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Abstract: In this study, thirty yeast strains isolated from the gut of coprophagous “Gymnopleurus
sturmi” and twenty-four from the dung of ruminants were shown to be producers of cellulases.
Cellulolytic yeast isolates could also produce other hydrolytic enzymes such as pectinase, lipase,
β-glucosidase, catalase, inulinase, urease, gelatinase, and protease. The oroduction of amylase was
present in only one isolate of dung of ruminants. On the other hand, the production of tannase was
absent in these isolates. All the yeasts isolated from two sources could utilize various carbon sources,
including sorbitol, sucrose, and raffinose, and withstand high concentrations of glucose (300 g/L),
salt (100 g/L), and exogenous ethanol. They could grow in a wide pH range of 3 to 11. The growth
was stable up to a temperature of 40 ◦C for isolates from the gut of coprophage and 37 ◦C for the
yeast from the dung of ruminants. These activities and growing conditions were similar to the diet
of coprophagous insects and the composition of ruminant manure, likely because the adaptation
and distribution of these microorganisms depend on the phenology and trophic preferences of
these insects.

Keywords: insect; yeast; enzymes; cellulase

1. Introduction

Yeasts are unicellular eukaryotic microorganisms with the ability to multiply rapidly
because they are less demanding in nutrients. They are easily implemented in several
farms, research, and industrial applications [1,2]. Indeed, they represent the largest group
of exploited microorganisms compared to prokaryotes [3]. Yeasts play an essential role in
recycling organic matter by drawing their energy from external carbon sources [4]. They
can also cohabit in various environments where the living conditions are specific, such as
acidic environments, tree bark, digestive tract, and insect dung [1,5–8]. Yeasts are widely
used in food fermentation industry and making more progress in other industries [2,9].
They represent an important source to be exploited to develop new and very extensive
biotechnological processes as they have a highly developed enzymatic system [10]. Indeed,
yeasts can produce enzymes such as cellulases, ligninase, xylanase, pectinase, amylase,
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glucoamylase, and lipase (Table 1) [11] for applications in various industrial processes,
which require the use of specific thermostable enzymes [12]. Several types of research
have been reported on the ability of yeast strains to hydrolyze plant-derived substrates to
provide an alternative to chemical hydrolysis for bioenergy production.

In this context, we have established a collection of yeasts isolated from various eco-
logical niches; the digestive tract of a coprophagous beetle “G. sturmi” and ruminant
dung, a food source for this insect. The choice of these sources is based on the fact that
coprophagous beetles constitute a group of beetles well-adapted to grazed ecosystems [13],
as they derive their food resources from the dung of large mammals [14]. This dung
could be of carbohydrate origins, or lipid- or phenolic-dominant. The degradation of these
compounds can be done through a system of enzymes secreted by the microorganisms
colonizing the digestive tract of the animals or the microorganisms specific to the dung, in
particular the cellulases to degrade the cellulose not transformed by the animals. These
cellulases could be used for industrial applications due to their great biotechnological po-
tential, and recycling of cellulosic biomass [15,16]. This research is focused on the isolation
and screening of various yeast isolates from the gut and dung of coprophagous insect
Gymnopleurus sturmi for biotechnological applications.

Table 1. Technological applications of yeast isolates.

Enzymes Yeasts Applications References

Cellulases Aureobasidium pullulans 98 Food, chemical, textile, paper, and biofuel industries [17,18]

Pectinase Kluveromyces marxianus
Metschnikowia pulcherrima Wine, cider, and fruit juice industries [19,20]

Lipase Aureobasidium pullulans HN2.3 Food, wastewater treatment, cosmetics, pharmaceuticals,
leather processing, and biofuel industries [21]

ß-glucosidase Guehomyces pullulans 17-1 Food industry [22]

Catalase Saccharomyces cerevisiae Food industry [23]

Inulinase Pichia guilliermondii Food, beverage, and biofuel industries [24]

Urease Cryptococcus gattii Diagnostic kits, beverages, and animal feed [25]

Gelatinase Trichosporon pullulans Food, chemical, and medical industries [26]

Protease Rhodotorula mucilaginosa L7 Clinical applications, food, beverage, and leather
processing industries [27]

Amylase Aureobasidium pullulans
N13dSaccharomyces cerevisiae

Food, textile, paper, detergent industry, medical, and
pharmaceutical industries [28,29]

Tannase Kluyveromyces marxianus Feed, food, beverages, brewing, pharmaceutical,
chemical, cosmetic, and leather industries [30]

2. Materials and Methods
2.1. Sampling

The coprophagous organisms and ruminant dung used for this study were collected
in June 2015 and 2016 from two different regions of Fez, Morocco; Fez sais (33◦54′14′ ′ N,
4◦59′55′ ′ W), at 609 m of altitude, Ain Aicha (34◦29′59′ ′ N, 4◦42′01′ ′ W), at 246 m of altitude,
Ain Aicha (34◦29′59′ ′ N, 4◦42′01′ ′ W), at 246 m of altitude, and Ain Beda (33◦57′07.5′ ′ N,
4◦53′59.9′ ′ W), at 579 m of altitude.

The isolation of the yeasts was carried out from the gastrointestinal tract of the co-
prophagous “Gymnopleurus sturmi” and the ruminate dung on Yeast Pepton Glucose (YPG)
culture medium, comprised of Peptone (20 g/L), yeast extract (10 g/L), glucose (20 g/L),
agar (20 g/L), and with two antibiotics, ampicillin (60 µg/mL) and kanamycin (60 µg/mL),
used to prevent bacterial growth.
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2.2. Qualitative Screening of Isolates for Hydrolytic Enzymes

The different yeast isolates were tested for their ability to produce hydrolytic enzymes.

2.2.1. Oxidation of Phenolic Substrates

The determination of the capacity of all the isolates to utilize and degrade phenolic
substrates was carried out on the M9 culture medium, comprising of (g/L) Na2HPO4
(6 g), KH2PO4 (3 g), NH4Cl (1 g), and NaCl (0.5 g) with 0.1% of catechol or pyrogallol.
The positive result was visualized by a black coloration around the isolate, indicating
assimilation of these substrates.

2.2.2. Cellulase Activity

This activity was determined using carboxymethylcellulose (CMC) agar medium as a
source of carbon. The M9 buffer consists of (g/L) Na2HPO4 (6 g), KH2PO4 (3 g), NH4Cl
(1 g), and NaCl (0.5 g). The medium was autoclaved for 15 min at 120 ◦C. Then, 1 mL of
0.1 M CaCl2 and 1 mL of MgSO4 at 1 M were added. The cellulase medium was composed
of carboxymethyl cellulose (CMC) or cellulose fiber (10 g), yeast extract (0.2 g), agar (20 g),
and the M9 buffer. The final medium was autoclaved for 15 min at 110 ◦C [31]. The yeast
was incubated on the prepared medium for 72 h at 30 ◦C. After that 1%, Congo red was
flooded, which selectively binds to the polymers of cellulose. After 15 to 20 min, the
dishes were washed several times with NaCl (1 M). The presence of a light halo around
the colonies indicates the degradation of the CMC in the medium by the cellulase secreted
from the isolates that were called “cellulase +” [32].

2.2.3. Amylase Activity

Yeast isolates with amylase activity were detected by cultivation on a starch agar
medium. This culture media was comprised (g/L) of peptone (2 g), MgSO47H2O (0.5 g),
CaCl2 (0.2 g) NaCl (0.5 g), and starch (1 g). Isolates possessing the amylase enzyme were
able to degrade the starch present in the agar, thus developing a clear zone around the
colonies. The evidence of starch degradation by the secreted enzyme was confirmed after
adding Lugol and rinsing with distilled water [33].

2.2.4. Inulinase Activity

Inulinase production by the isolated yeasts was detected on a medium containing
inulin (2 g), yeast extract (0.5 g), KH2PO4 (3 g), agar (20 g), and distilled water (1 L). Inulin
was used as the only carbon source in this medium; yeast growth after 4 days of incubation
at 30 ◦C showed the presence of inulinase activity [34].

2.2.5. β-Glucosidase Activity

The β-glucosidase activity was carried out in a medium containing (g/L) yeast extract
(1 g), peptone (1 g), ferric ammonium citrate (0.01 g), esculin (0.3 g), and agar (20 g). The
Petri dishes inoculated with yeast cultures were incubated at 30 ◦C for 24 to 48 h. The
presence of enzymatic activity was visualized as a dark halo surrounding yeast growth [35].

2.2.6. Pectinase Activity

To check the pectinase activity of the isolates, yeast cultures were grown on a medium
based on (g/L) pectin (2.5 g), yeast extract (5 g), (NH4)2SO4 at 10% (5 mL), 1 M MgSO4
(0.5 mL), 50% glycerol (5 mL), and agar (20 g). The pH of the culture medium was adjusted
to 8.0. The medium was autoclaved at 120 ◦C for 15 min [36]. The pectinase secretion was
detected by adding lugol (selectively binding to the pectin polymers) and a successive
rinsing of the dishes with distilled water after 10–15 min. “The pectinase +” isolates were
characterized by the presence of a clear halo around colonies [12].
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2.2.7. Lipase Activity

Lipase activity was carried out on a culture medium based on olive oil and rhodamine
B. This method was based on the emission of fluorescence by the colonies, which was
due to the interaction of rhodamine B with the fatty acids released during the enzymatic
hydrolysis of the olive oil. The medium consisted of (g/L) NaHPO4 (12 g), KH2PO4 (2 g),
MgSO4 7H2O (0.3 g), CaCl2 (0.25 g), (NH4) SO4 (2 g), and pH was adjusted to 7.0. After
sterilization, the medium was mixed with olive oil (31.25 mL) and rhodamine B 10 mL
(1 mg/mL). Colonies with lipase activity develop a fluorescence after exposure of the Petri
dishes to UV radiation (350 nm) [37].

2.2.8. Gelatinase Activity

The detection of gelatinase activity was carried out on a gelatin-based culture medium:
(g/L) gelatin (15 g), peptone (4 g), yeast extract (1 g), meat extract (1 g), agar (15 g). While
the medium showed an opaque appearance on the proteinaceous substrate, having a clear
zone around the colonies indicates the hydrolysis of gelatin substrate [38].

2.2.9. Urease Activity

The medium Christensen was used to reveal urease activity in the yeasts studied. This
enzyme converts urea to ammonia, which increases the pH that changes the color indicator.
After 2 days of incubation at 30 ◦C, a pink to violet coloration in the culture media indicated
positive results [39].

2.2.10. Protease Activity

Protease production was determined according to the method of Strauss et al. [40] by
plating yeast colonies on a medium containing (g/L) yeast extract (0.5 g), NaNO3 (1 g),
K2HPO4 (2 g), KCl (1 g), MgSO4 (0.5 g), agar (20 g), and milk powder (10 g). Incubation
was carried out at 30 ◦C for 7 days. The proteolytic activity was revealed by the presence of
a clear zone around the colony.

2.2.11. Catalase Activity

The catalase activity was evaluated using the method described by Whittenbury [41]
by directly adding 3% (v/v) hydrogen peroxide to a 48 h yeast culture. Catalase activity
was evidenced by the presence of oxygen bubbles.

2.2.12. Tannase Activity

The tannase activity in the different yeast isolates was detected on YPG media supple-
mented with 10 mL of a tannic acid (20%) solution. The yeasts that have a Tannase activity
showed a clear halo, reflecting the decomposition of tannic acid, gallic acid, and glucose.

2.3. Study of Physiological Characteristics of Cellulolytic Isolates
2.3.1. Thermotolerance

The thermotolerance of the isolate temperatures was evaluated on YPG agar and
M9-CMC medium, after incubation for 48 h at different temperatures: 30, 37, 40, 42, 44, 46,
and 48 ◦C.

2.3.2. pH Tolerance

The pH tolerance of the isolates was carried out on a YPG agar medium at different
pH values: 3, 4, 5, 6, 8, 9, 10, 11, and incubated at 30 ◦C for 48 h.

2.3.3. Utilization of Carbon Sources

The digestion of carbon sources by these isolates was carried out on a minimal medium
of M9 agar supplemented with 1% of each source, CMC [42], cellobiose, cellulose, sorbitol,
sucrose, raffinose, maltose, ribose, xylose, galactose, arabinose, fructose, casein, mannitol,
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lactose, dextrin, glycine, and glycerol. The growth of isolates was noted after incubation at
30 ◦C for 48 h.

2.3.4. Glucose Tolerance of Yeasts

The growth of the isolates at different glucose concentrations—50, 100, 150, 200, 250,
and 300 (g/L)—was evaluated to investigate the yeast’s tolerance. The isolates were
incubated on a YPG agar medium, properly supplemented with different concentrations of
glucose. Next, the culture plates were incubated at 30 ◦C for 48 h.

2.3.5. Tolerance to Ethanol

We tested the isolate’s tolerance for exogenous ethanol on YPG agar medium that was
supplemented with different concentrations of ethanol: 1, 5, 6, 8, 10, and 12%. Then, the
plate was incubated at 30 ◦C for 48 h.

2.4. Molecular Identification

Cellulolytic isolates were cultured in test tubes containing 5 mL of YPG medium.
Incubation was carried out at 30 ◦C for 24 h. DNA extraction from yeast isolates was
carried out by the classic method [43]. 1.5 mL of yeast suspension were centrifuged for
10 min at 12,000 rpm, and the pellet was suspended in 200 µL of lysis buffer (2% Triton
X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl at pH 8, 1 mM EDTA at pH 8). The mixture
was placed at −20 ◦C for 2 min and then at 95 ◦C for 1 min. This step was repeated twice
to create a thermal shock and promote cell bursting. Next, the DNA was extracted with
phenol/chloroform. The amplification by PCR of the sequence ITS1 (TCCGTAGGTGAAC-
CTGCGG) ITS4 (TCCTCCGCTTATTGATATGC) was carried out according to the method
of White et al. [44]. The reaction was carried out in a final volume of 25 µL, containing
primers (final concentration 10 pm, each), dNTPs (200 µM final concentration), MgCl2
(1.5 mM final concentration), 10 µL 1× PCR buffer, Taq polymerase (0.5 U), pure H2O,
and extracted DNA. PCR conditions were as follows: initial denaturation at 95 ◦C for
2 min and 30 cycles of denaturation at 95 ◦C for 45 s, primer annealing at 55 ◦C for 1 min,
and extension at 72 ◦C for 1 min. A final extension was completed at 72 ◦C for 10 min.
Sanger sequencing was performed at the pastor institute (Casablanca-Morocco) using an
ABI PRISM 3130XL Genetic Analyzer, Applied Biosystems. Preliminary identifications
were performed based on sequence assembly and by searching in the NCBI ITS RefSeq
Fungi database using command line interface.

2.5. Multiple Sequence Alignment and Phylogenetic Tree

ITS sequences from all the isolates were used to perform BLASTN, and the top 5 hits
were retrieved to find close relatives to the isolates. Sequences from all isolates were
subjected to multiple sequence alignment using MUSCLE v3.8.31 with default parameters.
A phylogenetic tree was constructed using FastTree v2.1.10 with –nt –gtr parameters. The
phylogenetic tree was visualized with ggtree v3.4.0 in RStudio and R v4.2.0.

3. Results and Discussion
3.1. Distribution of Isolated Yeasts

The yeasts isolated from the gut of coprophagous “Gymnopleurus sturmi” revealed a
large load of 79 × 108 CFU/g and 65.24 × 108 CFU/g in June 2015 and 2016, respectively.
The ruminant manure contained 16.8 × 106 CFU/g and 11 × 106 CFU /g in 2015 and 2016,
respectively (Table 2). In addition, yeast biodiversity was different among the four samples.
The collection consists of 96 isolates, of which 57.29% were isolated from gut Gymnopleurus
sturmi (GGS) and 42.71% were isolated from the dung of ruminants (DR).
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Table 2. Percentage of isolates screened for cellulase activity.

Isolation Medium Sampling Period Total Counts of Yeasts (CFU/g) Number of Isolates

Isolates from GGS
2015 7.9 × 109 24

2016 6.52 × 109 31

Isolates from DR
2015 16.8 × 106 19

2016 11 × 106 22

3.2. Oxidation of Phenolic Substrates

The isolated yeasts were tested to demonstrate their degradation potential of phenolic
lignin by-product compounds (pyrogallol and catechol), essential components of the plant
cell wall. Results showed (Table 3) that 40% of the isolates from GGS and 41.5% of the
isolates from DR were able to degrade these compounds. These yeasts were isolated from
media with a high concentration of phenolic products after the degradation of plants rich in
ligninolytic products by the mammals and the assimilation of these products by the clean
microflora of the dung and the microflora of the coprophages feeding this dung [45]. Indeed,
the phenolic compounds are always liable to be degraded by the enzymes produced by
microorganisms [46–49]. Other studies have shown that fungi such as Aspergillus terreus [49]
and yeasts such as Candida tropicalis [50] have a great ability to degrade phenolic products.

Table 3. Percentage of isolates capable of degrading lignin by-products.

Isolation Medium Positive Isolates Total Number of Isolates

Isolates from GGS 22 (40%) 55

Isolates from DR 17 (41.5%) 41

3.3. Screening of Cellulolytic Isolates

One of the main objectives of this study was to determine the ability of isolated yeasts
to produce cellulase enzymes. Therefore, two different substrates (CMC and cellulose
fiber) were used for the screening of cellulolytic isolates. Only isolates that showed a
positive result in both substrates were considered cellulolytic. This has enabled us to build
a library of isolates capable of producing our enzyme of interest from which 30 isolates
(54.54%) were collected from GGS and 24 isolates (58.54%) from DR. The degradation time
of two substrates varies between isolates (Figure 1A,B). For the GGS isolates, the hydrolysis
zone of CMC varied between 6 to 25 mm, and the hydrolysis of the cellulose fiber varied
between 3 to 15 mm (Figure 1A). For the DR isolates, the zone of hydrolysis for CMC was
noted from 2 to 16 mm and 3 to 7 mm for cellulose fiber (Figure 1B). Thongekkaew and
Kongsanthia [18] showed that 45 yeast isolates, obtained from various samples (soil, tree
bark, and insect excrement), can hydrolyze cellulose.

3.4. Hydrolytic Enzymes

Yeasts have the potential to contribute to the development of biotechnological pro-
cesses with specific applications [51,52]. To characterize the different isolates biochemically,
different substrates were tested. The choice of these substrates was related to the composi-
tion of the dung [45] and the food requirement of the insect studied [53], which contains
a large number of complex substrates. The qualitative tests revealing the production of
hydrolytic enzymes in the cellulosic isolates tested made it possible to select efficient iso-
lates. Figure 2 shows that all DR isolates were capable of producing the β-glucosidase
and catalase. For GGS, 93.33% of isolates were β-glucosidase-positive and 96.67% were
catalase-positive. In addition, the hydrolysis of olive oil by the lipase was noted in 86, 67%
of the GGS isolates and 95.83% of the DR isolates. On the other hand, the considerable
production of pectinase was detected in 80% GGS isolates and 50% DR isolates. Protease
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was also more prevalent in 87% of GGS and 75% of DR isolates. In addition, 63.33% of GGS,
and 29.17% of DR isolates were positive for Inulinase. Gelatinase synthesis was detected
for many of the 56.67% GGS and 4% DR isolates. Most isolates had urease activity, of which
50% were isolated from GGS and 66.67% from DR. Tannase activity was absent in all isolates
considered in this study. The amylase activity was present only in one isolate of DR out of a
total of 24 isolates, which was 4% (Figure 2). In previous studies, (Table 4) [11,27,40,41,54],
the isolated various strains exhibited the ability to produce interesting enzymes, with
interesting technological applications (Table 4).

Figure 1. Screening of cellulase activities carried out for the strains isolated (A) from the gut of 
Gymnopleurus Sturmi (GGS), (B) and from the dung of ruminants (DR). 
Figure 1. Screening of cellulase activities carried out for the strains isolated (A) from the gut of
Gymnopleurus Sturmi (GGS), (B) and from the dung of ruminants (DR).
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Figure 2. Qualitative tests of enzymatic activities of yeasts isolated from GGS and DR 
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Figure 2. Qualitative tests of enzymatic activities of yeasts isolated from GGS and DR.

Table 4. Enzymatic activity of isolated yeast a: Isolates from GGS, b: Isolates from DR, 1: Bautista-G
et al. [54], 2: Strauss et al. [40], 3: Lilao et al. [27], 4: Romo-Sánchez et al. [11], 5: Hernandez et al. [41].

Enzyme
Current Study

1 2 3 4 5
a b

Cellulase 30 24 - 11 - 38 -

Pectinase 24 12 - 9 62 4 23

Lipase 26 23 4 - 134 - 6

β-glucosidase 28 24 10 - 142 13 -

Catalase 29 24 16 - - - 41

Inulinase 19 7 - - - - -

Urease 15 16 - - - - -

Gelatinase 17 1 - - - - -

Protease 26 18 6 10 49 - -

Amylase 0 1 - 9 - - -

Tannase 0 0 - - - - -

Number of isolates 30 24 30 216 42 83

3.5. Study of Physiological Characteristics
3.5.1. Temperature

The effect of temperature on the yeast growth showed that the growth was stable up
to a temperature of 40 ◦C in GGS isolates and 37 ◦C for the DR isolates (Figure 3). The
percentage of isolates capable of tolerating these temperatures decrease with increasing
temperature (Figure 3). Aissam et al. [55] reported an optimum temperature of 37 ◦C for
yeast strains. Babavalian et al. [56] showed that most yeasts isolated from soil cannot
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withstand a temperature above 37 ◦C, while complete inhibition of their growth is observed
at 45 ◦C.

              Figure 3. Effect of temperature on the growth of yeast isolates. 

 

                      Figure 4. Effect of ethanol on the growth of yeast isolates. 
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Figure 3. Effect of temperature on the growth of yeast isolates.

3.5.2. Exogenous Ethanol

All cellulosic isolates from DR were able to support up to 8% of ethanol and 52%
of isolates were able to grow in a 12% ethanol culture medium. However, isolates from
the GGS only supported a 5% concentration of exogenous ethanol. While increasing the
concentration of ethanol, the percentage of these isolates, which grow in the medium,
decreases (Figure 4). Arguably, the DR isolates support a higher concentration of ethanol
than GGS isolates. This type of behavior has also been observed in strains S. cerevisiae C2
and TA, Saccharomyces cerevisiae K2, Saccharomyces rosinii S1 and S2, Rhodotorula minuta S3,
and Saccharomyces exiguus K1 [57].

              Figure 3. Effect of temperature on the growth of yeast isolates. 
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Figure 4. Effect of ethanol on the growth of yeast isolates.
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3.5.3. Utilization of Carbon Sources

Figure 5 shows that the yeast isolates (GGS and DR) had a great ability to assimilate
several types of carbon sources. These results corroborate with those of Gao et al. [34], who
showed that isolated yeasts of marine origin could grow on several sources of carbon.

 

                Figure 5. The assimilation of different kinds of carbon sources by yeast strains. 
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Figure 5. The assimilation of different kinds of carbon sources by yeast strains.

3.5.4. Osmotolerance

The osmotolerance test showed that all the isolates of the digestive tract and ruminant
dung were osmotolerant and could survive a culture medium with 30% glucose and 10%
NaCl (Table 5). In 2005, Milala et al. [58] reported that the sugar tolerance was 20% for the
two strains of S. cerevisiae TA and C, 15% for S. cerevisiae MTCC 170, and 10% for the two
strains Saccharomyces rosinii S1 and S2, as well as the strain Rhodotorula minuta S3.

Table 5. Osmotolerance of isolates for glucose and NaCl.

Glucose Concentration (g/L) NaCl Concentration (g/L)

Concentration 50 100 150 200 250 300 100

Isolates from (GGS) (%) 100 100 100 100 100 100 100

Isolates from (DR) (%) 100 100 100 100 100 100 95.83

3.5.5. Effect of pH

The effect of pH shows that all isolates were able to grow over a wide range from
pH = 5 to pH = 8 (Figure 6), but from a pH equalling 9, the percentage of isolates that
could endure the medium decreased. The results showed that cellulosic isolates have
interesting technological properties for their application in the course. This species was
well-adapted to the environmental conditions that govern fermentations, such as low pH
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and high concentrations of NaCl [59]. However, in other studies on volcanic yeasts, the
optimum pH for growth for all isolates was between 3.5 and 5.5 [60].

 

 

   Figure 6. Effect of pH on growth of yeast isolates. 
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Figure 6. Effect of pH on growth of yeast isolates.

3.6. Molecular Identification

Taxonomic characterization of the 21 cellulosic isolates was carried out after morpho-
logical examination under a microscope (Figure 7). The sequence homology search was
carried out using the BLASTN algorithm on the command line using ITS RefSeq Fungi
database. The latter confirmed that the isolates studied belong to the genus Trichosporon
(Table 6). All the identified sequences of strains showed high similarity with Trichosporon
insectorum, Trichosporon faecale, and Trichosporon coremiiforme. All except L4a showed a
high similarity with Trichosporon asahii. Many of the strains showed high similarity to
Trichosporon aquatile. However, biotype DR also had high similarity with Trichosporon japon-
icum. The top hit of L30a was with Trichosporon coremiiforme with only 90.6% sequence
identity. Details of the top 5 hits are shown in Figure 8, along with a phylogenetic tree. In
order to understand the phylogenetic relationship of the strains, the sequences of the top
hits were combined with the ITS sequences of the strains to build a phylogenetic tree. It
is evident that the strains from the biotype DR are more closely related to Trichosporon sp.
(top hits of the BLAST) as compared to biotype GGS, except B5, which shares a clade with
GGS strains. All the strains were split into 4 clades, while L11C and L11a were different
from other clades (Figure 9).
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Table 6. Results of yeast identification by rDNA internal transcribed spacer (ITS).

Coded Biotope Homologous Strains Accession
Numbers

Mor-L1 GGS Trichosporon insectorum ON810624.1

Mor-L2a GGS Trichosporon insectorum ON810627.1

Mor-L3b GGS Trichosporon insectorum ON810628.1

Mor-L4a GGS Trichosporon japonicum ON810629.1

Mor-L5 GGS Trichosporon insectorum ON810630.1

Mor-L5a GGS Trichosporon insectorum ON862731.1

Mor-L11a GGS Trichosporon insectorum ON810622.1

Mor-L11 (1) GGS Trichosporon insectorum ON862728.1

Mor-L11 (2) GGS Trichosporon insectorum ON862729.1

Mor-L11C GGS Trichosporon insectorum ON810621.1

Mor-L14 GGS Trichosporon insectorum ON810623.1

Mor-L14 (1) GGS Trichosporon insectorum ON862731.1

Mor-L14 (3) GGS Trichosporon insectorum ON862732.1

Mor-L23b GGS Trichosporon insectorum ON810625.1

Mor-L23C GGS Trichosporon insectorum ON810626.1

Mor-L30a GGS Trichosporon coremiiforme ON810631.1

Mor-B13 DR Trichosporon insectorum ON810633.1

Mor-B25 DR Trichosporon insectorum ON810632.1

Mor-B13a DR Trichosporon insectorum ON862726.1

Mor-B25a DR Trichosporon insectorum ON862727.1

Mor-B5 DR Trichosporon insectorum ON862730.1 

 

Figure 8. Phylogenetic tree and top 5 BLAST hits of all the strains. Darkness of 
the color increases as the percentage identity increases. 

 

Figure 8. Phylogenetic tree and top 5 BLAST hits of all the strains. Darkness of the color increases as
the percentage identity increases.
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Figure 9. Phylogenetic tree of all the strains with their top BLAST hits. 

 

Figure 9. Phylogenetic tree of all the strains with their top BLAST hits.

4. Conclusions

Microbial resources represent natural and real assets. Their exploitation was conducted
under rigorous environmental conditions, and the exploitation of their potential was
oriented towards targeted biotechnological applications. The gut of coprophagous insects
and the dung of ruminants are abundant and culminate an important richness of the yeasts.
Purified isolates show interesting enzymatic activities. They are therefore highly desirable
biomolecules in the enzyme market, and their quantification and various biotechnological
applications are by far the most promising and could be explored in future studies.
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