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Abstract: Large-scale microalgae cultivation for biofuel production is currently limited by the pos-
sibility of maintaining high microalgae yield and high lipid content, concomitantly. In this study,
the physiological changes of Chlorella vulgaris NIES 227 during lipid accumulation under nutrient
limitation was monitored in parallel with the photosynthetic capacity of the microalgae to fix carbon
from the proxy of oxygen productivity. In the exponential growth phase, as the biomass composition
did not vary significantly (approx. 53.6 ± 7.8% protein, 6.64 ± 3.73% total lipids, and 26.0 ± 9.2% total
carbohydrates of the total biomass dry-weight), the growth capacity of the microalgae was preserved
(with net O2 productivity remaining above (4.44 ± 0.93) × 10−7 g O2·µmol PAR−1). Under nutrient
limitation, protein content decreased (minimum of approx. 18.6 ± 6.0%), and lipid content increased
(lipid content up to 56.0 ± 0.8%). The physiological change of the microalgae was associated with
a loss of photosynthetic activity, down to a minimum (1.27 ± 0.26) × 10−7 g O2·µmol PAR−1. The
decrease in photosynthetic O2 productivity was evidenced to correlate to the cell internal-protein
content (R2 = 0.632, p = 2.04 × 10−6, N = 25). This approach could serve to develop productivity
models, with the aim of optimizing industrial processes.

Keywords: microalgae; Chlorella vulgaris; photosynthesis; productivity; biofuel; lipid

1. Introduction

Owing to high growth speed and high lipid accumulation capacity, microalgae have
recently been heralded as the only feedstock for biodiesel with the capacity to completely
displace petroleum-derived liquid fuels [1]. However, after over 15 years of research,
biofuel from microalgae have not reached the global market. As of 2021, advanced biofuels
represent only 0.3 out of 4.3 EJ of energy produced in the form of liquid biofuel in 2020 [2],
of which microalgae are a non-existent to negligible portion (for instance, no data was
reported for aquatic biomass use for energy generation by the Bioenergy Europe Statistical
Report on Biomass Supply [3]).

Several shortcomings were identified, explaining the divergence between initial ex-
pectations and the current state of biofuel production from microalgae. Critically, it has
been challenging to convert biomass with a high lipid content into biofuels. Lam et al.
(2012) [4] listed various energy efficiency ratios for microalgae-derived biofuel production
based on life-cycle analyses, several of which were below 1, with values as low as 0.07
being reported [5]. Microalgae biomass production also demands significant amounts of
nutrients [4] and water [6], increasing production costs and compromising the sustainability
of the technology. The use of waste streams to reclaim polluting nutrients and grow algal
biomass [7,8] could enable the reduction of both the cost and environmental impact of
microalgae-derived biofuel [9,10]. Yet another challenge is the discrepancy between early
statements on the achievable biomass and lipid productivity, and currently reported results.
While Chisti (2007) [1] evaluated a potential for lipid productivity from microalgae in the
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range 58.7–137 m3·ha−1·yr−1 (or a lipid yield of 14.4–33.6 g·m−2·d−1), field data collected
in pilot-scale photobioreactors operated outdoors demonstrated significantly lower yields.
For instance, Xia et al. (2014) [11] found a maximum lipid productivity of 22.8 m3·ha−1·yr−1

(projecting a yearly production of 10.6 m3·ha−1·yr−1 if including winter months), and Wen
et al. (2016) [12] reported lipid productivities in the range of 2.0–2.9 g·m−2·d−1. In addition
to the impact of meteorological conditions as predicted by Moody et al. (2014) [13], there
exists a dichotomy between algal biomass productivity and lipid accumulation, since the
accumulation of lipid by microalgae is fueled by an excess of energy supply at the level of
the Calvin cycle, due to an external stress disrupting the cell anabolic activity [14]. Such
stresses favoring lipid accumulation in microalgae were listed by Morales et al. (2021) [15],
evidencing that the most common stress used by researchers to induce lipid accumulation is
nitrogen starvation. Biomass growth is hindered by the stress applied, and significant loss
in biomass productivity is expected over the course of lipid production. In order to evaluate
the potential for biofuel from microalgae to mature into an applicable technology, it is
necessary to characterize microalgae productivity throughout the growth and starvation
phases, as the microalgae physiological status evolves.

Based on recent reviews of microalgae productivity models [16,17], few aimed at in-
cluding the impact of cell physiological changes on biomass productivity, and none of them
presented dedicated experiments to explicitly measure the photosynthetic productivity of
the organism studied for a given physiological state. There is therefore a need for data
linking the instant microalgae productivity with its physiological status.

This study therefore aimed at studying and quantifying the relationship between
lipid accumulation and growth rate for microalgae. A high-lipid-accumulating microalgae
Chlorella vulgaris NIES 227 was cultivated at pilot scale in order to characterize the joint
evolution of its physiological status and photosynthetic productivity. Aiming at giving an
accurate snapshot of the microalgae photosynthetic productivity, these measurements were
performed by short assays of oxygen productivity under light-limited conditions.

2. Materials and Methods
2.1. Micro-Organisms and Culture Conditions

The microalga Chlorella vulgaris NIES 227 was selected for this study based on prior
studies which demonstrated that this strain had the potential to accumulate lipid under
nutrient limitation, and particularly nitrogen starvation [18]. The strain was cultivated in
a 285 L photobioreactor Jumbo XL (Synoxis, Le Cellier, France). Agitation was ensured
by compressed air bubbling, according to the manufacturer’s directions. The culture
temperature was controlled at 25 ◦C, and the pH was kept neutral (approx. 7.5), thanks to
CO2 bubbling. The microalgae were grown under natural sunlight inside a greenhouse in
Saint-Paul-lez-Durance (France).

The microalgae were cultivated in semi-continuous batches, on 11 February 2021
and pure lab-grown cultures of the microalgae were suspended in the photobioreactor
in nutritive medium (811 mg·L−1 of NaNO3, 116.5 mg·L−1 of KH2PO4, 71.5 mg·L−1 of
MgSO4, 7H2O, 0.75 mg·L−1 of CaCl2, 2H2O and 0.5 mL·L−1 of Hutner solution [19] for
trace elements). The microalgae cells were grown in batch cultures until harvesting. On the
day of harvesting, approx. 95% of the cultivation volume was collected, and the remaining
cells were resuspended in the same media as the inoculum, to start the following batch
culture. Three harvests were performed for this study, implemented on 22 March 2021, 6
May 2021, and 15 June 2021.

The culture was regularly compensated for evaporation by adding ultra-pure water in
the cultivation chamber until visually obtaining the adequate water level.

2.2. Laboratory Analysis
2.2.1. Sampling

Approx. 50 mL of cultivation was collected typically 2 to 3 times per week from
a tap point off the side of the photobioreactor. The sample was collected before 9 a.m.
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and immediately placed inside the refrigerator for later analysis. All analyses with fresh
biomass described in the following sections were started within 6 h of collection.

2.2.2. Biomass Growth Monitoring

Biomass growth in the photobioreactor was monitored both in terms of dry-weight con-
centration and cell count in the microalgae culture. Dry-weight was determined according
to the standard method 2540D [20], using GF/A or GF/C filters (Whatman™, Maidstone,
UK). An 8% measurement error was considered for dry-weight measurement [21]. Biomass
cell concentration was measured using a cell counter Multisizer 4 (Beckman Coulter™,
Brea, CA, USA): briefly, approx. 20 µL of the culture (volume adjusted depending on
the current cell concentration) was suspended in 20 mL of Isoton™ II Diluent (Beckman
Coulter™, Brea, CA, USA). A study of duplicate measurements for cell counts (including
measurements carried out outside of the scope of this study) evidenced a 15% measurement
error on cell count. The measurement error retained for this study was therefore the most
conservative value obtained from calculating the error obtained from a 15% error coefficient
and the deviation measured from duplicates when available.

2.2.3. Biomass Metabolic Status

The biomass metabolic status was assessed, based on the content in proteins and
energy-storage molecules (i.e., total carbohydrates and total lipids) of the biomass. The
metabolic status of a microalga is discussed in terms of quota in proteins, quota in lipids,
and quota in carbohydrates, i.e., the mass of proteins, lipids, or carbohydrates divided by
(1) the corresponding mass of microalgae (henceforth defined as mass quota), or (2) the
number of cells of microalgae (henceforth defined as cell quota).

Proteins

The protein content was measured using the nitrogen content of the microalgae as a
proxy, as commonly performed in the literature [22,23]. The nitrogen content of the biomass
was determined from the centrifugation of a known volume of the culture (4500× g for 10
min in an Allegra X-15r centrifuge, Beckman Coulter™, Brea, CA, USA). The supernatant
was discarded, and the pellet was resuspended in ultra-pure water and centrifuged again,
to rinse the biomass. This process was repeated for a second rinse. The nitrogen content of
the biomass was immediately determined, using a total organic carbon analyzer TOC-L
(Shimadzu™, Kyoto, Japan), from the pellet resuspended in a known volume of ultra-pure
water, to target a total nitrogen concentration in the final suspension within the range of
the analyzer calibration. The protein quota of the algal biomass was computed assuming
a nitrogen-to-protein ratio of 5.04, as reported for Chlorella vulgaris [24]. A 2.4% relative
error was considered for the measurement of TN content of the biomass, based on Li
et al. (2019) [25]. In order to compute the error on protein quota, a 1% relative error was
considered for dilution factors, when applicable.

Carbohydrates

On the day of sampling, known volumes of experimental culture were rinsed and
centrifuged (as described for protein analysis) and freeze-dried (lyophilizer COSMOS
20K, Cryotec™, Saint-Gély-du-Fesc, France). The samples were hermetically sealed and
stored in the freezer until analysis. Total carbohydrates were measured using the protocol
developed by Dubois et al. (1956) [26]. Briefly, lyophilized biomass was digested in
2.5 M HCl (0.5 mL/g DW) at 100.5 ◦C for 3 h. The digestate was diluted in ultra-pure
water ,to obtain measurable levels of total carbohydrates, and mixed with 2.5 mL of 95%
H2SO4 and 500 µL of 5% (w/v) phenol solution. The total carbohydrate in the suspension
obtained was determined using colorimetry, by comparing the light absorption of the
solution at 483 nm with a calibration curve derived from a glucose standard solution
(spectrophotometer Epoch 2, Biotek™, Winooski, VT, USA). The samples were typically
measured in duplicate. Uncertainty as to the total carbohydrates in the biomass was based
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on the standard deviation of replicates. When no replicate was available, a 20% relative
error was assumed, based on the spread of the relative deviation observed from data
with replicates.

Lipids

Total lipids were measured from freeze-dried pellets prepared according to the same
protocol as used for the total carbohydrates analyses. Total lipids were measured by GC-
FID (GC-2010 Pro AOC-20i/AOC-20s, Shimadzu™, Kyoto, Japan) following extraction
and trans-methylation of the lipids. Briefly, the lyophilized biomass was mixed with 3 mL
of a solution of 1.25 M hydrogen chloride in methanol (Reference 17935 Supelco, Sigma-
Aldrich™, Saint Louis, MO, USA), 0.2 mL of a 3 mg·L−1 solution of TAG C15:0 (reference
T4257, Sigma-Aldrich™, Saint Louis, MO, USA) in hexane 95%, anhydrous for internal
calibration of the measurement, and incubated at 85 ◦C for 1 h. A total of 3 mL of HPLC
grade hexane was added; 1 mL of ultra-pure water was added to the sample, and the
solution was briefly vortexed before centrifugation (1500 rpm, 5 min). The supernatant
was introduced into vials for GC analysis. The total lipid quota was determined from the
sum of the areas of all peaks detected, translated into a concentration based on the ratio
of the area to the known quantity of C15:0 introduced using internal standard addition.
Uncertainty regarding the lipid content in the biomass was based on the standard deviation
of replicates. When no replicate was available, a 11% relative error was assumed, based on
the spread of the relative deviation observed from data with replicates.

Functional Compartment

The non-null difference between the biomass dry-weight and the sum of the measured
weights of proteins, total lipids, and total carbohydrates is henceforth referred to as the
functional compartment [27].

2.2.4. Biomass Productivity Status

Biomass photosynthetic productivity was measured by oximetry using the OX1LP-6
(Qubit™, Kingston, Ontario, Canada) set-up, maintained at 25 ◦C by a recirculatory water
bath (Haake SC100-A10, Thermo Fisher Scientific™, Waltham, MA, USA). The culture
sample was diluted in fresh medium to obtain a test solution of optical density approx.
0.2–0.3 (spectrophotometer Epoch 2, Biotek™, Winooski, VT, USA). The test solution was
degassed by bubbling N2 gas for approx. 30 s, and immediately introduced into the OX1LP-
6 cell. The cells were kept in the dark for 10 min, also enabling the temperature in the tested
volume to equilibrate at 25 ◦C ± 1 ◦C. The light intensity was set at 100 µmol·m−2·s−1 in
the constructor software. At time 0, data logging was started, to record dissolved-oxygen
concentration variations during 10 min cycles, alternating 5 min in the dark and 5 min
under light conditions. (The first 5 min of the data logging were obtained in the dark.)
Three cycles were performed for each sample.

The biomass rates of oxygen production and of respiration were computed by linear
regression of the oxygen-concentration variation against time, under light and in the dark,
respectively. Biomass photosynthetic-oxygen-productivity was computed as the average
of the three rates of oxygen production, each being compensated by the respiration rate
recorded in the same cycle (i.e., during the dark phase and immediately prior to the
illumination phase). Error regarding biomass photosynthetic-oxygen-productivity was
computed as the standard deviation of the replicate obtained for each sample.

The biomass O2-productivity was analyzed in light of the light intensity received by
the biomass. An estimation of the photons effectively received in the experimental chamber
of the set-up was performed as described in Supplementary Information S1. The light
absorbed by microalgae during oximetric assays was evaluated as the number of photons of
photosynthetic-active-radiation absorbed (generally expressed in µmol). Due to significant
uncertainty of the value obtained, a conservative 20% relative uncertainty was used for
this measurement.
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2.3. Data Analysis

Data analysis, calculations, and the computer code (R 4.2.1. [28]) used for this study,
can be found in an online repository [29]. The list of packages used for this study is given
in Supplementary Information S2.

2.4. Complementary Measurements

The dataset provided in the online repository also includes the following complemen-
tary measurements:

- Sunlight intensity measured throughout the study duration. Sunlight intensity was
measured in the greenhouse in the vicinity of the photobioreactor using the continuous
data logging (data logger 2648A Hydra Series III, Fluke™, Everett, WA, USA) of a
pyranometer CM21 (Kipp & Zonen™, Delft, The Netherlands). No data could be
recovered for the period preceding the 9 March 2021, or the period ranging from 19
April 2021 to 27 April 2021).

- Total nitrogen in the dissolved phase measured from the filtration of the centrifugation
supernatant of the culture (filters Puradisc 0.2 µm, Whatman™, Maidstone, UK).
Total nitrogen in the dissolved phase was determined using the total organic carbon
analyzer TOC-L (Shimadzu™, Kyoto, Japan).

3. Results
3.1. Photobioreactor Monitoring

Biomass-growth monitoring in terms of dry-weight and cell concentration (Figure 1)
evidenced the following phases of microalgae growth: (1) an exponential growth phase, where
microalgae cells divided exponentially, and (2) a limitation phase, where microalgae stopped
dividing but the dry-weight concentration continued to increase, albeit at a diminished speed
compared with the end of the first phase. Following harvesting and resuspension in fresh media,
(3) a “relaxation” phase was observed for two to three days when the dry-weight would not
increase as fast as during exponential growth, evidencing a lack of fitness of the resuspended
microalgae cells. At the end of the exponential growth phase, a cell concentration of approx. 2
to 6 × 1011 cells·L−1 and a dry-weight concentration of approx. 3.0–3.7 g·L−1 were reached. At
the end of the limitation phase, a dry-weight as high as 6 g·L−1 was achieved during the third
batch, as the volumetric cell count did not vary significantly.

Figure 1. Evolution of biomass growth throughout the study. The dotted vertical line indicates the
days the reactor was partially harvested.
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3.2. Biomass Metabolic Status

As can be seen in Figure 2, the microalgae quota in protein during the exponential
growth phase would initially remain high, followed by a gradual decrease (while still in
exponential growth). In the three consecutive batches, the end of the exponential phase
occurred when the protein-mass quota was down to the range (by batch chronological
order) 24–28%, 18–31%, and 18–27%. The lipid-cell quota gradually increased when the
protein-cell quota decreased. The end of the exponential growth phase occurred when
the lipid-mass quota was in the range (by batch chronological order) 30–36%, 21–45%,
and 25–31%. During the limitation phase, the protein-mass quota continued to drop,
but appeared to stabilize at approx. 16 +/− 2%. The lipid-mass quota continued to
increase, seemingly at a lower rate than during exponential growth. The cultivated Chlorella
vulgaris NIES 227 reached up to 56.0 ± 0.7% mass percentage in extracted lipids during
the second batch. In the relaxation phase (i.e., following resuspension in fresh media), the
protein- and lipid-cell quotas initially recovered to levels close to the initial inoculum. The
total carbohydrate-mass quota was somewhat constant throughout the cultivation period
(21.9 ± 6.9% of total dry-weight), and no particular pattern was identified for the variations
measured. An increase in total carbohydrate content was noticed at the end of the third
batch, potentially linked to the increase of dry-weight in the photobioreactor during the last
sampling, despite a stable lipid-cell quota. The reasons for this sharp increase are unknown,
but could be linked to experimental error.

Figure 2. Storage molecule partition in Chlorella vulgaris NIES 227 biomass throughout the study. (It
must be noted on the lower plot that the y-axis is represented in log scale).

Similar global culture dynamics were observed during the three batches used, yet
some discrepancies in growth speed and physiological state of the culture occurred. It
would be challenging to determine the exact causes of such differences: light intensity
naturally varied during the different batches, and algae concentration at the start of the
batch also varied, which was shown to affect the whole kinetics of the culture. Gradual
acclimation of the culture to the experimental conditions may also have lessened the stress
experienced by the microalgae cells throughout the study, as possibly indicated by the
slower increase in lipid content during the third batch.

Overall, the photobioreactor yielded a total mass of lipids of 305, 565, and 758 g per
batch, corresponding to lipid productivities of 2.8 × 10−1, 4.4 × 10−1, and
6.8 × 10−1 g·m−2·d−1 during batch 1, 2, and 3, respectively, (assuming the photobioreactor
has a 28 m2 land footprint). If the culture had been harvested at the dates of maximum
lipid productivity, productivities of 3.3 × 10−1 g·m−2·d−1 (3 days prior to harvesting),
8.0 × 10−1 g·m−2·d−1 (24 days prior to harvesting) could have been reached for the first
two batches. (Batch 3 was harvested on the day of highest productivity recorded for this
batch). Finally, the maximal lipid production rate based on consecutive measurements
observed during this study was 1.00 g·m−2·d−1, during the penultimate week of cultivation
before the harvesting of the last batch. Lipid productivity observed during this study was
therefore significantly lower than the values reported in the introduction, which can be
explained by the use of natural sunlight only, during the present study.
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3.3. Biomass Photosynthetic Productivity

The parallel follow-up of the microalgae O2 productivity and physiological state
(Figure 3) demonstrated that the gradual loss of proteins and accumulation of lipids was
co-occurring with a gradual decrease in the efficiency of photosynthesis. Hence, a 21-
fold reduction in photosynthetic O2-productivity (normalized for the calculated total light
absorbed), ranging from (1.27 ± 0.26) × 10−7 g O2·µmol−1 (lipid content of 53.8 ± 0.2%,
protein content of 16.3 ± 0.4%, carbohydrate content of 21.0 ± 2.8%), to (2.75 ± 0.62) ×
10−6 g O2·cell−1·µmol−1 (lipid content of 12.1 ± 0.2%, protein content of 57.2 ± 1.4%,
carbohydrate content of 17.3 ± 7.2%).

Figure 3. Chlorella vulgaris NIES 227 photosynthetic productivity under varying physiological statuses.

In particular, a strong relationship existed between the protein-cell quota and the
photosynthetic response of the microalgae (Figure 4). A proposed predictive model was
fitted from the data obtained through the linear regression between the log-transformed
light-specific rate of oxygen production and the protein-cell quota (normalized to the
minimal quota measured), leading to the relationship given in Equation (1).

P∗
O2

= P∗,0
O2

·
(

qp

qmin
p

)α

(1)

where P∗
O2

is the light-specific rate of oxygen production (g O2 µmol−1), qp is the protein
quota in the microalgae cell (g Protein·cell−1), qmin

p is the minimum protein-cell quota,

evaluated at 1.12 × 10−9 g Protein·cell−1. Values for α and P∗,0
O2

were determined by linear
regression of the experimental data, as described above (R2 = 0.632, p = 2.04 × 10−6,
N = 25): P∗,0

O2
corresponds to the minimum light -pecific rate of oxygen productivity,

determined as equal to (1.59 ± 0.27) × 10−7 g O2·s−1·µmol−1, and α is a dimensionless
parameter, evaluated as equal to 0.726 ± 0.115. Significant yet weaker correlations were
found between the light-specific rate of oxygen production and the log-transformed lipid-
cell quota (R2 = 0.223, p = 1.72 × 10−2, N = 25, Figure S3), or the carbohydrate-cell quota
(R2 = 0.291, p = 9.51 × 10−3, N = 22, Figure S4).
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Figure 4. Chlorella vulgaris NIES 227 photosynthetic productivity according to the cell-protein quota
(o). The continuous line represents the best fit of Equation (1) of the data collected (R2 = 0.632,
p = 2.04 × 10−6, N = 25).

4. Discussion
4.1. Light versus Nutrient Limitations

During the first batch of culture, the microalgal biomass first followed an exponen-
tial growth phase at constant protein-cell quota, but this incidence was not repeated in
the second two batches. Because the initial concentration for the first batch was signifi-
cantly lower than for the next two batches, we hypothesize that exponential growth at
constant protein-cell quota was favored by growth conditions being neither light-limited
nor nitrogen-limited. The microalga cells were therefore able to divide, while maintaining
constant cell-specific nitrogen and carbon content, owing to a sufficient energy supply.
As biomass cell density increased, the system entered a globally light-limited phase. Mi-
croalga cells continued to divide at a similar exponential rate, but the increase in dry-
weight became linear. Although nitrogen was not depleted in the experimental culture
(over 60 mg·L−1 total nitrogen was measured in the supernatant at the onset of steady
protein-content decrease, according to data provided in the online repository associated
with this study [29]), the protein content started to decrease during this phase, and the lipid
content to increase, highlighting a lack of nitrogen-assimilation capacity of the microalgae.
Because the activity of nitrate reductase during nitrate assimilation for protein generation
during photosynthesis has been previously shown to be light-dependent [30,31], light limi-
tation in the experimental culture likely induced a globally reduced nitrogen-assimilation in
the reactor, while maintaining a basal nitrogen uptake sufficient to enable cell division. The
increase of lipid content, on the contrary, evidenced an excess of photosynthetically gener-
ated reducing power, diverted toward the accumulation of lipids following the mechanism
described by Morales et al. (2021) [15]. As the culture further entered nutrient deprivation,
microalgae cells stopped dividing and lipid content in the reactor increased. In the second
and third batches, the ultimate value of lipid content in the microalgae was lower than the
penultimate (in chronological order: reduction from 56.0 to 53.2% DW in 1 day, and from
42.7 to 37.3% DW in 6 days), indicating a possible limitation of the microalgae capacity for
lipid accumulation. It is likely that as photosynthetic capacity decreased with progressing
starvation, the carbon assimilation triggering the accumulation of lipids became overcom-
pensated by carbon utilization through respiration processes. In all these phases, the total
carbohydrate content in the microalgae remained somewhat stable.

4.2. Consequences for the Prediction of Lipid Accumulation

Microalgae convert photosynthetic energy into reducing power that will be involved
in the conversion of CO2 into carbohydrates through the Calvin cycle [32]. In parallel, the
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reducing power is involved in the assimilation of the N-source (nitrate in the present study):
broadly, nitrate is reduced to ammonium, and subsequently into organic N as glutamate [33].
We hypothesize from this study, the following dynamic from photosynthesis to model
lipid accumulation:

I. The microalgae perform photosynthesis with an efficiency dependent on the current
physiological state of the microalgae (i.e., partition between the cell content in carbo-
hydrates, proteins, and lipids) and light availability, as evidenced by this study. This
photosynthetic activity delivers a pool of electrons converted into carbohydrates [21].

II. The carbohydrates are stored and can subsequently be reduced to generate reducing
power or be used as a carbon source for the following processes:

a. Basic maintenance of the cell [34].
b. Assimilation of nitrogen and protein formation: this study evidenced that the

average light received by the cells likely modulates the quantity of nitrogen as-
similated.

c. Accumulation of lipids when excess carbon is absorbed in parallel with limited
nitrogen assimilation.

The lipid accumulation by the microalgae Chlorella vulgaris NIES 227 may therefore
be predicted by quantifying the total light energy absorbed by the microalgae cells in
the experimental culture and determining the conversion factor of this light energy into
reducing power, as performed in the present study through photo-respirometry. Follow-
ing quantification of the nitrate assimilated by the microalgae (and the reducing power
consumed in this process), the lipid generated can be calculated by the excess reducing
power available.

4.3. Future Studies
4.3.1. Need for Short-Term Studies of the Evolution of Photosynthesis Performance

Modelling microalgae productivity during photo-autotrophic growth has received
paramount attention from researchers, but few models have studied the physiological status
of the microalgae in the prediction of biomass growth through photosynthesis. Among
all the work cited in recent reviews of the literature [16,17], Geider et al. (1996) [35] and
Kiefer et al. (1983) [36] modulated microalgae growth-rate from photosynthesis linearly,
with the ratio (chlorophyll-a):(internal carbon storage) being an indicator of the microalgae
cell fitness. Another common approach to integrate the modulation of photosynthetic
growth through the physiological status of the cell has been the use of the Droop quota
model [37], typically based on a down-regulation of microalgae growth rate by the cell
quota in nitrogen [38–43]. All these approaches enable the prediction of the loss of gross
productivity by the microalgae as it accumulates carbon (e.g., in the form of lipids), since
it is equivalent to a reduction in the nitrogen-cell quota and chlorophyll content. These
approaches and the Equation (1) developed in the study have an overall similar approach.
However, the present study isolated, in order to evidence and quantify it, the loss of
photosynthetic productivity of the microalgae, while all the studies cited above are based on
“black-box” models, fitted over large amounts of parameters at once. The characterization
of microalgae photosynthetic productivity as performed in the present study enables to
estimate the pool of electrons a microalga is capable of generating for a given physiological
state. The determination of full photosynthesis-irradiance (PI) curves to determine the
variation of kinetic parameters according to cell physiological state is desirable for the later
implementation in type II models, as described by Béchet et al. (2013) [16], although this
was not the objective of the present study.

4.3.2. Nitrate Utilization Study

It was hypothesized from the present study that the nitrate utilization rate was likely
to depend on the sunlight available under light-limiting conditions. Due to the mobilization
of reducing power generated from photosynthesis during nitrate assimilation, the study of
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the link between light availability and nitrate utilization is key for a better prediction of
lipid accumulation in microalgae, particularly under light-limited growth.

4.3.3. Other Research Needs

As some of the electrons generated through photosynthesis are likely to be diverted
toward metabolic pathways other than carbohydrate formation (e.g., acidification of the
lumen [44]), a study to quantify such losses is desirable. A specific study of the rate of
conversion of carbohydrates into lipids for energy storage by the microalgae, investigating
the factors associated to its variations, is also needed. Refining studies could explore the
characteristics of cell maintenance (i.e., the utilization of internal carbohydrates in the
absence of energy supply [34]) and decay (death rate). Finally, any factors known to induce
cell stress (e.g., phytohormones, metallic ions) could be investigated, to quantify both
the impact on the photosynthetic activity of the microalgae and the impact on the carbon
allocation pathways toward the different storage molecules.

5. Conclusions

PI-curves have been successfully used to predict microalgae productivity cultivated in
nutrient-replete conditions [45]. As this study evidenced and quantified the gradual loss of
photosynthetic activity from the microalgae Chlorella vulgaris NIES 227 while accumulating
lipid during growth limitation, it is expected that calibrating PI-curve changes with varying
microalgae metabolic statuses could enable to the precise prediction of lipid yields for a
photobioreactor in changing culture conditions, representative of the conditions needed to
induce lipid accumulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation8110614/s1: Supplementary Information S1: Es-
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in the experimental chamber according to the dilution of the microalgal culture tested. Figure S2:
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of the microalgal solution. Table S3: Summary of fitting results and performance for each light
sampling point. Supplementary Information S2: R™ packages specifically used during the study;
Supplementary Information S3: Correlation between O2 productivity, and lipid and carbohydrate
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carbohydrate quota.
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