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Abstract: Glucansucrase (GS) belongs to the GH70 family, which not only can synthesize exopolysac-
charides (EPSs) with different physicochemical properties through glucosyl transglycosylation (by
hydrolyzing sucrose) but can also produce oligosaccharides. Different strains produce different
GSs, which catalyze the synthesis of EPS with different glycosidic bond structures; these EPSs have
different biological functions. As an important enzymatic tool, GS has great potential in health
care medicine, biological materials, ecological protection, the food chemical industry, etc. GS is
mainly produced by lactic acid bacteria (LAB), including Leuconostoc, Streptococcus, Lactobacillus, and
Weissella species. With the elucidation of the crystal structure of GS and the advancement of genome
sequencing technology, its synthesis reaction mechanism and specific structural characteristics are
gradually becoming clear. This review summarizes the isolation, purification, physical and chemical
properties, detection methods, sources, and applications of GS in order to provide a reference for the
research and development of GS.
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1. Introduction

Polysaccharide polymers are one of the most valuable natural substances, and they
play an important role in the fields of medical devices, food chemicals, and ecological and
environmental protection [1]. Among them, the production of microbial exopolysaccharide
(EPS) has the characteristics of being unaffected by environmental factors and easier
downstream processing compared with plants, algae, fungi, and petroleum-based EPSs,
which makes it shine in the field of production [2]. Bacterial enzymes involved in the
production of EPS from sucrose, termed glucansucrases (GSs), are extracellular enzymes
that can be assisted by branched sucrases (BRSs). GSs belong to the glycoside hydrolase
GH70, which are very efficient transglycosylases and do not require expensive nucleotide-
activated sugars (NDP-sugars) [3–5].

GSs are additionally named glucosyltransferases (GTFs), which catalyze the synthesis
of EPSs and oligosaccharides using the glucose unit from the sucrose donor. GSs are
applied in the fields of feed, food, medicine, and other engineering fields because of their
outstanding physicochemical properties [6,7]. Bacterial GSs are mainly produced by lac-
tic acid bacteria (LAB), a group of Gram-positive bacteria like Leuconostoc, Streptococcus,
Lactobacillus, and Weissella species [8–10]. According to the glycosidic linkages present in
the polymer, these enzymes are classified as (i) the synthesis of dextran by dextransucrases,
consisting mainly of α-1,6 linkage and some α-1,2, α-1,3 and α-1,6 branches, (ii) the synthe-
sis of mutan α-1,3, by mutansucrases (iii) forming alternan via alternansucrase, composed
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of alternating α-1,6 and α-1,3 glucosidic linkages, and (iv) reuteransucrase synthesizing
reuteran containing α-1,4 and α-1,6 linkages [5]. These enzymes additionally catalyze the
formation of oligosaccharide and glycoconjugate products in the presence of sucrose and
nonsucrose receptor substrates [9,11,12].

EPSs and oligosaccharides are being extensively studied for their prospects toward
probiotics by stimulating the growth of probiotic strains or beneficial endogenous strains
from the gastrointestinal tract [13–15]. Although these investigations have touched on a
few imperative issues, such as the approximate structure of GS, uncovering the relationship
between the structure and activity of GS and its component of activity are still issues
to be unraveled.

2. Structure of the GS

Sequence similarity analysis showed that GSs belonged to the GH70 family of gly-
coside hydrolases, with an average molecular weight of about 160 kDa and an optimum
temperature and pH of 30 ◦C and 5.0–6.0, respectively [16,17]. GSs have been found from
Lactobacillus kunkeei H3 and H25 have a mass of 300 kDa [18]. Due to the relatively large
molecular weight of enzymes, and structural analysis being very difficult, only the crystal
structures of four GSs have been resolved. However, with the advent of the cryoelectron
microscopy technology revolution, it is possible to resolve protein structure using a high res-
olution, which will help to promote the 3D structure exploration and characterization of GS.

Amino acid sequence analysis showed that the GSs from LAB share a frequent struc-
ture and are composed of four different domains: (i) a sign peptide, followed by using
(ii) an extraordinarily variable stretch, (iii) a quite conserved catalytic or sucrose-binding
domain and (iv) a C-terminal glucan binding domain composed of a series of tandem
repeats [16,19]. Currently, crystallographic analysis of the 3D structure of Lactobacillus
GSs showed that they contain a common domain organization. A truncated enzyme was
used for crystallization [5]. With the elucidation of the 3D structure of GTF180-∆N, the
hypothesis of the ring arrangement was confirmed [20,21]. Different from the previous
prediction of the primary structure of the enzyme, the three-dimensional structure of the
truncated GSs formed five domains (domain A, domain B, domain C, domain IV, and
domain V) and are arranged as C-A-B-IV-V lines (Figure 1). Except for domain C, these
four domains are composed of two discontinuous polypeptide chains at the N-terminal
and C-terminal ends. Among them, A, B, and C are catalytic cores, while IV and V are
unique to GH70 GS [5]. The active site of the GSs is located at the interface of domain A
and domain B [22], providing residues for the active site gap and their possible role in
determining the ligation specificity of the product is discussed.

Domain A consists of (β/α)8 barrels and contains a catalytic site with the catalytic
residue at the bottom of the domain. A crystal structure analysis of the GTF180-N mutant
D1025N bound to sucrose [23,24] confirmed that these three residues constitute the catalytic
site of GS. Domain B can form a Ca2+ binding site in domain A, which are used to form
the binding site of substrate and receptor [5]. Domain C is located at the U-shaped bottom
end of GS. It is the only domain in GH70 GS enzymes that is formed by a continuous
polypeptide segment, but its function is still unclear. IV and V are additional domains; the
structure of domain IV is different from that of any other known protein and only occurs in
GH70 enzymes (Figure 1) [5,24].

Domain V is adjacent to domain IV. It contains several repeats and has been shown
to be involved in glucan binding [13] and is a glucan-binding domain that is involved, to
a certain extent, in glucan extension and enzymatic processing, providing a high-affinity
anchoring platform for the synthesis of high-molecular-weight dextran [25,26]. There may
well be subtle interactions between the V domain and the catalytic domain. It can help
capture the polymer chain and keep it near the active site to facilitate the extension or
branching of the sugar chain. Partial or total truncation of domain V affects the bind-
ing capacity of glucan and also changes the size of the synthesized polymer. Structural
analysis of domain V revealed the presence of a consensus β-solenoid fold with multiple
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copies [27]. In the crystal structure, it has a variety of conformations, mainly divided
into two types, one is the extension to the active catalytic center, and the other is the
extension to the outside of the conformation in Leuconostoc mesenteroides NRRL B-1355-
alternating α-1,3/1,6-glucosyltransferase (Asr). Its domain V was found to extend to
the catalytic core in Ln. reuteri GTF-180N. Its domain V was found to extend out of the
conformation (Figure 1) [5,27].
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Figure 1. Schematic diagram of the 3D structure of GS. (a) Schematic representation of the U-shape
fold formed by the various domains of GS. (b) Schematic diagram of the 3D structure of Ln. reuteri
GTF-180N (PDB: 3HZ3) and sucrose binding site. Sucrose molecules are shown in red, residues in
domain A are shown in green carbon, and residues in domain B are shown in yellow at the bottom
right. (c) Schematic diagram of the 3D structure of Ln. mesenteroides NRRL B-1355 Asr (PDB: 6HVG)
and Ca2+ binding sites. The green circles represent Ca2+.

The exact role of domain IV is unclear. It is speculated that domain IV acts as a
hinge to promote the growth of glucan chains by directing the glucan chains bound to
domain V towards or away from the catalytic site. The N-terminus of GS contains a signal
peptide (36 to 40 amino acids) for its secretion [5,28]. The amino acid fragment between
the signal peptide and the GS core region is highly variable in content and dimension
(200 to 700 amino acids) [28]. The function of the N-terminal domain remains unknown.

3. Catalytic Mechanism of GS

Both the catalytic mechanism and structure of GH70 are closely related to the GH13
and GH77 families [24]. The newly discovered GH70 subfamily GtfB, GtfC, and GtfD are
inactive against sucrose but can catalyze starch and maltodextrin to α-glucan [24]. The
common characteristic of GH family enzymes is that they also use a catalytic (β/α)8 barrel
domain to break down the α-glycosidic bonds between glucose and other glucose or fruc-
tose [29,30]. Robyt found there are two active sites; according to the GS catalytic reaction,
one is composed of covalent β-glucose-enzyme intermediates under oxygen-carbon ion-like
transformation conditions [5,31]. The β-glucose-enzyme intermediate is catalyzed through
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the a-retaining double displacement reaction, which involves three important residues: a
nucleophile, an acid-base catalyst, and a transition state stabilizer (Figure 2). Aspartic acid,
which first acts as a nucleophile, attacks the ectopic C1 carbon of the sucrose–glucose unit.
Glutamate acts as an acid-base catalyst to transfer protons to fructose and release fructose.
The transition state stabilizes the stable residue dimension and transitions to a covalent
β-glucose-enzyme. Finally, the covalent β-glucosyl-enzyme is formed from the transition
state stabilizer (Figure 2). The other is composed of chain and enzyme intermediates [30].
The C1 position in the later intermediate attacks the C6 position of the glucosyl group to
form a glycosidic bond, thereby increasing the length [31]. Although the determinants of
the size distribution of GS products have been broadly studied before, many are still un-
known [26,32–36]. The N-terminal variable region and C-terminal glucan-binding domain
have been indicated as playing a role in product size distribution [26].
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Figure 2. General reaction mechanism for GH70 glucansucrases; D is the nucleophilic asparte residue;
E is the general acid/base residue [27].

The catalytic mechanism of GS allows for the hydrolysis of sucrose to obtain a glucosyl-
enzyme intermediate, and this mechanism is based on a detailed structural analysis of
Bacillus circulans 251 CGTase [37]. Due to the different receptors, GS appears to synthesize
different products: (i) through hydrolysis, water acts as a receptor and hydrolyses to glucose;
(ii) through transglycosylation, the glucosyl moiety is converted to an accepting sugar after
the fructose is discharged [27]. When substrate-only sucrose exists, GS hydrolyses sucrose
to dextran; furthermore, due to the different amino acid sequences of the GS active center,
the glycosidic bond composition and branching structure of the produced glucan is also
different. Most of the synthesized glucans are composed of one or two types of glycosidic
bonds, in which the composition ratio, branching degree, and branch length are also
random, which depends on the amino acid sequences of the GS active center [38,39].
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4. Isolation and Purification of GS

GS is an extracellular enzyme for which its structure and catalytic mechanism have
not been clarified. In order to understand the structure and function of GS, it is necessary
to isolate and purify GS [17]. Various GS purification methods, including salting-out and
solvents [40], phase partition [41–43], polyethylene glycol fractioning [41,43,44], chromatog-
raphy column [45–47], ultrafiltration [48], and combined processes such as sugaring and
gel permeation chromatography [49,50].

Salting out, normally as ammonium sulfate precipitation, is when the ionic strength
in a solution and the solubility of different proteins are different; high concentrations
of salt ions compete with proteins for water molecules in protein solutions, therefore
destroying the hydrated membrane on the surface of the protein, reducing its solubility, and
allowing it to precipitate out of the solution. Due to different protein solubility, different
concentrations of salt solution can be used to precipitate different proteins. Normally,
people use ammonium sulfate precipitation as the first step for purification because of its
high solubility. Robyt [51] thought ammonium sulfate would hurt the enzyme activity of
GS as the concentration rose, especially to more than 80%.

At present, a variety of techniques have been successfully used for the isolation and
purification of Ln. mesenteroides GS, and ultrafiltration and gel filtration chromatography
are considered to be the best way to purify GS due to the resulting high recovery of enzyme
activity. Miao [52] used freeze-drying ion-exchange chromatography and gel filtration
methods to purify the enzyme. The crude enzyme solution was concentrated by freeze-
drying and loaded into a DEAE-Sepharose FF 16/10 anion exchange column. Further
purification was performed using Sepharose CL-6B gel filtration chromatography. The
GS was purified 8.6-fold, and its specific activity was 1.3 IU/mg. Polyethylene glycol
(PEG) is an uncharged linear macromolecular polymer, and its strong dehydration ability
can destroy the hydration layer on the surface of protein molecules and cause protein
precipitation. This method is cheap and easy to perform but it is easily affected by cen-
trifugation temperature and pH, so it is usually used in combination with other methods.
Song [16] precipitated the crude GS with 10% (v/v) PEG 2000 and then loaded it into a
HiTrap Q FF anion exchange column and Sepharose CL-6B column. The purified fractions
were dialyzed, concentrated, and collected, resulting in a specific activity of 1.4 U/mg
protein, with 13.2-fold purification. Nigam et al. [53] compared the phase separation and
purification effect of polyethylene glycol PEG 6000 and PEG 400 on dextransucrase, and
the results showed that the tertiary phase separation effect of PEG 6000 was better; the final
recovery rate was 84%, and the specific activity of the enzyme after purification.

The yield from GS separation by traditional separation technology is low, and its
catalytic properties have not been thoroughly analyzed. In recent years, the cloning and
expression of GS by means of genetic engineering is expected to overcome the shortcomings
of low enzyme yield and expand the industrial application of the enzyme [54,55]. Kim
et al. [56]. constructed Escherichia coli BL21 (DE3) carrying the Ln. lactis EG001 GS gene.
The crude enzyme was mixed with Ni-NTA agarose, and the mixture was loaded onto a
chromatography column. The proteins were eluted, and the specific activity of the purified
enzyme showed an increase of over 2.3-fold with respect to the crude enzyme. Amari [54]
et al. constructed engineered bacteria that could express the dextransucrase gene of
W. confusa C39-2. The recombinant enzyme was purified using an affinity chromatography
protocol, and the activity was 4-fold higher. At present, GS derived from a variety of LAB
has been isolated and purified, and its structure and properties have been continuously
analyzed (Table 1).
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Table 1. Information on GS from different strains and their related properties in recent years was
analyzed and collated using the CAZy database.

Enzyme MASS Organism Genebank Length Reference

Gtf1624 183 kDa Latilactobacillus curvatus TMW 1.624 CCK33643.1 1697 aa [57]
DSR-F 170 kDa Ln. citreum B/110-1-2 ACY92456.2 1527 aa [58]
LcDS 165 kDa Ln. citreum HJ-P4 BAF96719.1 1477 aa [59]
DexT 167 kDa Ln citreum KM20 ACA83218.1 1495 aa [60]

DSR-A 145 kDa Ln. citreum NRRL B-1299 CDX67012.1 1290 aa [61]
DSR-B 168 kDa Ln. citreum NRRL B-1299 AAB95453.1 1508 aa [62]
DSR-E 313 kDa Ln. citreum NRRL B-1299 CDX66820.1 2836 aa [63]

DSR-DP - Ln. citreum NRRL B-1299 CDX66641.1 1278 aa [63]
DSR-M 144 kDa Ln. citreum NRRL B-1299 CDX66895.1 1293 aa [61]
DexYG 170 kDa Ln. mesenteroides 0326 ABC75033.1 1527 aa [64]

DsrBCB4 168 kDa Ln. mesenteroides B-1299CB4 ABF85832.1 1505 aa [65]
DsrC 165 kDa Ln. mesenteroides B-1355 CAB76565.1 1477 aa [66]

Dsrb74 169 kDa Ln. mesenteroides B-742CB AAG38021.1 1508 aa [67]
DsrP 161 kDa Ln. mesenteroides IBT-PQ AAS79426.1 1454 aa [68]
DsrN 169 kDa Ln. mesenteroides KIBGE-IB-22 AFP53921.1 1527 aa [69]
DsrX 169 kDa Ln. mesenteroides L0309 AAQ98615.2 1522 aa [70]
DsrD 169 kDa Ln. mesenteroides LCC4 AAG61158.1 1527 aa [50]
DSR-S 169 kDa Ln. mesenteroides NRRL B-512F AAD10952.1 1527 aa [71]
DSR-T 110 kDa Ln. mesenteroides NRRL B-512F BAA90527.1 1016 aa [72]

Gtf1971 178 kDa Ligilactobacillus animalis TMW 1.971 CCK33644.1 1585 aa [57]
Gtf106A 199 kDa L. reuteri TMW 1.106 ABP88726.1 1782 aa [57]
GTF-S 151 kDa Streptococcus downei MFE 28 AAA26898.1 1365 aa [73]
GTF-U 176 kDa Streptococcus sobrinus BAA14241.1 1592 aa [74]
GTF-B 166 kDa Streptococcus mutans GS 5 AAA88588.1 1476 aa [75]
GTF-D 163 kDa S. mutans GS 5 AAA26895.1 1462 aa [76]
DsrK39 158 kDa Weissella cibaria LBAE-K39 ADB43097.3 1445 aa [77]

WcCab3-DSR 154 kDa Weissella confusa Cab3 AKE50934.1 1401 aa [78]
DSR-C39-2 155 kDa W. confusa LBAE C39-2 CCF30682.1 1412 aa [54]

DSR 156 kDa W. confusa VTT E-90392 AHU88292.1 1418 aa [79]
LcALT 229 kDa Ln. citreum ABK-1 AIM52834.1 2057 aa [80]

GtfB-SK2 - Ln. citreum SK24.002 - - [81]
ASR 229 kDa Ln. mesenteroides NRRL B-1355 CAB65910.2 2057 aa [82]
GtfO 197 kDa L. reuteri ATCC 55730 AAY86923.1 1781 aa [83]

Gtf-SK3 - L. reuteri SK24.003 - - [84]
GtfML1 - L. reuteri ML1 - - [34]

DSRI - Ln. mesenteroides NRRL B-1118 - - [85]
GtfB - S. mutans GS5 - - [86]
GtfC - S. mutans GS5 - - [87]

GTF-Kg15 174 kDa Latilactobacillus sakei KG15 AAU08011.1 1595 aa [34]
GTF-33 172 kDa Lentilactobacillus parabuchneri 33 AAU08006.1 1561 aa [34]

- 164 kDa Leuconostoc lactis EG001 ACT20911.1 1500 aa [56]
GTF-Kg3 161 kDa Limosilactobacillus fermentum KG3 AAU08008.1 1463 aa [34]

GtfB 179 kDa L. f ermentum NCC2970 AOR73699.1 1593 aa [88]
GtfB 179 kDa L. reuteri 121 AAU08014.2 1619 aa [89]

GtfML1 196 kDa L. reuteri ML1 AAU08004.1 1772 aa [34]
GtfML4 180 kDa L. reuteri ML1 AAU08003.2 1620 aa [90]

GtfB 196 kDa L. reuteri NCC2613 ASA47879.1 1662 aa [91]
GtfC 163 kDa S. mutans BAA26114.1 1455 aa [89]

DsrwC 162 kDa W. cibaria CMU ACK38203.1 1472 aa [92]
GtfD 87 kDa Azotobacter chroococcum NCIMB 8003 AJE22990.1 780 aa [93]
GtfC 99 kDa Exiguobacterium sibiricum 255-15 ACB62096.1 893 aa [94]

5. Physiological and Biochemical Properties of GS

Many factors can affect the catalytic activity of GS, including pH, temperature, and
some organic solvents and metal ions. According to Kralj [34], the maximum GS activity
from L. reuteri was gained at a pH of 4.0–5.5, which is comparable with most papers.
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Miao [52] found that GS from L. reuteri SK24.003 retained high activity at a low pH,
showing better acid-resistance. However, a pH value that is too high or too low is still not
conducive to the synthesis of GS. Previous studies have shown that GS has the highest
purity and the most stable activity at pH 7 [95], while a low pH can significantly reduce
enzyme synthesis. The analysis of the GS produced by Ln. mesenteroides DRP2-19 and
isolated from sauerkraut showed that the optimum pH for GS was 5.56, and the synthesis
of GS was severely affected at pH < 4.5 or >7, which corroborated the previous point [96].
Because of the different sources and structures of GSs, the optimum reaction temperature
for each GS is different. Generally, the optimum range is from 30–40 °C in culture. When
the temperature exceeds 45 °C, the enzyme activity begins to decrease, and when it exceeds
50 °C, the enzyme loss is more obvious. Most double-charged ions (Mg2+, Mn2+, Ni2+,
Co2+, Ca2+, Fe2+, and Zn2+) activated enzyme activity, suggesting it was a metal-activated
enzyme [52]. GS has a calcium ion activation site, which can increase enzyme activity. It is
concluded that calcium ion can enhance the activity of dextransucrase. The stability of the
entire edifice is enhanced by calcium coordination, which likely reinforces the interaction
between the two domains [97]. Qader et al. [98] found that when the concentration of CaCl2
was 0.005%, the enzyme activity increased to 108.26 DSU/mL/h, which was 2.03 times
higher than that of the control group. When the content of CaCl2 was higher than 0.005%,
enzyme activity decreased gradually. Some reports found that when Ca2+ is within a certain
concentration range, Ca2+ will preferentially bind to the activation site on the enzyme, and
the activation effect is stronger than the inhibitory effect. Furthermore, Hg+, Zn2+, Cu2+,
Pb2+, and Fe3+ had a strong inhibitory effect on enzyme activity, which was the same as
in previous reports; when copper ions were present, there was no transferase activity [99].
The activity and stability of GS in the presence of organic solvents were related to the
solvent concentration and its nature. Chemical inhibitors indicate that the function of
amino acid residues is located at the GS-active site [16]. Most chemical inhibitors had an
inhibition effect on GS, like sodium dodecyl sulfate (SDS), ethylene diamine, tetraacetic
acid (EDTA), and β-Mercaptoethanol (β-ME) [25,100]. Other chemical reagents, including
butanol, n-hexane, chloroform, calcium ammonium nitrate (CAN), and ethyl acetate, also
inhibited the activity of GS with increasing concentrations, whereas glycerol, formaldehyde,
and dimethyl sulfoxide (DMSO) enhanced the activity of GS to a certain extent [101].

6. EPS Synthesis by GS

Glucose can not only form EPS in a targeted manner but can also increase the pro-
duction of EPS and reduce the production of other products, which has become a research
focus in the food industry. Disparate GSs generate various glucans, which contain diverse
structures and dissimilar linkage compositions, branching degrees, and size; meanwhile, it
has vast applications [102,103]. There are four types of glucan (the enzyme produced), de-
pending on the main glucosidic bonds in their glucan, including dextran, mutan, alternan,
and reuteran (Figure 3) [13]. GS was discovered by Pasteur from microbial bacteria because
of its positive spinning power and a comparable extracellular enzyme called dextransucrase.
Dextran is generally composed of α-1,6 and α-1,3 glycosidic bonds based on specific dex-
transucrase [102,104]. As mentioned early, the majority of dextran in nature is synthesized
from sucrose by dextransucrase, secreted mainly by LAB, like Steptococcus, Leuconostoc and
Lactobacillus [7,105]. Guggenheim [106] isolated GTF from S. mutants OMZ176, which can
synthesize dextran linked by α-1,3 glucosidic bonds. The corresponding GS is consequently
named mutansucrase. Streptococci is the main source for producing the mutant. In order
to figure out dextran and alternan, due to their similarity in linkages, Côté and Robyt
named an α-glucan polymer as alternan, which also contained α-1,3 and α-1,6 glucosidic
linkages [100]. The corresponding GS is named alternansucrase. Alternating α-1,6 and
α-1,3 bonds are responsible for the polysaccharide’s resistance to the enzymatic hydrolysis
of endoglucanase, and this is considered to be the determinant of its unique physical
properties [100]. A new type of glucan was found, which mainly involves the α-1,4 bonds
and α-1,6 linkages from L. reuteri 121, one of genus of LAB; it was named reuteran, and its
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corresponding enzyme is called reuteransucrase [7]. There are large alternating α-1,4 and
α-1,6 linkages with no consecutive α-1,6 bonds [36,107]. GS catalyzes the formation of
sucrose into EPSs; natural GS has a low yield, and its catalytic properties have not been
fully analyzed, which has brought difficulties to the industrial application of EPS.
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Previous studies have demonstrated that GS can synthesize high-molecular-weight
polysaccharides from sucrose as a substrate. Kajala [79] synthesized dextran in vitro
using partially purified GS under the conditions of 100 mL of 20 mM Na-acetate, pH
5.4, containing 2 mM CaCl2, and 146 mM sucrose at 35 ◦C for 24 h. Following overnight
incubation, the glucan produced was precipitated with ethanol; it was freeze-dried and
subjected to nuclear magnetic resonance spectroscopy (NMR) analysis [108]. Miao’s report
stated that the glucan preparation was incubated at pH 5.2 and 35 ◦C for 0–48 h with
100 mg/mL sucrose [52]. The 1,6-,1,4-α-D-glucan polymer they obtained was synthesized
in vitro from sucrose by GS and had a molecular weight of 2.5 × 107 g/mol. Wang
incubating 100 g/L sucrose with wild-type and mutant dextransucrase (2.0 U/mL) in
a calcium acetate buffer (50 mM, pH 5.4) at 25 ◦C for 24 h in a water bath to produce
dextran [109]. Polymers were also synthesized by incubating 1 U/mL of GS in a 20 mmol
sodium acetate buffer (pH 5.4) containing 100 g/L of sucrose, 0.05 g/L of CaCl2, and
1 g/L of sodium azide at 30 ◦C for 48 h [18]. Therefore, using the properties of GS to
synthesize EPSs with different structures in vitro and increase the yield of the EPSs not
only makes it possible to change the EPS (in a certain direction), but also helps to analyze
the structure–activity relationship of EPS.

7. Acceptor Reaction

GS mainly catalyzes the production of different kinds of glucans, but when there are
acceptor sugars in the system, this triggers the acceptor reaction to transfer part of the su-
crose to other acceptor sugars, producing different types of glycosidic bonds and degrees of
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polymerization of oligosaccharides. There are many kinds of glucan receptors, mainly mal-
tose, mannose, lactose, cellobiose, raffinose, catechol, ronobiose, melibiose, etc. [110–112]
(Figure 4). These properties are exploited to produce functional oligosaccharides, in par-
ticular, isomalto-oligosaccharides [113], oligoalternans (oligosaccharides with alternating
α-1,6 and α-1,3 linkages) [6,114–116], oligoreuterans with α-1,6, and α-1,4 linkages or
α-1,2 branched gluco-oligosaccharides [8,9,11,12]. Two reactions are catalyzed by GSs,
depending on the nature of the acceptor: (i) hydrolysis: in which water is used as acceptor,
and (ii) glucosyl transfer (transferase). The latter reaction can be divided into (a) polymer-
ization, in which the growing glucan chain is used as acceptor, and (b) oligosaccharide
synthesis, in which oligosaccharides (e.g., maltose, isomaltose) are used as an acceptor [34].
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The range of glucans and oligosaccharides produced by the GS present in Lactobacilli
may potentially act as prebiotics by stimulating the growth of probiotic strains or beneficial
endogenic strains of the gastrointestinal tract. Because the receptor reaction of the enzyme
can form a prebiotic, the concept of prebiotics is gaining wider realization in the practice of
producing healthy foods [117]. Natural and modified glucans also hold great potential in
biotechnology, as well as in food and health-related applications, particularly because of
their potential prebiotic properties. For example, glucose oligosaccharides containing more
α-1,2- or α-1,3-linked glucose residues are thought to be able to induce a broad spectrum
of glycolytic enzymes in probiotic bacteria without increasing gas production [117]. The
GS contains two catalytic domains and is the second of this type reported to perform
an efficient synthesis of branched-chain oligosaccharides with prebiotic potential. These
oligosaccharides produced by glycosylation have excellent physiological properties, which
gives them a positive role in industries such as food, feed, cosmetics and pharmaceuticals,
and business (Figure 5). Some studies have also revealed the potential of certain oligosac-
charides as prebiotics. Because of their different kinds of receptors, oligosaccharides with
different oligosaccharide components can be produced. Therefore, it has become a hot
issue to produce different kinds of oligosaccharides through receptor reactions to serve
various fields of life.
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7.1. Acceptor Reaction with Maltose

The type of glucosidic linkage formed in the product depends on the acceptor sub-
strate and the specificity of the enzyme, and maltose is the most effective and studied
of the acceptors, which produces isomalto-oligosaccharides (IMOs) [76]. Robyt and Ek-
lund [118], in 1983, found that when maltose was an acceptor molecule, the GSs catalyzed
a homologous series of IMOs composed mainly by consecutive α-1,6 bonds. Ispirli [108]
used different sucrose concentrations together with maltose in the reaction mixture to test
the acceptor reaction at different time intervals. The results showed that the GTFA-∆N was
useful in the production of different oligosaccharides when using sucrose as the donor and
maltose as the acceptor sugar. According to the acceptor reaction, IMO was synthesized
by using GS as the catalyzed acceptor and maltose as an acceptor molecule [104]. Then,
the purified fractions were analyzed and identified by thin-layer chromatography (TLC),
a liquid chromatograph mass Spectrometer (LC/MS) system, high-performance liquid
chromatography (HPLC), and other methods.

7.2. Acceptor Reaction with Mannose

Mannose can be used as a clinical glyconutrient and is widely distributed in body
fluids and tissues, and is also involved in immune regulation. It has properties such as being
anti-inflammatory, antitumor, anti-infection, and helping to heal wounds [119,120]. In order
to demonstrate the potential of GS to produce functional oligosaccharides, İspirli [112]
produced mannose-containing oligosaccharides in an acceptor reaction with sucrose and
mannose as the donor and acceptor sugars using the glucanase GTFA-DNE81. İspirli added
0.4 mg/mL sucrose and 0.1 mg/mL mannose (as donor sugar and acceptor sugar) to a
20 mM sodium acetate buffer containing 1 mM CaCl2 at pH 5.2 [112]. The oligosaccharides
containing mannose were obtained by thin-layer chromatography and ESI-MS/MS analysis.
The presence of the (1→6) Glc and (1→3) Glc units in the oligosaccharide was determined
by NMR analysis. Cytokine induction was produced in terms of IL-4, IL-10, IL-12, and
TNF-α cytokines tested by the addition of HT-29 colon cell lines in vitro [112]. This study
revealed that the immune mannose oligosaccharides had a regulating effect. The mannose-
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containing oligosaccharides have a prebiotic effect on the tested probiotics. It was shown
that the oligosaccharides generated by the receptor reaction can be widely used in the fields
of food and medicine.

7.3. Acceptor Reaction with Lactose

Different kinds of glucosucrases and the receptor responses of acceptor sugars play
an important role in the production of functional oligosaccharides. Lactose is also a
commonly used acceptor sugar for GS, and GSs use sucrose and lactose as the donor and
acceptor sugars to synthesize lactose derivative hetero-oligosaccharides [3,117]. Using
GS GTFA-DNE81 and using sucrose and lactose as the donor and acceptor sugars, oligo-
oligosaccharides containing whey components were produced. NMR and LC-MS analysis
showed that they contained α-1,2, α-1,3, and α-1,4 units up to DP 7 in length, confirming
that lactose is a good receptor for GS [111]. In order to confirm the prebiotic properties
of the receptor product, İspirli used the receptor product as the carbon source; there was
no growth of pathogenic bacteria, indicating that it contains a certain prebiotic function.
The excellent physicochemical properties of lactose-derivative iso-oligosaccharides were
revealed, which can be used as functional oligosaccharides for mass production [111].
It can be seen that the receptor reaction mechanism of GS can be used to synthesize
oligosaccharides with different functional properties, and these oligosaccharides usually
contain various special properties, including prebiotic properties and immune regulation,
and are widely used in food and medicine. In the future, we should continue to explore
the receptor responses of different GSs to different polysaccharides so as to characterize
the physicochemical properties of the receptor products and then optimize the reaction
conditions to serve the fields of food and chemical industry [121].

8. Analysis of EPS

EPSs have much diversity in composition due to the different origins of various
strains. They consist of glucans, dextran, mutan, reteran, alternan, galactans, and fructans.
The structure of EPS affects its physiological and biochemical properties and technical
applications, so the properties of EPS and its microstructure, including molecular weight,
monosaccharide composition, functional group analysis, sugar chain structure, glycosidic
bond type, etc., have been widely studied to determine or characterize EPS-related functions
and applications. EPS containing different structural properties exhibited distinct functional
and physicochemical properties. EPS containing specific groups will have specific functions,
such as the presence of uronic acid, sulfate groups, glucose, and β-glycosidic bonds, which
may increase the anticancer effect of EPS [122,123]. Comprehensive analysis of the structure-
activity relationship of EPS is a hot research topic at present. The structure of EPS cannot be
thoroughly characterized by chemical methods. It usually needs to combine spectroscopy to
thoroughly analyze the structure of EPS, usually including ultraviolet spectroscopy, infrared
spectroscopy, and NMR spectroscopy. UV can detect whether the polysaccharide contains
proteins, peptides, and nucleic acids. The structure of EPS and the type of glycosidic bond
can be determined by infrared spectroscopy. The commonly used methods for analyzing
EPS structure are shown in Figure 6.

8.1. Determination of Monosaccharide Composition in EPS

Monosaccharide analysis can determine carbohydrate content and verify the purity
of the sample, including the configuration (D or L) of monosaccharide residues, their
linking pattern, etc. Gas chromatography (GC) is suitable for the analysis and detection of
volatile substances, but the high boiling point of monosaccharides does not have volatil-
ity, so volatile substances need to be generated first. Usually, trifluoroacetic acid is used
for hydrolysis, reduction, and acetylation to obtain volatile monosaccharide and then for
monosaccharide composition analysis. Li [122] studied the monosaccharide composition
of the EPS from Streptococcus thermophilus 05-34 via gas chromatography-mass spectrom-
etry (GC-MS). Dhanya [124] performed a monosaccharide analysis of EPS (EPS-DR3A)
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in marine bacterium using GC-MS, and the fragment pattern obtained in the TIC indicated
the presence of monosaccharide derivatives. Gupta et al. used GC-MS to analyze the
monosaccharide components of Cupriavidus sp. ISTL7 EPS and the results showed that EPS
was a hybrid polymer composed of neutral sugars [125]. Compared with GC, HPLC does
not require the derivatization step, which saves time on sample preparation. However,
HPLC separates molecules based on their charge and polarity. Bejar [126] used an HPLC
method to analyze the monosaccharide composition in an ion-exclusion ORH-801 column,
which showed the resulting polymer had a dextran-like structure with predominant α-1,6
linkages. However, many monosaccharides have similar polarity or structure, and this
method reduces the chromatographic resolution, resulting in inaccurate analysis when
processing complex mixtures, so HPLC is often used in conjunction with GC-MS. Moreover,
high-performance anion exchange chromatography (HPAEC) has also made an impor-
tant contribution to monosaccharide analysis, which provides high-resolution analysis
of the most common monosaccharides without the need for a derivatization step. Com-
plete sucrose consumption and oligosaccharide formation can be analyzed by thin-layer
chromatography (TLC) [108]. Ispirli’s result [107] showed that sucrose and glucose were
completely depleted by TCL data, and the HPLC method could be used for further analysis,
provided that the relative levels of different oligosaccharides in the mixture are checked.
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8.2. Determination of Functional Groups in EPS

EPS has a variety of branch structures and functional groups, so EPS has a lot of
biological characteristics and functions. It is of great significance to analyze the structure
of EPS. Fourier transform infrared spectroscopy (FT-IR) has emerged as the most effective
tool for monitoring structural changes in biopolymers. The peaks at different positions
indicate that EPSs have different structures. The broad peak between 3032–3610 cm−1,
corresponding to the hydroxyl groups of the polysaccharide, indicates that the polymer
is a polysaccharide [127]. The absorption peak at 1153.27 cm−1 is the C-O-C stretching
vibration, which is a specific signal of carbohydrates [128]. If there is a specific absorption
peak of the α-glycosidic bond at 846 cm−1, this proves that glucan is α-polysaccharide.
FT-IR spectroscopy can preliminarily prove the existence of sulfate, phosphate, uronic acid,
mannose, protein, α or β configuration, pyranose, or furanose in EPSs [129]. Tyagi [130]
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confirmed via FT-IR that EPS is produced by Parapoda ISTM3, containing aliphatic groups,
amine groups, uronic acid, and sugar groups [130].

8.3. Determination of Morphology in EPS

Scanning electron microscopy (SEM) can study the microstructure and surface topogra-
phy of the copolymers, which helps to understand their common physical properties [128].
DU et al. used SEM to analyze the structure of dextran produced by W. confuse H2 under
different acceleration voltages (2.0 and 3.0 kV). The results showed a smooth surface at
2000×, as well as its branched structure, revealing the ability of glucan to improve the
surface structure of food and the rheological properties of food [97]. In addition, SEM
analysis of EPS with Ln curvatus SJTUF 62116 showed that it had an irregular, smooth
surface structure. Indicating that EPS-1 was a potential candidate to form a plasticized film
and hydrated polymer consistent matrix [131].

An atomic force microscope (AFM) is a very useful tool to study and further under-
stand their physical properties, 3D structure, and dynamics. AFM analysis of the structures
of EPS extracted from LAB-induced gels of soy protein isolates revealed that the EPSs
had rough and uneven surfaces with spider web-like structures, suggesting that EPS has
potential as a biological thickening agent and stabilizer and has a strong water-holding
capacity [105]. In addition to this, AFM can also show the interaction of EPS with other
molecules [132]. The structural analysis of EPS produced by L. curvatus SJTUF 62116 using
AFM images indicated that there may be interactions between EPS molecules and water
molecules, providing hydrogen binding sites for water molecules. It is a potential stabilizer
for the food and cosmetic industries [131].

SEM and atomic AFM are the most commonly used surface analysis methods. How-
ever, the working area of AFM is very difficult to select. The working area is very limited, so
it is difficult to scan the surface of large samples. At present, researchers combine SEM with
AFM, and use the nanoscale resolution and large-scale search ability of SEM to find and
lock the target area for AFM research (as quickly as possible), which can greatly improve
the efficiency of the AFM. The AFM and SEM are complementary to each other in micro-
analysis, which can continuously expand human vision, promote the better exploration of
the micro world, and promote the progress of human science.

8.4. Determination of Structure in EPS

Methylation can determine the type and position of glycosidic bonds in monosac-
charide analysis, thereby determining the structure of EPS. The first step is to convert
the free hydroxyl groups of various monosaccharide residues in the polysaccharide into
methoxy groups, followed by acid hydrolysis to various methylated monosaccharides.
Then, combining GC and GC-MS to analyze the type and quantity of the methylated
derivatives. The characteristic peaks were identified and analyzed, the connection mode of
the glycosidic bonds was inferred, and the qualitative and quantitative analysis of the con-
nection mode of the monosaccharide residues was obtained. For the methylation analysis
of special polysaccharide and oligosaccharide samples, such as polysaccharides containing
uronic acid, the connection mode of the uronic acid residues can be judged by comparing
the methylation results before and after the reduction of the carboxyl groups [132,133].
Gerwig [134] methylation analysis result showed the presence of terminal Glcp and 2,3-di-
O-substituted Glcp in the molar ratio of 3:1 in EPS. Methylation determination is a very
important method to analyze the structure of EPS, but skillfully and correctly obtaining
methylation data is still a problem. Attention to technical details and the use of the correct
procedural steps are the keys to successful methylation analysis. In addition, periodate
oxidation and Smith degradation methods can also be used to analyze the type and position
of glycosidic bonds.

NMR is the most effective tool to identify the structure of EPS. It can accurately identify
the basic structure of EPS, including ring size, isomeric configuration, and the position
of glycosidic bonds. EPS glycosidic bond composition and configuration were measured
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by 1D NMR (1H and 13C NMR). The linked composition of the glycan produced by the
mutant enzyme was analyzed by 600 MHz 1H NMR spectroscopy [56,135]. The proton
chemical shift of α-pyranose H1 type is greater than 4.95 ppm, and the proton chemical
shift of β-pyranose H1 type is less than 4.95 ppm. For example, DU et al. [136] used
NMR to analyze the structure of the EPS produced by L. brevis HDE-9 [136]. Moreover, 2D
NMR (HSQC, NOESY, and TOCSY) is also the main technique for analyzing the chemical
composition of EPSs [52]. The 2D NMR method can detect the spin direction, linkage
mode, the proton chemical change information of the residues, etc., of EPS and is the main
means to detect the chemical composition of EPS. Feng et al. [128]. analyzed the EPS of
L. plantarum AR307 by HSQC and HMBC, and the results showed that the backbone of
EPS was composed of 1,4-α-D-Glcp, 1,4-β-D-Glcp, and was 1,4-β-D-Galp interrupted. It
seems that NMR helped with the thorough characterization of EPS structure and was
used to infer its possible functions. Generally, by combining methylation analysis and
NMR spectroscopy, the linking pattern of the glycan will be determined, revealing the
three-dimensional structure of EPS.

8.5. Thermal Analysis of EPS

Thermal analysis plays an important role in the detection of the physical and chemical
properties of EPS. Generally speaking, the thermal analysis of EPS mainly includes ther-
mogravimetric analysis (TGA), differential-scanning calorimetry (DSC), etc. [137]. Among
them, TGA can analyze the weight-related quantity (such as mass, solid residue, or residual
rate) of the sample as a function of temperature or time so as to obtain the thermal stability
of the EPS, its thermal decomposition, its impurity composition, its thermal decomposition
products, and other information [138]. DSC can analyze the pyrolysis mode and thermal
stability of EPS. The TGA and DSC analysis of the thermal properties of L. reuteri E81
showed that the EPS content was still 11.77% at 600 ◦C, indicating the high temperature
resistance of E81, which can be widely used in the production of sourdough bread and
other high-temperature processes in the food industry [139]. For more complex EPSs, their
structure, pyrolysis process, main functional groups, etc. (such as TGA-FI-TR TGA-MS)
can also be used for analysis.

9. Conclusions

The above studies have shown that GS catalyzes this reaction and uses sucrose as a
substrate to synthesize glucan, oligosaccharide, glucoside, and other products with many
applications and a high economic value, which provides a new method for sucrose pro-
cessing. However, EPSs with different structures have different properties. The production
of EPSs with different structures is mainly affected by the structure and properties of
GS. However, the structure and properties of GS have not been fully resolved. Biological
techniques and chemical methods were used to analyze the structure and properties of
EPS, exploring its regulatory mechanism in EPS biosynthesis, and promoting the further
development of glycobiology.
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