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Abstract: Fermentation is one of the most important stages in the entire brewing process. In fermen-
tation, the sugars are converted by the brewing yeast into alcohol, carbon dioxide, and a variety of
by-products which affect the flavour of the beer. Fermentation temperature profile plays an essential
role in the progression of fermentation and heavily influences the flavour. In this paper, the fermenta-
tion temperature profile is optimised. As every process model contains experimentally determined
parameters, uncertainty on these parameters is unavoidable. This paper presents approaches to con-
sider the effect of uncertain parameters in optimisation. Three methods for uncertainty propagation
(linearisation, sigma points, and polynomial chaos expansion) are used to determine the influence
of parametric uncertainty on the process model. Using these methods, an optimisation formulation
considering parametric uncertainty is presented. It is shown that for the non-linear beer fermentation
model, the linearisation approach performed worst amongst the three methods, while second-order
polynomial chaos worked the best. Using the techniques described below, a fermentation process
can be optimised for ensuring high alcohol content or low fermentation time while ensuring the
quality constraints. As we explicitly consider uncertainty in the process, the solution, even though
conservative, will be more robust to parametric uncertainties in the model.

Keywords: beer fermentation; stochastic dynamic optimisation; uncertainty

1. Introduction

Consumption of alcoholic beverages like beer, wine, and spirits has always played
an important role in food security and health [1]. With its history extending to more than
7 millennia [2], beer is one of the most popular beverages in the world. The global beer
consumption in 2019 was estimated at around 189.05 million kilolitres [3]. The beer sector
is a major contributor to the European Union’s economy with more than 10,300 active
breweries providing over 130,000 jobs. In 2018, the beer sector contributed over e55
billion to the EU’s economic growth [4]. With 340 breweries in Belgium producing over
1500 different beers [5], the beer culture of Belgium has been inscribed on UNESCO’s
Intangible Cultural Heritage of Humanity list [6]. According to Belgian law [7], beer is “the
beverage obtained after alcoholic fermentation of a wort prepared primarily from starch and sugary
raw materials, of which at least 60% barley or wheat malt, as well as hops (possibly in processed
form) and brewing water”. Thus, the main ingredients which form beer are only barley malt
(i.e., a starch source), hops, yeast, and water.

Nevertheless, beer production is a complex process with a multitude of processing
steps involved. The barley is converted into malt during the malting process. Malting
converts the hard barley grains to friable malt by producing and activating various enzymes.
The malt is then milled, and mixed with water to convert the starch and proteins into
fermentable sugars through a process known as mashing. The mashed product, known as
wort, is then boiled with hops (although hops can be added at different stages of the beer
production). The residual hops and other products coagulated from the boiling process
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(called the trub) are removed from the wort. The clarified wort is cooled and transferred
to a fermentation tank. There it is pitched with yeast and fermented to produce ethanol,
carbon dioxide, and secondary metabolites.

Although the entire process involves only four ingredients, a plethora of chemical
compounds are involved in the entire brewing process. The interaction of these chemical
species gives each beer its characteristic flavour. According to Amerine et al. [8], flavour
is described as “the sum of perceptions resulting from stimulation of the sense ends that are
grouped together at the entrance of the alimentary and respiratory tracts”. Flavour comprises
(i) odour: perception of volatile compounds in the nasal cavity, (ii) aroma: perception of
volatiles which pass via the nasopharyngeal passage to the olfactory epithelium, (iii) taste:
perception of soluble substances on the taste buds on the surface of the tongue, and (iv)
mouthfeel: physical perception of beer in the mouth [9]. Although only trace amounts of
volatile esters are present in beer, they have a large influence on its flavour profile. Some
common esters in beer are ethyl acetate, ethyl caprylate, ethyl octanoate, isoamyl acetate,
etc. [10–13]. Apart from the esters, other volatile compounds include higher alcohols (e.g.,
amyl alcohol), carbonyl compounds (e.g., 2,3-butanedione, commonly called diacetyl),
ketones, aldehydes, etc. [11]. Although all these compounds are produced throughout the
brewing process, a majority are produced as metabolic intermediates or by-products during
the fermentation step [12]. This makes fermentation a key process in the brewing chain.

Fermentation is an exothermic process in which the yeast converts the sugars in
the wort to ethanol, carbon dioxide, and many other flavour-inducing compounds. The
cooled wort is transferred to a cylindro-conical fermentation tank and the yeast is pitched.
Along with the pitching rate and dissolved oxygen, fermentation is influenced by the
temperature [14]. Temperature has a strong effect on yeast metabolism. Most brewing
yeasts have optimum growth temperatures between 30 and 34 ◦C. However, fermentation is
carried out at much lower temperatures. Typically, lagers are fermented around 10 ◦C, while
ales are fermented at 22 ◦C. At elevated temperatures, the fermentation is vigorous and
leads to excessive loss of volatiles and formation of undesired by-products [15]. However at
higher temperatures, the time required for fermentations is reduced. Thus, the brewmaster
must control the fermentation temperature such that fermentation is accelerated while still
maintaining the beer quality profile. Traditionally, brewers have relied on their experience
and traditional recipes for temperature control. In this paper, a computer-aided optimal
control profile for the fermentation temperature is proposed.

Such an optimisation of the temperature profile is not novel. Several authors have
proposed optimisation strategies to obtain a dynamic temperature profile by considering a
variety of objectives. An objective describes the goal of the optimisation. In context of beer
fermentation, some of the possible objectives are maximisation of ethanol concentration,
minimisation of by-product formation, minimisation of batch time, or even a combination
of these. Carrillo-Ureta et al. [16] used genetic algorithms to determine the temperature
profiles. Their objective was the combination of five different objectives: maximise ethanol
concentration, minimise two by-products, minimise batch time, and minimise jumps in
the temperature profile. Xiao et al. [17] used a stochastic ant colony algorithm with similar
objectives. In Rodman and Gerogiorgis [18], a weighted objective of maximum ethanol
and minimum batch time was optimised using a combination of simulated annealing
and high fidelity simulations. Bosse and Griewank [19] made use of forward–backward
sweeping methods based on Pontryagin’s maximum principle to solve a modified version
of the problem considered in Carrillo-Ureta et al. [16]. Apart from the single objective
studies, several multiobjective studies have also been reported. Andrés-Toro et al. [20] also
used genetic algorithms to solve the multiobjective optimisation problem by considering a
variety of objectives. Rodman and Gerogiorgis [14] used a simplified weighted-sum-type
approach for multiobjective optimisation with two objectives: maximum ethanol and
minimum batch time. In Rodman et al. [21], a stochastic “Strawberry” algorithm is used to
determine the Pareto front between the contradicting objectives.
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A common requirement for all the optimisation studies mentioned above is the process
model. A process model is a mathematical abstraction of the reality. Describing the plethora
of chemical species produced during fermentation [12,22] would lead to an extremely com-
plex mathematical model. It is thus common to use reduced-order models which only
consider key chemical compounds. A variety of process models have been proposed to de-
scribe the fermentation process [23–26]. The model developed in de Andrés-Toro et al. [23]
is based on extensive experimentation on industrial-scale fermentation and has been widely
used in optimisation studies. All models contain parameters which have to estimate from
experimental data.

As all experiments inherently have noise (either measurement noise, or in the case
of yeast, biological variability), the parameters estimated from the data are uncertain.
Although it is possible to reduce the uncertainty (i.e., improve the parameter accuracy)
by performing more and better experiments, and by using better sensors, it is impossible
to completely eliminate the uncertainty. Thus, any optimisation study based on a mathe-
matical model must take this parametric uncertainty into consideration. Use of inaccurate
parameters can lead to constraint violations, which in reality might affect the safety of the
process or the quality of the product. In this paper, an optimisation strategy to determine
the fermentation temperature profile by including the parametric uncertainty in the process
model is presented. Following all the optimisation studies mentioned earlier, the model
developed by de Andrés-Toro et al. [23] is used.

In the following sections, the dynamic optimisation formulation under parametric
uncertainty is presented. The concept and techniques of uncertainty propagation are
introduced. This is followed by the description of the de Andres-Toro model for beer
fermentation. The in-house tool used for the dynamic optimisation is briefly presented.
The temperature profile obtained after the optimisation is then discussed in the results
section. Finally, the conclusions section summarises the main findings of this paper.

2. Materials and Methods

In this section the fermentation model used for optimisation is described. Then,
the robustified dynamic optimisation formulation is presented. The three techniques
for uncertainty propagation are discussed. These are the linearisation, sigma point, and
polynomial chaos expansion methods. Next, the approach to evaluate the solutions based
on Monte Carlo simulation is presented. Finally, the software used is briefly discussed.

2.1. Fermentation Model

As mentioned, the fermentation model developed by de Andrés-Toro et al. [23] is used
in this study. It is assumed that the yeast pitched to the wort is immediately suspended
and consists of active, latent, and dead yeast cells. The latent yeast cells become active
over time and eventually die. Only the active cells contribute to the fermentation. The
fermentation is differentiated into two phases: a lag phase in which the latent cells convert
to active cells and the active phase in which fermentation occurs. The active phase begins
when 80% of the latent cells are activated. The total concentration of yeast cells suspended
in the wort (CX,sus) at any time is given by

CX,sus(t) = CX,act(t) + CX,lat(t) + CX,dead(t) (1)

where the subscripts act, lat, and dead correspond to the concentration of active, latent,
and dead yeast cells.

In the lag phase, the dead cells settle in the wort and the latent cells are activated. The
rate of settling (µSD) depends on the wort density and concentration of carbon dioxide. The
wort density is related to the initial concentration (CS0), while the carbon dioxide concen-



Fermentation 2021, 7, 285 4 of 17

tration is related to ethanol concentration (Ceth). The rate of yeast activation (µL) is related
to the temperature via an Arrhenius-type equation. The lag phase can be modelled as,

dCX,sus(t)
dt

= −µSD CX,dead(t), t < tlag (2)

dCX,act(t)
dt

= µL CX,lat(t), t < tlag (3)

dCX,dead(t)
dt

= µDT CX,act(t), t < tlag (4)

Once the active phase begins, the active yeast cells start reproducing and dying (with
a rate, µDT), while the latent cells continue to get activated. The dead yeast cells continue
to settle to the bottom of the fermentation tank. The biomass dynamics in the active phase
are described as

dCX,act(t)
dt

= µX CX,act(t)− µDT CX,act(t) + µL CX,lat(t), t > tlag (5)

dCX,dead(t)
dt

= µDT CX,act(t)− µSD CX,dead(t), t > tlag (6)

The sugar consumption is proportional to the active yeast cell concentration and the
uptake rate µS follows Michaelis–Menten kinetics.

dCS(t)
dt

= −µS CX,act(t) (7)

Similarly, the rate of ethanol formation µeth also follows Michaelis–Menten kinetics.
However, as experimental data showed a decrease in the rate with time, an inhibition factor
( f ) is included. The evolution of ethanol concentration is expressed as

dCeth(t)
dt

= f µeth CX,act(t) t > tlag (8)

Two by-products are considered: diacetyl (CDY) and ethyl acetate (CEA). Diacetyl
or 2,3-butanedione is a carbonyl compound which is produced primarily in the early
phases of fermentation. At a later stage, diacetyl is converted into other products. The
rate expressions for the formation and then conversion of diacetyl used in the model are
obtained experimentally. Although an important compound for beer quality, it adversely
affects the flavour in high concentrations. At concentrations over 0.1 ppm, it brings a
buttery flavour and rancid mouthfeel to the beer [11]. Ethyl acetate is an ester with the
highest concentration in beer. It is normally used as an indicator for all the esters present
and has a buttery-solvent-like aroma [14]. The by-product evolution is described by

dCEA(t)
dt

= YEA µX CX,act t > tlag (9)

dCDY(t)
dt

= µDY CS(t)CX,act(t)− µAB CDY(t) Ceth(t) t > tlag (10)

All the rate expressions are described in Table 1. The rate constants depend on the
temperature Arrhenius-type relation described by

µi = exp

(
Ai +

Bi
T(t)

)
(11)

The parameter values used are reported in Table 2.
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Table 1. Rate expressions used in the dynamic model.

Component Rate Expression

Settling of dead cells µSD =
0.5 µSD,0 CS,0
0.5CS,0 + Ceth

Biomass growth µX =
µX,0 CS
ks + CS

Sugar consumption µS =
µS,0 CS
ks + CS

Ethanol formation µX =
µeth,0 CS
ks + CS

Ethanol inhibition f = 1− Ceth
0.5 CS,0

Diacetyl formation µDY = 1.2762× 10−4

Diacetyl conversion µAB = 1.13864× 10−3

Table 2. Parameters in the Arrhenius-type rate constants.

Description Ai Bi

Maximum settling rate of dead cells, µSD,0 33.82 −10,033.28
Maximum growth rate, µX,0 108.31 −31,934.09
Maximum sugar consumption rate, µS,0 41.92 11,654.64
Maximum ethanol production rate, µeth,0 3.27 −12,667.24
Yeast death rate, µDT 130.16 −38,313.00
Yeast activation rate, µSD,0 30.72 −9501.54
Affinity constant, ks −119.63 34,203.95
Ethyl acetate production, YEA 89.92 −26.589

2.2. Dynamic Optimisation under Parametric Uncertainty

Any process model can be represented in a general form as ẋ = f (x, u, θ, t) with
x ∈ Rn as the process state vector, u ∈ Rm as the control vector, and θ ∈ Rp as the
parameter vector. The general optimisation problem, which minimises an objective J in the
interval t ∈ [0, t f ], is written as

min
x,u,t f

J

subject to,

ẋ = f (x, u, θ, t)

c(x, u, θ, t) ≤ 0

(12)

As mentioned in the introduction, the parameters θ are estimated from experimental
data and are inherently uncertain. The uncertainty in the parameters is typically described
by a (possibly unknown) probability distribution. The aim is now to ensure that critical
constraints (c(x, u, θ, t)) are not violated. Two approaches are possible. In the robust
approach, the worst case scenario is considered and the problem is reformulated in terms of
the worst case [27]. However, it is possible that the worst case scenario occurs at a very low
probability and optimising for this scenario gives a very conservative solution [28]. In the
stochastic approach, the constraints are reformulated as chance constraints which express a
limit on the probability of constraint violation [29]. These constraints are expressed as

Pr
(

c(x, u, θ, t) ≥ 0
)
≤ β (13)

Computationally tractable formulation of such probabilistic chances constraints is
difficult [30]. Thus, it is common to approximate them using deterministic constraints of
the form

E
[
c
]
+ αc

√
V
[
c
]
≤ 0 (14)



Fermentation 2021, 7, 285 6 of 17

where E
[
·
]

and V
[
·
]

are the expectation and variance operators, respectively. αc is
termed the backoff parameter. The choice of the backoff parameter depends on the al-
lowed probability of constraint violation β. The backoff parameter can be chosen via the
Cantelli–Chebyshev inequality [31]. Although this parameter is valid for any probability
distribution, it leads to an excessively large backoff parameter, which can then lead to
infeasibility in the optimisation problem.

Another approach to compute the backoff parameter utilises the quantiles of the
model output distribution [32]. However, this requires an assumption on the underlying
distribution of the model output under uncertainty. It is common to assume a normal
distribution [29,32,33]. Under the assumption of normality, a 5% allowance for constraint
violation, for example, leads to a backoff parameter value of 1.65.

Similar to the constraints, the objective can also be reformulated by allowing for a
backoff parameter. The reformulated optimisation problem can now be expressed as

min
x,u,t f

E
[

J
]
+ αJ

√
V
[

J
]

subject to,

ẋ = f (x, u, θ, t)

E
[
c
]
+ αc

√
V
[
c
]
≤ 0

(15)

Note that it is not necessary to reformulate all constraints as chance constraints. Normal
constraints and approximated chance constraints can both be present in the formulation.

2.3. Uncertainty Propagation Techniques

The formulation presented in Equation (15) requires the expectation and variance
of the constraints and the objective to be computed efficiently. The uncertainty in the
parameters propagates through the nonlinear model onto the model output. When the
probability density function of the uncertain parameters ρθ(θ) is known, it is possible to
compute the expectation and variance. For a hypothetical nonlinear function y = f (θ), the
expectation and variance can be computed as

E
[
y
]
=
∫
Rθ

f (θ)ρθ(θ)dθ (16)

V
[
y
]
=
∫
Rθ

E
[(

y−E[y]
)(

y−E[y]
)>]

ρθ(θ)dθ (17)

However, evaluating these integrals is numerically challenging. Thus, various ap-
proaches to estimate the expectation and the variance are used.

Linearisation is a popular approach based on using first-order approximation of the
process model.

y = f (x) ≈ f (θ0) + Sθ0 dθ (18)

where Sθ0 is the sensitivity matrix (S = ∂ f /∂θ) evaluated at the nominal parameter value
x0. Thus, when the parameters in the nonlinear model follow a normal distribution, the
variance–covariance matrix of the model response can be approximated by Vy = Sθ0VθS>θ0

.
Linearisation performs well when the uncertainty is small compared to the model curvature.
When the model is highly nonlinear, the approach fails to provide a correct estimate of the
variance [34,35].

The other two techniques utilised in this paper are the sigma point method [36] and
polynomial chaos expansion method [30,37]. The sigma point method relies on a smart
selection of sampling points (called the sigma points), which are then propagated through
the nonlinear model to obtain a response set. The expectation and the variance are then
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estimated from this response set. The sigma points are computed based on the parameter
variance V

[
θ
]
.

θσ = θ ± σ , where, σ←
√
(n + κ)V

[
θ
]

(19)

For p uncertain parameters, the set of sigma points contains 2p elements. This set is
then transformed by the nonlinear map (i.e., the nonlinear process model in this case) to
obtain a set of model responses,

y0 = f (x(θ0)) , and, yσ = f (x(θσ)) (20)

The expectation and the variance–covariance matrix are computed using this re-
sponse set.

ȳsig =
1

n + κ

[
κy0 +

1
2

2n

∑ yσ

]
(21)

Vy =
1

n + κ

[
κ(y0 − ȳsig)(y0 − ȳsig)

> +
1
2

2n

∑(yσ − ȳsig)(yσ − ȳsig)
>
]

(22)

The polynomial chaos expansion aims to approximate the model response by a trun-
cated sum of orthogonal polynomials. The model response is approximated as

y = f (θ) ≈
M

∑
i=0

aiΨi(θ) (23)

where Ψi(θ) are multivariate orthogonal polynomials. The total number of terms required
in the approximation (M) depends on the number of uncertain parameters (p) and the
order of the polynomials (o) used.

M + 1 =
(p + o)!

p! o!
(24)

If the parameters are assumed to be independent, the multivariate polynomials can
be constructed from univariate orthogonal polynomials. The Wiener–Askey scheme [37]
lists some commonly used probability distributions that are associated with certain uni-
variate orthogonal polynomials. Other approaches based on statistical moments [38,39]
or the Gram–Schmidt orthogonalisation [40,41] are available to generate the monovariate
polynomials when the parameters are correlated or do not follow a distribution in the
Wiener–Askey scheme.

Once the polynomials are generated, the coefficients in the expansion, ais, need to
be computed. Approaches to compute these coefficients are classified into intrusive and
non-intrusive approaches. Intrusive approaches use Galerkin projections on the process
model to generate the coefficients [42,43]. Non-intrusive methods, however, treat the model
as a black-box and rely on sampling [44]. In this paper, the non-intrusive approach based
on least-squares regression is used. Both Nimmegeers et al. [29] (supplementary file) and
Bhonsale et al. [38] elaborate on this approach.

Due to the certain attributes of orthogonal polynomials [42], the expectation and
variance can be estimated directly from the coefficients in the model response expansion.

E[y] = a0 (25)

Vy =
M

∑
i=1

a2
i 〈Ψ2

i 〉 (26)

Regardless of the method used for uncertainty propagation, the optimisation problem
described in Equation (15) has to be augmented with extra states so that the expectation
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and variance can be estimated. The augmented states depend on the technique used. For
linearisation, the augmented state is the sensitivity matrix, while for sigma points and
polynomial chaos the augmented states are the original states evaluated at the parameter
sampling point.

2.4. Implementation

In all cases, the dynamic optimisation problem has to be solved numerically. In this
paper the direct collocation approach [45] is utilised. In this method, both the state and
control vectors are fully discretised in time leading to a nonlinear program (NLP). For
the states, between every discretised time interval four collocation points are used. These
collocation points obey the model equation through equality constraints. A cubic Lagrange
polynomial with collocation points situated at the Radau roots is used at each interval.
The control variable is discretised as piecewise constant on each time interval. The NLP is
solved using the interior point method as implemented in IPOPT [46].

All the dynamic optimisation problems are implemented in a Python-based tool
developed within the BioTeC+ team called POMODORO [47]. POMODORO utilises
CasADi [48] to obtain the gradient and Hessian information required for the optimisation.
CasADi can provide exact Hessian information with an automatic differentiation method.
While the default NLP solver in POMODORO is IPOPT, other (commercial) solvers can
also be used via their CasADi interface. POMODORO is available freely for academic
use via the website https://cit.kuleuven.be/biotec/software/pomodoro (accessed on 12
November 2021).

3. Results and Discussion

The fermentation model described in Section 2.1 is optimised for two objectives:
(i) maximising ethanol production, and (ii) minimising batch time. A constraint on min-
imum ethanol concentration is imposed. The minimum concentration at the end of the
batch is set to 25 g/L. Similarly, an end time constraint on the suspended active cells is also
imposed. The maximum concentration of active cells should be less than 0.5 g/L. The two
major quality constraints imposed are on the concentrations of diacetyl and ethyl acetate.
The maximum concentration of these by-products should be less than 0.2 ppm and 2 ppm,
respectively [11,21]. Without accounting for the uncertainty on any of the parameters, the
optimised temperature trajectories are depicted in Figure 1a,b.
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(b) Minimise batch time

Figure 1. Optimised temperature profiles for the nominal case with two different objectives: max-
imising ethanol concentration and minimising batch time.

When maximising the ethanol concentration at the end of the batch, the wort is
immediately heated to a relatively high temperature to accelerate the conversion of latent

https://cit.kuleuven.be/biotec/software/pomodoro
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cells to active cells and to enhance the growth of these active cells. The temperature profile
stays relatively constant to boost the production of ethanol. This also enhances byproduct
formation. The temperature is optimised such that the concentration of ethyl acetate does
not exceed 2 ppm. As there is no limit on the batch time, the fermentation continues until
all the active yeast cells are consumed. A maximum ethanol concentration of 60.24 g/L is
reached in 168 h.

When minimising the batch time, the wort is first heated at the maximum possible
temperature (15 ◦C) to accelerate the the conversion to and the growth of active yeast cells.
However, this also accelerates the production of ethyl acetate. Thus after some time, the
wort is cooled too rapidly. The cooling occurs in steps because the consecutive temperature
jumps are constrained to 2.5 ◦C/h. This slows down the byproduct formation; however,
the ethanol production continues. The evolution of the concentration profiles is depicted
in Figure 2b. Towards the end of the batch, the temperature increases again rapidly so
as to ensure the active cells are killed and the concentration of yeast cells is below the
threshold of 0.5 g/L. The batch stops as soon as this threshold limit is reached. The ethanol
concentration achieved is 48.11 g/L in 100 h.
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Figure 2. Concentration profiles of ethanol and the two byproducts for the nominal case with two
different objectives: maximising ethanol concentration and minimising batch time. The byproducts
are represented on the left y-axis and ethanol on the right y-axis. The horizontal lines depict the
constraints on the byproducts.

3.1. Influence of Uncertainty

The fermentation model used contains 18 parameters, each of which are determined
experimentally. However, considering the uncertainty on each parameter would lead to
a very large optimisation problem which would be numerically infeasible. Thus, based
on a sensitivity analysis, four parameters which have the most influence on the states of
interest (quality parameters) are considered. These are as follows: the maximum growth
rate (µX,0), yeast death rate (µDT), maximum sugar consumption rate (µS,0), and ethyl
acetate production (YEA). The only quality parameters considered are the byproducts and
the ethanol concentration. Under in silico uncertainty, Figure 3 shows the trajectories of
500 Monte Carlo simulations with the optimal temperature profile obtained for maximising
ethanol concentration. The diacetyl concentrations are always below the threshold, while
the ethyl acetate concentrations show a large variation and large constraint violation.
In total, 50.4% of Monte Carlo simulations violated the ethyl acetate constraint. This
exemplifies the need to incorporate the uncertainty into any optimisation study.

3.2. Optimisation under Uncertainty

The uncertainty is incorporated in the optimisation study using the three approaches
described earlier. For polynomial chaos expansion, two polynomial orders are used: first
order and second order. As the parameter uncertainty is assumed to be Gaussian, Hermite
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polynomials are used. A desired confidence interval for the constraints is set according
to the quantiles of a normal distribution. The backoff parameters used in this study are
reported in Table 3. The optimised control profiles are then tested via a Monte Carlo
simulation with randomly generated parameter values.
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Figure 3. Concentration profiles of the two byproducts for the nominal case with maximising
ethanol concentration as the objective, and minimising batch time. The blue trajectory represents
the simulation with the nominal parameter value and the red trajectories depict the Monte Carlo
simulations. The horizontal dashed lines depict the constraints on the byproducts.

Table 3. Backoff parameter (α) values corresponding to the confidence intervals.

Confidence Level 90% 95% 97.50%
Quantile 0.1 0.05 0.025
α 1.28 1.65 1.96

3.2.1. Maximising Ethanol

Figure 4 depicts the results obtained by all the three methods for 95% confidence on
the constraint violation. Although concentration of ethanol obtained at the end of the
fermentation is similar (slightly lower) to the nominal case, the concentration trajectories of
ethyl acetate and diacetyl show differences in the optimised results. Amongst the methods,
PCE2 gives the most conservative solution while PCE1 and LIN operate much closer to the
concentration bound. This variation is attributed to the approximation of the variance of
the concentration values.

It is impossible to judge a priori which approach provides the best approximation.
Thus, the results obtained are assessed using a Monte Carlo simulation. The result with
lowest percentage of constraint violation is preferred. The constraint violation as a per-
centage of the total simulation is reported in Table 4. All methods lead to lower constraint
violations than the nominal case. However, second-order polynomial chaos seems to per-
form the best. The probability densities of the two constraints via the trajectories optimised
using all methods are depicted in Figure 5. The majority of constraint violations are caused
due to overproduction of ethyl acetate. This is expected from the process dynamics. As
concentration evolution of both ethanol and ethyl acetate is described by similar mathe-
matical expressions, maximising ethanol boosts the production of ethyl acetate. However,
the conversion/inhibition factors and the production rates differ and are influenced by the
temperature differently.

3.2.2. Minimising Batch Time

Figure 6 depicts the results obtained by all the three methods for 95% confidence on
the constraint violation. It is seen that all the methods result in longer fermentation batches
than the nominal case. As is the case with maximising ethanol, PCE2 and SP give the most
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conservative solutions while PCE1 and LIN result in fermentation times similar to the
nominal case.

0 25 50 75 100 125 150 175 200
Time [h]

4

6

8

10

12

14

16

Te
m

pe
ra

tu
re

 [
C]

Nominal
LIN
SP
PCE1
PCE2

(a) Optimised temperature profile

0 25 50 75 100 125 150 175 200
Time [h]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Et
hy

l A
ce

ta
te

 C
on

ce
nt

ra
tio

n 
[p

pm
]

Nominal
LIN
SP
PCE1
PCE2

(b) Ethyl acetate concentration

0 25 50 75 100 125 150 175 200
Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Di
ac

et
yl

 C
on

ce
nt

ra
tio

n 
[p

pm
]

Nominal
LIN
SP
PCE1
PCE2

(c) Diacetyl concentration

Nom LIN SP PCE1 PCE20

50

100

150

200

250

Ti
m

e 
[h

]

Batch time

0

10

20

30

40

50

60

70

Et
ha

no
l C

on
ce

nt
ra

tio
n 

[g
/L

]

Ethanol Concentration

(d) Batch time and ethanol concentration at end of
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Figure 4. Optimisation results for maximising ethanol with all three methods and α = 1.65. The
concentration trajectories depicted were obtained by applying the optimised temperature trajectory
to the model with nominal parameters.
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Figure 5. Density plots for concentrations of ethyl acetate and diacetyl based on Monte Carlo
simulations for optimal trajectory obtained with maximising ethanol. The vertical dashed line depicts
the concentration threshold.
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Table 4. Constraint violations obtained from Monte Carlo simulations for the maximising ethanol
objective via all the methods and backoff parameter values.

Linearisation Sigma Points PCE 1 PCE 2 Nominal

α = 1.28 19.6% 18.5% 35.3% 9.5%
50.4%α = 1.65 13.6% 13.0% 27.6% 6.7%

α = 1.96 11.1% 9.6% 21.6% 5.4%
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Figure 6. Optimisation results for minimising time with all three methods and α = 1.65. The
concentration trajectories depicted were obtained by applying the optimised temperature trajectory
to the model with nominal parameters.

The constraint violation percentage is reported in Table 5. All the robustification
approaches lead to a significant reduction in constraint violation. Again, the sigma points
approach and PCE2 perform the best in terms of constraint violation. From the concen-
tration density plots (Figure 7) for ethyl acetate and diacetyl, it is observed that when
the objective is to minimise batch time, the majority of constraint violations are caused
due to excess diacetyl concentration. For the case of maximising ethanol, the constraint
violations are caused due to excess ethyl acetate. This can be explained by the dynamics of
the process. If the fermentation is allowed to proceed uninterrupted, diacetyl decomposes
into a variety of other products. As minimising the batch time essentially interrupts the
fermentation, it influences the diacetyl decomposition.
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Table 5. Constraint violations obtained from Monte Carlo simulations for the minimising time
objective via all the methods and backoff parameter values.

Linearisation Sigma Points PCE 1 PCE 2 Nominal

α = 1.28 35.5% 17.2% 37.7% 17.2%
70.4%α = 1.65 29.3% 8.4% 20.1% 8.2%

α = 1.96 24.5% 4.6% 14.4% 4.4%
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Figure 7. Density plots for concentrations of ethyl acetate and diacetyl based on Monte Carlo
simulations for optimal trajectory obtained with minimising time. The vertical dashed line depicts
the concentration threshold.

3.2.3. Comparison of Robustification Approaches

For both objectives, the sigma points approach and PCE2 approach perform best
in terms of constraint violation. The two first-order methods, linearisation and PCE1,
both lead to relatively high constraint violation percentages. As both these methods rely
on local linear approximations of a nonlinear model, these methods can be expected to
perform poorly when the underlying process model is very nonlinear. However, due to
the simplicity of implementation, linearisation is often used despite the poor performance.
In the case of maximising ethanol, linearisation performs surprisingly well. This can be
explained by the optimised profile. The optimised profile consistently hovers around
14 ◦C and does not induce any abrupt changes to the process dynamics, leading to a
smooth evolution of concentration profiles. In such cases, linearisation is known to perform
well. However, when an optimised profile excites the nonlinearity in the model by a
big jump (as is the case in minimising time), linearisation over(or under)estimates the
variances drastically. This is corroborated by a comparison of the estimated variances of
the concentrations with the variance obtained from Monte Carlo simulations reported in
Table 6. For maximising ethanol, the variance is estimated with good accuracy, while for
minimising batch time, the accuracy reduces. This is consistent with the results of Bhonsale
et al. [35], which demonstrate the failure of linearisation when a step change in input is
applied to the process exciting its nonlinear dynamics.

A polynomial chaos expansion is fundamentally a reduced-order model of the original
process model. In PCE1, the expansion is truncated after the first-order terms making the
model linear. The weak performance of PCE1 can be attributed to the local nonlinearity of
the fermentation model, which makes the variance approximation poor. Adding a second-
order term in PCE2 significantly improves the variance approximation and subsequently
the performance of the optimisation under uncertainty.
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Table 6. Comparison of variances approximated using linearisation with variances approximated by
Monte Carlo simulations for α = 1.65.

Variance
Maximise Ethanol Minimise Batch Time

Linearisation MC Linearisation MC

V
[
CEA

]
1.56× 10−1 1.79× 10−1 1.20× 10−2 1.70× 10−2

V
[
CDY

]
5.16× 10−4 5.38× 10−4 2.60× 10−3 1.57× 10−3

V
[
Ceth

]
1.19× 101 1.42× 101 1.54× 101 2.29× 101

3.2.4. Effect of Backoff Parameter

As mentioned earlier, the backoff parameter is based on the quantiles of the output
distribution. As expected, increasing the value of the back-off parameter (i.e., constraint
violations tolerated) leads to a reduction in the percentage of constraint violations for all
the methods. This comes at the cost of a more conservation solution. For all methods, an
increase in backoff parameter leads to a reduction in the maximum ethanol concentration
obtained and longer batch times when the batch time is minimised. It should be noted
that in all cases, the tolerances set for the constraint violation are not met. For example, a
backoff parameter of 1.65 corresponds to 5% tolerance for constraint violation. However,
PCE2, which performs the best for both objectives, still leads to 6.7% and 8.2% violations
for maximising ethanol and minimising batch time objectives, respectively. This is because
the backoff parameter is based on the quantiles of a normal distribution. It is evident
from Figures 5 and 7 that the model output does not follow a Gaussian distribution.
Hence, the quantiles used do not exactly correspond to the tolerances. As only two
moments, the expectation and the variance, can be obtained from either of the three
methods, information on the distribution is impossible to obtain without Monte Carlo
simulations. Nevertheless, the reduction in constraint violations with increasing backoff
parameters under the assumption of Gaussianity is still significant.

4. Conclusions

Dynamic optimisation has tremendous potential to improve fermentation operation.
However, models used in optimisation are inherently uncertain due to their estimation
from experimental (noisy) data. It has been shown that if the parametric uncertainty is not
included in the optimisation, the state constraints can be violated. Hence, to avoid bad
fermentation batches it is necessary to include the uncertainty information available in the
optimisation framework.

In this study, a beer fermentation process was optimised while accounting for para-
metric uncertainty using three techniques. The results obtained with the three techniques
were compared for different backoff parameter values. Two objectives, maximising the
ethanol concentration and minimising the fermentation time, were considered. While all
the methods led to a significant improvement in constraint violation when compared to
the nominal case, second-order PCE performed the best. The main advantage of the PCE
approach is that no assumption on the distribution of uncertain parameters needs to be
made. For independent parameters with certain distributions, the polynomials involved
in the PCE can be obtained through the Wiener–Askey scheme [37]. If the parameters
are not independent, or do not follow a distribution from the Wiener–Askey scheme, the
polynomials can be obtained by utilising the statistical moments and Gram–Schmidt or-
thogonalisation. However, PCE is computationally expensive as it leads to a significantly
bigger optimisation problem. The sigma point approach leads to a smaller optimisation
problem while still performing well. However, the direct application of the sigma point
approach is limited to parameters with symmetric unimodal distributions. For asymmetric
distributions, transformation functions need to be utilised to implement the sigma point
approach [49]. Linearisation performs the worst amongst the three approaches. This is
expected due to the nonlinearity of the process. However, when the objective is to maximise
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ethanol linearisation, it performs similarly to the sigma point approach. The study has also
emphasised the need for appropriate selection of the backoff parameter.
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