentation8120716

Academic Editor: Wensheng Qin

Received: 21 October 2022

Accepted: 1 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fermentation

Article

Fermentation as a Promising Tool to Valorize Rice-Milling
Waste into Bio-Products Active against Root-Rot-Associated
Pathogens for Improved Horticultural Plant Growth
Ruta Vaitkeviciene 1,*, Natalija Burbulis 2 , Ramune Masiene 2 , Renata Zvirdauskiene 1 , Valdas Jakstas 3,
Jonas Damasius 1 and Daiva Zadeike 1,*

1 Department of Food Science and Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania
2 Department of Plant Biology and Food Sciences, Vytautas Magnus University Agriculture Academy,

53361 Akademija, Lithuania
3 Institute of Pharmaceutical Technologies and Department of Pharmacognosy, Lithuanian University of Health

Sciences, 44307 Kaunas, Lithuania
* Correspondence: ruta.vaitkeviciene@ktu.lt (R.V.); daiva.zadeike@ktu.lt (D.Z.)

Abstract: In this study, water extracts from fermented (F), ultrasonicated (US), and enzyme-hydrolyzed
(E) rice bran (RB) were evaluated against sixteen fungal plant stem and root-rot-associated pathogens.
The effects of pre-treated RB additives on plant growth substrate (PGS) on bean and tomato seed
germination, stem height and root length of seedlings, and chlorophyll concentration in plants were
analyzed. The results showed that US-assisted pre-treatments did not affect protein content in RB,
while 36 h semi-solid fermentation (SSF) reduced protein content by 10.3–14.8%. US initiated a 2.9-
and 2-fold increase in total sugar and total phenolics (TPC) contents compared to the untreated
RB (3.89 g/100 g dw and 0.61 mg GAE/g dw, respectively). Lactic acid (19.66–23.42 g/100 g dw),
acetic acid (10.54–14.24 g/100g dw), propionic acid (0.40–1.72 g/100 g dw), phenolic compounds
(0.82–1.04 mg GAE/g dw), among which phenolic acids, such as p-coumaric, cinnamic, sinapic,
vanillic, and ferulic, were detected in the fermented RB. The RBF extracts showed the greatest growth-
inhibition effect against soil-born plant pathogens, such as Fusarium, Pythium, Sclerotinia, Aspergillus,
Pseudomonas, and Verticillium. Beans and tomatoes grown in RBUS+E- and RBF-supplemented PGS
increased the germination rate (14–75%), root length (21–44%), and stem height (25–47%) compared
to seedlings grown in PGS. The RB additives increased up to 44.6–48.8% of the chlorophyll content in
both plants grown under greenhouse conditions. The results indicate that the biological potential
of rice-milling waste as a plant-growth-promoting substrate component can be enhanced using
solid-state fermentation with antimicrobial LABs and US processing.

Keywords: rice bran; semi-solid fermentation; ultrasound; bioactive components; tomatoes and
beans; inhibitory activity; soil pathogens; plant growth performance

1. Introduction

Large quantities of agro-industrial by-products are generated within the food produc-
tion chain, and there is great potential for this biomass beyond its current main usage for
the feed sector. Furthermore, growing conditions and the biological and nutrition potential
of the soil are important criteria for improving crop yield and ensuring food safety [1]. The
regulation of horticultural plant growth and the management of environmental stress are
significant factors characterizing the productivity of cultivated plants.

As awareness regarding environmental sustainability and healthy food increases, there
has been rapidly growing interest in the industry to provide innovative solutions for the
management of cereal-based by-products based on a sustainable approach. In this case, the
potential valorization of agro-industrial waste using environmentally friendly technologies
would improve the sustainability of their processing.
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Cereal-bran-based organic industrial by-products have potential as biofertilizers, as
the essential nutrients they provide could offer a healthy supplement, improving biological
activity and the growth of plants [2]. Rice bran (RB), as an excellent low-cost source of
various components, such as carbohydrates, sugars, protein, and bioactive compounds
(polyphenols and vitamins), may be an eligible substrate, containing the necessary nutrients
for plants [3].

Many food-processing techniques, such as enzyme treatment and fermentation, have
been investigated and applied to functionalize RB resources, improving their nutrition
level [4,5]. Rice-milling by-products modified by enzymatic processing retain their nutri-
ents, such that they can be used as functional food ingredients [5]. Higher protein, fibee,
lipids, and mineral levels, as well as an increase in the availability of phenolic compounds,
were observed after fermentation [6]. Fermentation of bran with appropriate lactic acid
bacteria (LAB) increases the amount of essential, nonessential, and conditionally essential
amino acids, affecting plant growth, formation, and the synthesis of chlorophyll [7]. Ultra-
sonic treatment of food waste is rapidly gaining popularity because it is an environmentally
friendly and cost-effective process [8]. Ultrasound technology can modify rice-bran protein
structures, producing functional peptides [9,10], and also physicochemical properties of
dietary fiber and starch, changing their functional properties [8,11]. Therefore, ultrasound-
assisted cellulase treatment is an effective strategy to functionalise brown rice nutritional
components [12].

Plant diseases are a growing consequence of ongoing global warming. Soilborne
fungal pathogens are one of the most predominant root-rot-causing agents, resulting
in yield losses of agricultural and horticultural crops, which impacts greenhouse plant
productivity and the quality of products. Root rot in tomato plants tends to be induced
by Fusarium spp. and involves the infection of roots, leading to wilt and loss of 10–80%
of yield [13,14]. Bean root rots are usually caused by Rhizoctonia spp., Fusarium spp.,
and Pythium spp. pathogens, which are long-lasting in infected soil. The pea root rot
disease might be caused by a single pathogen or a combination of several pathogens,
including Alternaria alternata, Fusarium oxysporum, F. avenaceum, F. solani, Pythium spp.,
Sclerotinia sclerotiorum, and Phytophthora spp. [15].

The capability of LAB to produce organic acids and antimicrobial compounds has
made them essential not only in the preservation of foods but also in promoting signif-
icant positive changes in the health of plant foods [16]. Their metabolism throughout
fermentation contributes to lowering some toxic and antinutritional factors and promoting
bioavailable bioactive compounds [17,18]. This has also resulted in the categorization
of LAB as generally regarded as safe (GRAS), posing no risks for applications in crop
production [19].

Recently, LAB has been shown to be effective in the control of a wide variety of fungal
and bacterial phytopathogens, as well as the alleviation of various abiotic stresses [16]. The
extracts of fermented rice bran have shown antifungal potential against Aspergillus spp.,
Penicillium spp., and Fusarium spp., as well as antibacterial activity against Escherichia coli,
Bacillus cereus, Salmonella typhimurium, and Pseudomonas aeruginosa [20,21]. However, to
the best of our knowledge, the antifungal efficacy of the water extracts of rice bran on
horticultural root-rot-causing bacteria remains under-investigated, although some reports
have shown that rice bran is a potential source of antimicrobial compounds [4]. A better
understanding of the symbiotic action between plants and LAB could be exploited to
improve horticultural plant production.

In our study, we explored whether rice-milling waste could be used for the produc-
tion of a new organic bio-product for horticultural plant-growth substrates via controlled
microbial fermentation and ultrasound treatment. Furthermore, given its well-known spec-
trum of functionality, which includes its antimicrobial activity and potential for improved
nutrition, its application may introduce new characteristics that result in a more stable and
safe product. We focused on evaluating the growth-inhibition activity of rice bran (RB)
functionalized by ultrasound and semi-solid fermentation (SSF) with antimicrobial LABs
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against phytopathogens associated with stem and root rot, and also analyzed the impact of
functionalized RB additives on the seed germination and growth ability of horticultural
plants, such as beans and tomatoes.

2. Materials and Methods
2.1. Materials

Rice-milling by-products (RB) were obtained from a local mill (Pasvalys, Lithuania).
The raw material was fractionated by a laboratory sieve shaker (EFL 300, Endcotts Ltd.,
London, UK), and a protein-rich fraction of 500 µm particle size (moisture 12.19%, protein
15.42%, fat 11.14%, carbohydrate 61.25%) was selected for the experiment.

2.2. Lactic Acid Bacteria and Enzymes

Lactic acid bacteria (LAB) strains of Pediococcus acidilactici (DSM 20284) (Pa), Lactobacil-
lus brevis (ATCC 367) (Lb), and L. uvarum (strain 8) (Lu), which indicate certain antifungal
activity in rice bran media [21], were selected for the fermentation of RB material. Bacterial
strains were stored at −80 ◦C in a Microbank system (Pro-Lab Diagnostics, Wirral, UK)
and grown in a Man, Rogosa, and Sharpe (MRS) broth (CM 0359, Oxoid, Hampshire, UK)
for 48 h at 30 ◦C before use. The initial concentration of bacterial cells was, on average,
1.4 × 109 of colony-forming units (CFU) per mL. Enzyme preparation (CeluStar XL, pH
6.0, 50 ◦C) from Dyadic International Inc. (Jupiter, FL, USA), containing mostly cellulase
(20,000 CU/mL) and xylanase (15,000 XU/mL), as well as some protease (1500 PU/mL),
was used for the hydrolysis of RB material.

2.3. Pre-Treatment of Rice Bran

The RB material before the planting experiment was pre-treated by ultrasound (US),
semi-solid fermentation (SSF), or a combined procedure (US treatment following enzyme
hydrolysis). For the ultrasonication, the sample (20 g) of the RB and distilled water were
mixed with a ratio of 1:4. After that, the sample was placed in a plastic container (layer
thickness 20 mm) and sonicated (850 kHz, 1.5 W/cm2) at 40 ◦C for 20 min in a ultrasonic
bath (Meinhardt Ultraschalltechnik, Leipzig, Germany). The fermentation conditions were
selected based on previous experiments [15,16]. For the fermentation experiment, the
untreated RB sample (100 g) was mixed with sterile distilled water at a 1:4 ratio. After, the
2% (w/v) of pure LAB culture suspension was added in the untreated or ultrasonicated RB,
and the samples were incubated for 36 h at 30 ◦C in containers tightly closed with foil. For
enzymatic hydrolysis, 100 g RB sample was mixed with distilled water at a 1:4 ratio, and
after adjusting the pH to 6 with 0.1 M HCl, the sample was incubated for 10 min at 50 ◦C
temperature. Next, the Celustar XL preparation (400 CU/100 g) was added, and hydrolysis
was performed for 60 min at 50 ◦C.

The RB samples were prepared in triplicate as follows: UN, untreated; US, ultra-
sonicated; US+E, ultrasonicated and hydrolyzed with Celustar XL; FPa, FLb, FLu, RB fer-
mented with P. acidilactici (Pa), L. brevis (Lb), L. uvarum (Lu). Pre-treated RB samples were
lyophilized and used as a supplement in the plant-growth substrate (PGS) in potting exper-
iments and also in the transplantation soil mixture (TSM) for a greenhouse experiment.

2.4. Plants and Potting Procedure

For the plant growth experiments, Aura-variety bean (Phaseolus vulgaris L.) and
Promyk-variety edible tomato (Solanum lycopersicum L.) seeds were selected. Plants were
cultivated in plastic pots using 0.5 L of commercial PGS per pot. Seeds were sowed directly
into a potting substrate without or with the addition of pre-treated RB at a concentration of
10% by weight of PGS. The experiment was carried out with 8 bean and 16 tomato plants
for each test batch, respectively. Bean and tomato seedlings were moved to the TSM after
21 days of growth. The plants were grown in a greenhouse under controlled conditions
(25 ◦C, 50–60% humidity) and irrigated with tap water.
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2.5. Evaluation of Plant Growth Performance

The growth performance of the tomato and bean plants was determined according to
Ranal and de Santana [22]. Germination rate, root length, and stem height were measured
after every seven days during the 42-day growing period for beans and the 56-day period
for tomatoes. The germination rate was expressed as the percentage of germinated seeds out
of the total number of seeds used in the potting experiment. The height of the experimental
seedlings was measured from the base reference point to the top of the seedling, and the
length of the roots was measured as the length of the longest root at the end of the growing
period in the greenhouse. Additionally, chlorophyll content in the plant tissue after the
growing period was analyzed. The experiment was arranged with complete randomization,
and all measurements were performed in triplicate.

2.6. Indicatory Microorganisms

Sixteen fungal plant-pathogenic strains (Table S1) from the Kaunas University of
Technology (Kaunas, Lithuania) and Vytautas Magnus University Agriculture Academy
(Kaunas distr., Lithuania) collections were used as indicatory microorganisms for the
antimicrobial activity assay. Before the experiment, phytopathogens were cultured on the
appropriate agar media at optimal temperatures for 14 days in the dark (Table S1). Fungal
strains of Fusarium, Pythium, and Mucor were maintained on potato dextrose agar (PDA);
strains of Sclerotinia, Cladosporium, Alternaria, Penicillium, and Aspergillus were maintained
on Sabouraud dextrose agar (SDA), and Verticillium and Rhizopus strains were maintained
on Mueller–Hinton agar (MHA). The fungal spore suspensions were prepared by vigorously
shaking the slants of the conidia for 5 min with sterile peptone water (50 mL) and were
then stored at 4 ◦C. The overnight bacterial suspensions were adjusted to 0.5 McFarland
Standard with sterile peptone water. A spore concentration (106 spores/mL in half-strength)
in the suspension was calculated using the Neubauer chamber cell-counting method.

2.7. Determination of Antifungal Activity

The growth-inhibition activity of untreated and pre-treated RB extracts against fungal
plant pathogens was determined using the agar well diffusion method by measuring the
inhibition zones that formed. The control extract was prepared by mixing untreated RB
with distilled water (material to water ratio of 1:4, w/v) for 60 min and centrifuging at
4500× g for 15 min. The obtained extracts were filtered through sterile syringe filters
(0.22 µm, PVDF). The Petri plates, filled with appropriate agar (25 mL), were overlaid with
100 µL of each fungal suspension, prepared as described in Section 2.6. Test extract sample
(100 µL) was added to each well (6 mm in diameter) by punching into the cooled agar. The
inhibition zone diameter was measured in mm after 48 h of incubation at 25 ◦C.

2.8. UFLC Analysis of Amino Acids

Amino acids were determined via ultrafast liquid chromatography (UFLC) with
automated o-phthalaldehyde (OPA)/9-fluorenylmethyl chloroformate (FMOC). For the
analysis, the RB samples were hydrolyzed with 6 N HCl at 110 ◦C for 24 h. The UFLC
analysis of amino acids was performed according to Jukonyte et al. [21]. The amino acid
standards (A9781 Sigma-Aldrich, Darmstadt, Germany) were analyzed at 0.5 µmol/mL
concentration, except for L-cystine, at 0.25 µmol/mL in 0. odium citrate, pH 2.2. A five-level
calibration set was used, covering a concentration range of 0.006–0.20 µmol/mL, except for
alanine and cysteine, each covering a concentration range of 0.06–1.00 µmol/mL. All test
samples were analyzed twice.

2.9. Analysis of Phenolic Compounds

Total phenolic compounds (TPC) in untreated and pre-treated RB was estimated by
the Folin–Ciocalteu (FC) method [23]. Phenolic acids profile was determined via ultra-
performance liquid chromatography/electron spray ionisation tandem quadrupole mass



Fermentation 2022, 8, 716 5 of 15

spectrometry (UPLC/ESI-MS/MS). The procedures of sample extract preparation and
analysis are presented in Supplementary Materials (Methods S1 and S2).

2.10. UHPLC Analysis of Organic Acids

For the analysis of organic acids such as lactic, acetic, and propionic, the fermented
samples (10 g) were mixed with 40 mL of distilled water and centrifuged (2800× g, 20 min).
After filtration through a 0.22 µm PVDF filter, the supernatants were analyzed via reverse-
phase ultra-high-performance liquid chromatography (UHPLC) with a Shimadzu LC-20AD
Chromatography System with Diode Matrix Detector (Shimadzu Corp., Kyoto, Japan).
The process used a hydrosphere C18 (150 × 4.6 I.D.) column (5 µm) and a mobile phase
of 20 mM Na2HPO4 buffer (pH 2.5, H3PO4). It was performed at a rate of 1.0 mL/min,
a temperature of 40 ◦C, duration of 30 min, a sample injection volume of 5 µL, and UV
detection at 210 nm with a detection limit of 2 mg/L.

2.11. Chlorophyll Determination

Chlorophyll (Chl) content was measured in the plant leaves after 42 days of growing
according to Costache et al. [24], with some modifications. For chlorophyll (Chl) determi-
nation, fresh plant material (100 mg) was homogenized (IKA Ultra-Turrax T-25, Staufen,
Germany), and Chl extraction was performed using 100% acetone with a ratio of 1:50 (w/v)
in the tightly closed tubes. After centrifugation at 3000× g for 10 min, the spectrophotomet-
ric measurements at wavelengths of 662 and 645 nm for Chl A and Chl B were performed.
Chl contents were calculated according to the equations presented below [18].

Chl A = 11.75 A662 − 2.350 A645 (1)

Chl B = 18.61 A645 − 3.960 A662 (2)

2.12. Statistical Analysis

All chemical and microbiological analyses were performed in triplicate. The results
are presented as mean values and standard deviations. The significant differences between
means were assessed by analysis of variance (ANOVA) using the IBM SPSS Statistics 27.0
statistical package (SPSS Inc., Chicago, IL, USA). Data were analyzed by ANOVA, followed
by the Fisher test, and were recognized as statistically significant at p < 0.05.

3. Results
3.1. Characterization of Rice Bran Material

Table 1 provides the contents of protein, saccharides, organic acids, and total phenolic
compounds in the untreated rice bran (RB) and RB samples after different pre-treatments.

As can be seen from the table, the pH of the RB samples ranged from 6.48–6.70 in
the control and RBUS samples to 3.68–3.97 in the RBF samples. According to the litera-
ture [25], pH value is one of the key factors affecting the growth of plants; the optimal
soil conditions for germination of tomato seeds and plant growth are close to alkaline (pH
6.0–7.5), and bean plants prefer slightly acidic conditions (pH 5.8–6.5) for optimal growth
and germination of their seed.

Applied US-assisted pre-treatments do have not a significant effect on protein con-
tent in RB samples, varying between 15.99 and 16.43 g/100 g. According to Nazari [26],
ultrasound disrupts hydrogen bonds and hydrophobic interactions, thus leading to confor-
mational changes in the secondary and tertiary structures.
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Table 1. pH values, lactic acid bacteria (LAB) count (log10 CFU/g) contents of protein, sugars, and
organic acids (g/100 g dw), and total phenolic compounds (TPC) (mg GAE/g dw) in untreated and
functionalized rice bran (RB).

Parameters
RB Samples

UN US US+E FPa FLb FLu

pH 6.48 ± 0.02 a 6.50 ± 0.01 a 6.70 ± 0.01 a 3.67 ± 0.02 b 3.58 ± 0.00 bc 3.89 ± 0.02 b

LAB count – – – 8.21 ± 0.23 ab 8.68 ± 0.19 a 8.15 ± 0.11 b

Protein 16.05 ± 0.09 a 16.43 ± 0.29 a 15.99 ± 0.02 a 14.39 ± 0.27 b 14.25 ± 0.20 b 13.68 ± 0.03 b

Total sugars 3.89 ± 0.01 e 11.25 ± 0.02 d 19.98 ± 0.03 a 15.42 ± 0.02 c 17.66 ± 0.03 b 14.98 ± 0.02 c

Total lactic acid – – – 21.49 ± 0.37 b 23.42 ± 0.27 a 19.66 ± 0.36 c

L-lactic acid – – – 8.40 ± 0.27 c 12.53 ± 0.25 a 10.43 ± 0.21 b

D-lactic acid – – – 13.09 ± 0.15 a 10.89 ± 0.17 b 9.23 ± 0.22 c

L/D ratio – – – 0.64 ± 0.03 b 1.15 ± 0.06 a 1.13 ± 0.02 a

Propionic acid – – – 0.82 ± 0.13 b 0.40 ± 0.22 c 1.72 ± 0.23 a

Acetic acid – – – 11.49 ± 0.21 b 14.24 ± 0.42 a 10.54 ± 0.32 c

TPC 0.61 ± 0.14 d 1.17 ± 0.06 f 1.28 ± 0.05 e 0.82 ± 0.12 c 1.04 ± 0.46 a 0.96 ± 0.41 b

Values are mean ± SD (n = 3). Different superscript letters in the same line represent significant differences at
p < 0.05; nd, not detected. UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme-hydrolyzed; FPa,
FLb, FLu, fermented with appropriate LAB strain (P. acidilactici, L. brevis, L. uvarum).

Semi-solid fermentation (SSF) with selected LAB strains has reduced protein content
by 10.3–14.8%. As confirmed by other researchers [27,28], in SSF processing, the protein
fraction of rice bran plays a significant role as a nitrogen source for the growth of LAB. The
decreases in protein levels have also been reported in fermented rice (8–19%) [29], attributed
to the leaching of protein into liquid fraction or the action of proteolytic enzymes, which
could have broken down the protein to lower fragments [30]. Other authors reporting
an increase in proteins during the fermentation of cereals have ascribed this to protein
synthesis during fermentation [31].

In the case of saccharides, pre-treated RB samples had significantly higher contents
(p < 0.05) of total sugars, with the highest value in the RBUS+E sample (19.98 g/100 g dw),
followed by the RBF samples (14.98–17.66 g/100 g dw). US treatment influenced a 2.9-fold
increase in total sugar content compared to the control (3.89 g/100 g dw). However,
carbohydrates, being one of the main energy sources for plant cells, play a fundamental
role in seed development [32]; thus, US and US+E treatments would be more valuable in
this regard.

The RBF samples contained 19.66–23.42 g/100 g dw total lactic acid with L/D = 0.64–1.15,
depending on the LAB strain used. L-lactic acid concentrations varied between 8.40 g/100 g dw
(P. acidilactici) and 12.53 g/100 g dw (L. brevis), and the content of D-lactic acid was deter-
mined to be between 9.23 g/100 g dw (L. uvarum) and 13.09 g/100 g dw (P. acidilactici).
The contents of acetic acid and propionic acids in fermented RB were 10.54–14.24 and
0.40–1.72 g/100 g dw, respectively (Table 1).

Wang and co-authors [21] obtained 210 g/L L-lactic acid from the batch fermentation
of defatted rice bran. Defatted rice bran was also used as a carbon source for D-lactic acid
production by Tanaka et al. [33], who reported production of 28 g/L D-lactic acid at pH 5.0
by simultaneous saccharification and fermentation.

The analysis showed the contents of total phenolic compounds (TPC) varying from
0.61 up to 1.28 mg GAE/g dw (Table 1). Based on chromatographic analysis, PAs, such
as p-coumaric, sinapic, vanillic, cinnamic, and ferulic, were detected in the RB samples
(26.76–41.20 µg/g d.w.), depending on the pre-treatment method (Figure S2). The highest
contents of ferulic (12.36–16.27 µg/g d.w.) and cinnamic acid (14.38–15.12 µg/g d.w.) were
detected in the US-treated RB samples (Table S2).

Similar levels of TPC were detected by Shao et al. [34], indicating TPC contents for
white rice between 14.6 and 33.4 mg GAE/100 g and for red rice between 66.8 and 422.2 mg
GAE/100 g. According to these authors, the PA existed mainly in the bound form, among
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which, vanillic acid varied in a range of 24–54 µg/g only in black rice, p-coumaric acid
varied at levels < 35 µg/g in red and black rice, and ferulic acid (40–179 µg/g dw), the
most abundant bound phenolic acid, was observed at higher levels in black rice [34]. The
increased phenolic acid content in RB is mainly caused due to the cleavage of compounds
in conjunction with lignin.

In our study, US-assisted processing induced a 2-fold increase in the TPC content, while
the SSF process increased the content of TPC by 33.8–70.1%, depending on the LAB used for
fermentation. Similar results were reported by Iftikhar et al. [35], showing that ultrasound
increased total phenolic and flavonoid contents, depending on process temperature, time,
and water to solvent ratio, and also with Nisa et al. [36], where the content of phenolics was
significantly improved during fermentation of RB with Lactobacillus lactis and L. plantarum
strains. According to Abd Razak et al. [37], fermentation with Rhizopus oligosporus and
Monascus purpureus enhanced the phenolic acid content in rice bran.

The authors suggest the novelty of US and SSF for enhancing the phytochemical con-
tent and increasing bioactive properties. Borges et al. [38] reported ferulic and gallic acids,
indicating antimicrobial activity against food pathogens such as Pseudomonas aeruginosa,
Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes.

The phenolics present in plants, mainly including soluble and insoluble bound phe-
nols [39], also can be partially released by the enzymatic degradation of the lignocellu-
loses [40] or degraded through the enzymatic pathway [41]. Liu et al. [42] reported an
increase in the total phenolics and flavonoids by 46.24% and 79.13%, respectively, after
complex enzyme hydrolysis of rice bran. A key role of phenolics is to act as plant-growth
regulators [43], indicating antifungal and antibacterial properties [38,44].

3.2. The Impact of Rice Bran Pre-Treatments on Amino Acid Profile

The concentrations of essential amino acids (EAA) in RB samples ranged from 25.70/g
100 g to 32.58 g/100 g protein (Table 2). The contents of nonessential (NEAA) and condi-
tionally essential amino acids (CEAA) were measured in a range of 17.89 to 45.57 g/100 g,
and 19.63 to 33.18 g/100 g protein, respectively (Table 3).

US-assisted treatments of RB reduced the EAA, NEAA, and CEAA contents by 12.5,
29.8, and 16.2% on average, respectively, compared to RBUN, while fermentation lowered
the EAA content by 17.8% on average and significantly (p < 0.05) increased the NEAA and
CEAA contents (up to 68.4% and 36.6%, respectively), depending on LAB strain.

The results show that the most ASP and GLU was detected in L. brevis fermented RB,
and the highest contents of LYS and MET were found in L. brevis and P. acidilactici-fermented
RB samples. Moreover, the highest contents of PHE and THR were found in the control
and US-treated RB samples.

Amino acids are important molecules in plants, regulating root and shoot formation
and defending against stress [7]. GLU is considered as an effective nitrogen source for plant
growth [45], and ASP has an essential role in nitrogen storage due to it having the highest
nitrogen–carbon ratio [46]. PHE and THR are responsible for the resistance of plants to
adverse growth conditions [47]. Adebiyi et al. [48] reported a 78% increase in amino acids
during the fermentation of pearl millet. Pearl millet fermented at 24 h also had an increased
protein content due to the loss of carbohydrates, while the same study reported a decrease
in arginine, lysine, and glycine [49]. Changes in amino acid contents might be attributed to a
combined effect of enzymatic proteolysis and acid-induced hydrolysis, implied by bacterial
metabolism [50]. During lactic fermentation, LABs eventually break the polypeptide chains
into smaller polypeptides and amino acids [51]. Extensive hydrolysis of protein produces
amino acids that can increase the non-nitrogen content in fermented substrates.
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Table 2. Essential amino acids (EAA) (g/100 g protein) in rice bran (RB) after different pre-treatments.

RB
Sample

Essential Amino Acids Total
EAAVAL ILE LEU TRP LYS MET PHE THR HIS

UN 1.41 3.50 5.31 3.65 5.10 1.73 4.15 4.85 2.88 32.58 ± 0.42 a

US 1.12 3.07 4.85 2.89 4.59 1.23 4.14 3.98 2.82 28.69 ± 0.74 b

US+E 0.75 3.58 4.49 1.99 4.75 2.15 4.12 4.16 2.33 28.32 ± 0.76 b

FPa 4.62 1.60 6.14 3.80 5.53 3.85 0.40 1.66 – 27.60 ± 0.23 c

FLb 1.52 1.64 6.52 4.49 7.33 2.27 0.88 1.95 0.40 26.99 ± 0.84 c

FLu 2.50 1.10 6.14 5.99 7.37 – 0.77 1.70 0.13 25.70 ± 0.42 d

Values are mean ± SD (n = 3). Different superscript letters in the same column represent significant differences
at p < 0.05. UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme-hydrolyzed; FPa, FLb, FLu,
fermented with appropriate LAB strain.

Table 3. Non-essential (NEAA) and conditionally essential amino acids (CEAA) (g/100 g protein) in
rice bran (RB) after different pre-treatments.

Rb
Sample

NEAA Total
NEAA

CEAA Total
CEAAALA ASP SER GLU CYS PRO GLY TYR ARG

UN 4.71 9.20 5.40 8.42 27.73 ± 0.36 d 5.71 3.60 2.32 2.47 10.08 24.18 ± 0.27 d

US 3.30 3.34 4.94 6.31 17.89 ± 0.01 f 5.20 3.38 1.60 0.66 8.80 19.64 ± 0.20 f

US+E 3.96 3.28 4.54 7.50 19.28 ± 0.42 e 5.51 3.31 1.81 0.93 9.49 21.05 ± 0.75 e

FPa 13.14 8.53 7.23 5.03 33.93 ± 0.19 b 23.98 0.95 3.12 0.68 1.38 30.11 ± 0.15 b

FLb 6.49 12.87 11.34 14.87 45.57 ± 0.61 a 19.12 2.03 4.80 1.28 1.36 28.59 ± 0.22 c

FLu 9.87 6.09 9.90 3.38 29.24 ± 0.25 c 21.91 1.89 5.31 1.90 2.17 33.18 ± 0.45 a

Values are mean ± SD (n = 3). Different superscript letters in the same column represent significant differences
at p < 0.05. UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme hydrolyzed; FPa, FLb, FLu,
fermented with appropriate LAB strain.

3.3. Antifungal Activity of Pre-Treated Rice Bran Extracts

According to the microbiological analysis, the RBUN extract initiated antifungal activity
against 11 pathogens with inhibition zones from 8 mm to 19 mm, showing the strongest
effect against Rhizopus oryzae. The results of growth-inhibition activity analysis of US-
treated and fermented RB extracts against plant root-rot-causing pathogens are presented
in Table 4.

US-treated RB extract showed inhibitory activity against 9 pathogens (inhibition zones
8–19 mm) with the strongest effect being against Mucor mucedo. RBUS+E extract was the most
active against Verticillium wilt (inhibition zone 14 mm), and less active against Cladosporium
herbarum (inhibition zone 11 mm) and Altenaria alternata (inhibition zone 9 mm). L. brevis-
and L. uvarum-fermented RB extracts strongly inhibited the growth of 16 plant pathogens,
while P. acidilactici-fermented RB extract showed antifungal effect against 12 pathogens.

The extract of 48 h L. brevis-fermented RB demonstrated the strongest growth-inhibition
activity against Pythium volutum (inhibition zone 22–24 mm), followed by Fusarium ave-
naceum, F. graminearum, A. versicolor, and P. syringae (21–33 mm) and Sclerotinia sclerotiorum
(19–22 mm). L. uvarum-fermented RB extract was mostly active against P. volutum, Verti-
cillium wilt and R. oryzae (19–29 mm), P. syringae (17–26 mm), A. terreus (12–20 mm), and
Fusarium spp. (10–27 mm), but did not show inhibitory activity against S. sclerotiorum.
The extract of P. acidilactici-fermented RB was moderately active (8–20 mm) against 7 tested
pathogenic strains, but had no inhibitory activity against P. volutum, S. sclerotiorum, or
against 3 out of 4 tested Fusarium strains.
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Table 4. The diameters (in mm) of the inhibition zones formed by untreated and pre-treated rice bran
extracts against plant pathogens.

Pathogens UN US US+E
FPa FLb FLu

24 h 48 h 24 h 48 h 24 h 48 h

Altenaria alternata – – 9 * 9 * 10 * 8 * 19 * 9 * 12 *
Aspergillus terreus 8 8 9 13 * 18 * 8 9 12 * 20 *

Aspergillus
versicolor – – – – 18 * 22 * 32 * 9 * 18 *

Cladosporium
herbarum – – 11 * 10 * 10 * 8 * 9 * 8 * 12 *

Fusarium
avenaceum 10 10 11 – – 23 * 29 * 18 * 20 *

Fusarium culmorum 9 9 10 – – 19 * 20 * – 11
Fusarium

graminearum 11 10 10 – – 21 * 33 * 20 * 27 *

Fusarium nivale 9 – 9 8 19 * 10 * 11 * 10 * 18 *
Mucor mucedo 8 19 * 10 * 9 9 9 18 * 11 * 19 *

Penicillium palitans – – – 10 * 10 * 19 * 23 * 11 * 18 *
Penicillium
spinulosum 8 9 9 13 * 14 * 14 * 19 * 11 * 19 *

Penicillium
viridicatum 16 – – 8 19 * 9 19 * 11 19 *

Pythium volutum 9 9 9 – – 22 * 24 * 24 * 29 *
Rhizopus oryzae 19 – – 9 12 – – 19 29 *

Sclerotinia
sclerotiorum – 10 * 10 * – – 19 * 22 * – –

Verticillium wilt – – 14 * 8 * 18 * 16 * 20 * – 23 *
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The improved microbial safety of fermented products was attributed to the organic
acids produced by LABs [51]. The cultural filtrates of Lactobacillus plantarum 21B grown
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in wheat flour hydrolysate were reported to almost completely inhibit Eurotium repens,
E. rubrum, Penicillium corylophilum, P. roqueforti, P. expansum, Aspergillus niger, A. flavus, and
F. graminearum [52]. The fungicidic effect was attributed to the phenyllactic and 4-hydroxy-
phenyllactic acids. Our previous study also showed that at low pH values, lactic acid may
have a stronger inhibitory effect than acetic acid [21]. Corsetti et al. [53] have confirmed
that acetic acid concentration is strongly related to the antifungal activity of L. sanfrancisco
CB1, showing the most growth-inhibition activity against fungi of Fusarium, Penicillium,
Aspergillus, and Monilia. A mixture of acetic, caproic, formic, propionic, butyric, and valeric
acids, acting in a synergistic way, was responsible for the antifungal activity [53]. Generally,
the antifungal effect of LAB was a result of synergistic interaction among various metabo-
lites, including fatty acids, peptides, and organic acids [54], while the latter metabolites
can be effective in controlling fungal growth and mycotoxin production in cereal-based
substrates [55]. Our previous study [4] showed that the water extracts of RB that had
been ultrasonicated and fermented with L. brevis had the highest antibacterial activity for
inhibiting the growth of food pathogens, such as E. coli, S. typhimurium, P. aeruginosa, and
Bacillus cereus.

3.4. The Effect of Rice Bran Additives on the Germination Rate and the Growth of Beans
and Tomatoes

The effect of untreated, ultrasonicated, and fermented RB additives on the growth of
horticulture plants, such as beans and tomatoes, was evaluated according to the germination
rate, the frequency of stem formation, and the length of roots (Figures 1–3).
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Figure 1. Effect of the rice bran (RB) additives to PGS on germination rate of bean and tomato
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hydrolyzed RB; FPa, FLb, FLu, RB fermented with appropriate lactic acid bacteria strain. * significant
at p < 0.05 compared to the controls.
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Figure 2. Influence of rice bran (RB) additives on bean (A) and tomato (B) root length. Control: PGS;
PGS with RB: UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme-hydrolyzed; FPa,
FLb, FLu, fermented with appropriate lactic acid bacteria strain. * significant at p < 0.05 compared to
the controls.
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Figure 3. Influence of the rice bran (RB) additives on bean (A) and tomato (B) plant stem heights.
Control: PGS; PGS with RB: UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme-
hydrolyzed; FPa, FLb, FLu, fermented with appropriate lactic acid bacteria strain. * significant at
p < 0.05 compared to the controls.

The results showed that PGS supplementation with RB had a significant (p < 0.05) posi-
tive effect on seed germination rate and growth performance for both tested plants (Figure 1).

In this case, the germination rate varied between 43 and 100% for beans, and between
88 and 100% for tomatoes, while this parameter for PGS (control sample) was significantly
lower (25 and 86%, respectively). All RBF samples, containing higher CYS content among
others (Table 2), improved the germination rate by 42–75% and 2–14% for both bean and
tomato seeds, respectively.

In the case of root length, the effect of RB additives was fixed on the 21st day of growth
for beans (Figure 2A) and on the 36th day for tomatoes (Figure 2B). Additional photos of
plants and roots are presented in Supplementary Materials (Figures S2 and S3).

The RBF samples indicated the greatest effect on plant root formation (roots were
longer by 28–44% for beans and 21–38% for tomatoes), while ultrasonicated RBUS improved
the development of tomato roots slightly (by 8%) (Figure 2B). The combined treatment of
RB (RBUS+E sample) showed a stronger positive effect on root formation for tomatoes (by
37%), but did not show a positive effect on bean roots (Figure 2A). The longest roots were
measured for both plants grown in PGS supplemented with fermented with P. acidilactici
RB (RBFPa sample), which contained the highest content of MET that is beneficial for root
development.

The most positive effect on bean plant stem height was observed on the 21st day of
growth for PGS supplemented with RBF additives (38–47% higher stems), followed by
PGS supplemented with RBUS (18% higher stems), compared to beans grown in PGS and
PGS+RBUN (an average stem height 12.16 cm) (Figure 3A). The most notable difference
in tomato stem height was observed on the 28th day of the growth for PGS inoculated
with RBFLb and RBUS+E (25 and 17% higher stems) compared to the PGS and PGS+RBUN
substrates (an average height of 13.28 cm) (Figure 3B).

The use of additional organic materials to the substrate can improve plant physiologi-
cal processes, such as the absorption of water, as well as nutrients [56]. For instance, the
Aphanothece sp. bioproduct for tomatoes resulted in the maximum uptake (78.04–185.17%)
of nitrogen, phosphorus, and potassium, and also significantly enhanced tomato root length
(112.65%) [55]. In this study, the inoculation of PGS with fermented rice bran significantly
(p < 0.05) improved the growth performance of tomato and bean seedlings (Figures 1 and 2).

In the case of using rice bran for composting, Chanda et al. [56] showed that rice bran
decomposed for 6 months under uncontrolled conditions in a glasshouse can be used for
weed control and productivity increase for vegetable crops, such as tomatoes, in an organic
farming system [56].

While composting and fermentation each have advantages and disadvantages, both bi-
ological processes are important for reducing the waste problem [57]. These processes make
it possible to valorize organic materials and nutrients required for plants, thus supporting
sustainable horticultural practices. However, composting is a process of uncontrolled
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decomposition of biodegradable materials under aerobic conditions, and fermentation
is a degradation of biodegradable materials under anaerobic conditions, which can be
controlled. In the case of biomass processing, fermentation compared to composting seems
to be a more favorable solution for technological and economic reasons [57].

3.5. The Effect of Rice Bran Additives on Chlorophyll Formation in Plants

The results indicated a positive effect of RB additives on the formation of chlorophyll
(Chl) in the tested plants (Table 5). In beans, 39.7 and 44.6 % higher levels of Chl A were
observed in the case of RBUS and P. acidilactici- and L. uvarum-fermented RB samples,
respectively, compared to PGS (17.14 mg/100 g). In tomatoes, 48.8 % higher levels of Chl A
were observed in the case of RBUS+E and P. acidilactici- and L. brevis-fermented RB samples
(37.1% on average) compared to the control (18.23 mg/100 g) (Table 5).

Table 5. Chlorophyll (Chl) concentrations (mg/100 g) in bean and tomato leaves after 42 days of
growth in PGS supplemented (10%, w/w) with functionalized rice bran (RB).

Substrate
Bean Tomato

Chl A Chl B Chl A Chl B

PGS 17.14 ± 0.02 e 6.46 ± 0.01 e 18.23 ± 0.54 e 7.00 ± 0.51 d

PGS with:
RBUN 22.19 ± 0.03 c 9.26 ± 0.11 b 21.27 ± 0.21 d 8.31 ± 0.31 c
RBUS 23.94 ± 0.09 b 10.63 ± 0.24 a 15.62 ± 0.01 f 5.95 ± 0.26 e

RBUS+E 14.76 ± 0.03 f 7.32 ± 0.01 d 27.12 ± 0.31 a 10.92 ± 0.90 a

RBFPa 25.49 ± 0.06 a 8.18 ± 0.93 c 26.07 ± 0.21 b 9.37 ± 0.03 b

RBFLb 19.19 ± 0.12 d 6.69 ± 0.52 e 23.93 ± 0.21 c 9.10 ± 0.08 b

RBFLu 24.10 ± 0.31 b 10.47 ± 0.38 a 19.05 ± 0.04 e 6.84 ± 0.17 d

Values are mean ± SD (n = 3). Different superscript letters in the same column represent significant differences
at p < 0.05. UN, untreated; US, ultrasonicated; US+E, ultrasonicated and enzyme-hydrolyzed; FPa, FLb, FLu,
fermented with appropriate LAB strain.

According to Mutale-Joan et al. [56], the occurrence of amino acids such as ALA,
SER, PHE, and TYR in the substrate could positively affect chlorophyll concentration in
horticultural plants such as tomatoes. The authors reported a 42% increase in Chl A content
in tomato leaves after 35 days of treatment with Cyanobacter ellipsoidea extract compared
with the control plant. Popko et al. [58] reported that the application of products based on
amino acids influenced the increase of winter wheat yield by 5.4–11.0% when compared to
the control group without biostimulant [58]. Similar results were obtained in the work of
Colla et al. [59], who tested the effect of plant-derived protein hydrolysate containing amino
acids and small peptides on the nitrogen uptake and growth stimulation of corn, tomato,
and dwarf pea and showed that this hydrolysate enhanced nitrogen uptake based on
extensive root growth and an increase in the nitrogen assimilation process, thus improving
crop performance [60].

Similarly, our study indicates that organic acids and sugars, which are key components
in plant nutrition, and phenolic acids, which act as plant bio-stimulants [60], were found
in the highest levels in the RB samples pre-treated by US+E or SSF, demonstrating an
appropriate plant-growth-promoting effect.

4. Conclusions

Our results show that US-treated and fermented rice-milling by-products contain
valuable biological substances, inhibiting the growth of plant stem- and root-rot-causing
microorganisms, while also demonstrating appropriate plant-growth-promoting properties.
The increase in plant biomass was accompanied by increased chlorophyll synthesis, root
formation, and seedling growth, confirming an increased ability to assimilate nutrients.
The supplementation of PGS with ultrasound pre-treated or fermented RB significantly
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improved the germination rate (14–75%), root length (21–44%), and stem height (25–47%)
of tomatoes and bean compared to seedlings grown in PGS.

Proteins of fermented RB contained lower amounts of essential amino acids (EAA),
but significantly (p < 0.05) higher amounts of NEAA and CEAA compared to RBUN, thus
strongly improving plant growth performance and chlorophyll formation. The use of SSF
for pre-treatment of RB increased the growth-inhibition activity of their extracts against 16
of 17 tested plant fungal pathogens, thus leading to higher resistance of horticultural plants
to fungal contamination. US-assisted treatments and fermentation significantly increased
the contents of organic acids and phenolic compounds in the RB material.

The present study indicates that the biological potential of rice-milling waste can be
increased using SSF with potentially antimicrobial LABs or combination of US processing
with enzyme hydrolysis. We therefore recommend SSF with L. brevis as an effective method
for the increment of bioactive components in RB material. However, more research is
required to optimize the processing conditions, size of the inoculum, and starter culture age.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/fermentation8120716/s1: Method S1, Sample preparation and
analysis of total phenolic compounds; Method S2, UPLC-ESI-MS/MS analysis of phenolic acids;
Method S3, Chemical Analysis; Table S1, Indicatory microorganisms, cultivation temperatures and
media; Table S2, The phenolic acids detected in RB samples; Figure S1, Sample chromatograms of
UPLC-ESI-MS/MS analysis of phenolic compounds; Figure S2, Bean plants and roots after 21 days of
growth in a TMS under greenhouse conditions; Figure S3, Tomato plants after 28 days of growth in a
TMS under greenhouse conditions.
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