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Abstract: Global demand for renewable and sustainable energy is increasing, and one of the most
common biofuels is ethanol. Most ethanol is produced by Saccharomyces cerevisiae (yeast) fermentation
of either crops rich in sucrose (e.g., sugar cane and sugar beet) or starch-rich crops (e.g., corn and
starchy grains). Ethanol produced from these sources is termed a first-generation biofuel. Yeast
fermentation can yield a range of additional valuable co-products that accumulate during primary
fermentation (e.g., protein concentrates, water soluble metabolites, fusel alcohols, and industrial
enzymes). Distillers’ solubles is a liquid co-product that can be used in animal feed or as a resource
for recovery of valuable materials. In some processes it is preferred that this fraction is modified
by a second fermentation with another fermentation organism (e.g., lactic acid bacteria). Such two
stage fermentations can produce valuable compounds, such as 1,3-propanediol, organic acids, and
bacteriocins. The use of lactic acid bacteria can also lead to the aggregation of stillage proteins
and enable protein aggregation into concentrates. Once concentrated, the protein has utility as a
high-protein feed ingredient. After separation of protein concentrates the remaining solution is a
potential source of several known small molecules. The purpose of this review is to provide policy
makers, bioethanol producers, and researchers insight into additional added-value products that can
be recovered from ethanol beers. Novel products may be isolated during or after distillation. The
ability to isolate and purify these compounds can provide substantial additional revenue for biofuel
manufacturers through the development of marketable co-products.

Keywords: bioethanol; fermentation; nootropics; organic acids; fusel alcohols; thin stillage; added-
value products; 1,3-propanediol; bacteriocins

1. Introduction

The demand for fuel ethanol continues to grow, with global production projected to
surpass 140 billion litres/year [1]. Sugarcane and maize continue to be dominant feedstocks
for bioethanol production. As such, bioethanol production is projected to consume 25%
and 14% of global sugarcane and maize by 2029 [1]. Bioethanol is typically produced
using a range of fermentation processes, each specialized to utilize a narrow range of
inputs. The inputs are classified based on feedstock types (e.g., sucrose based, starch
based, lignocellulosic, and algal), as belonging to a specific generation [2]. The type of
feedstock, nutrients, and fermentation conditions affect bioethanol yield, and the nature of
co-products [2–4]. Fermentation co-products can also affect bioethanol yield, as some act
as both yeast nutrients and antinutrients. While the yield of ethanol is a primary driver for
ethanol production, the identification and valorization of fermentation co-products add
value to ethanol production.

Yeasts, and particularly Saccharomyces cerevisiae, used in ethanol production are most
efficient in warm (e.g., 20–30 ◦C) and acidic (pH between 4.5–6.5) environments [5]. During
microbial fermentation, yeasts produce glycerol, as both an osmoprotectant [6–8] and for
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metabolic recovery of NAD+. Yeast also acidifies their environment to promote growth
through proton secretion, secretion of organic acids (discussed below), removal of buffering
agents, and dissipation of carbon dioxide [5]. The most common yeast used in alcoholic
fermentation, Saccharomyces cerevisiae, is preferred for rapid and efficient conversion of
sugar solutions to solutions with correspondingly high ethanol concentrations. The lat-
ter solutions are readily distilled and dehydrated to yield products suitable for blending
with gasoline. Dehydration processes to produce anhydrous ethanol include heteroge-
neous azeotropic distillation using solvents (e.g., benzene), extractive distillation with
solvents and entrainers (e.g., salts), adsorption using molecular sieves, and pervaporation
membranes (e.g., zeolite, silica, etc.) [9]. During fermentation with yeast, value-added
co-products (e.g., α-glycerylphosphorylcholine) can accumulate along with ethanol, while
fusel alcohols can be recovered during distillation and are often added to ethanol used in
fuel applications. Common lower value co-products can also accumulate (e.g., acetic acid,
succinic acid, and glycerol) that are more difficult to valorize, and nuisance coproducts
can accumulate (methanol, hydrogen sulfide, and methyl mercaptan). A portion of the
volatile co-products are volatile, toxic, and/or contribute to odors that can be co-distilled
with the ethanol product. Multi-stage distillation and other purification technologies are
required to remove these compounds. A group of alcohols and aldehydes (e.g., aldehydes,
butanols, propanols, etc.) are naturally synthesized from amino acids through the Ehrlich
pathway [10] and simple sugars during fermentation [11,12]. In addition to alcohols, or-
ganic acids can also accumulate (e.g., acetic acid, succinic acid, and lactic acid) [3,13–15]
because of yeast metabolic processes and even metabolism by adventitious bacteria present
during ethanolic fermentation. Secondary fermentation (two-stage fermentation) of stillage
can affect the contents of these compounds.

Upon the completion of ethanolic fermentation, the distillers’ grain waste by-product
can be further upgraded and enriched (e.g., secondary fermentation) to produce addi-
tional added-value compounds (e.g., 1,3-propanediol), as well as a highly concentrated
protein that can be utilized as feed for domestic animals [14,15]. Altogether, the pro-
duction of these co-products and others can add considerable value to ethanol coprod-
ucts (Table 1). Therefore, to maximize the utilization of grain crops, it is beneficial to
identify valuable co-products produced during the fermentation process. This review
will examine several valuable co-products that accumulate during alcoholic fermentation
(α-glycerylphosphorylcholine, and fusel alcohols), followed by those produced during
secondary fermentation (e.g., organic acids) of the distillers’ grain co-products (whole and
thin stillage), which are primarily from first generation ethanol production. The recovery
and purification of these compounds can further add value and provide opportunities for
increased utilization of grain crops and provide ethanol producers access to new markets.

Table 1. Market size of coproduct solutes from alcoholic fermentation [16–22].

Co-Products Market Size
(US Dollars)

Project Compound Annual
Growth Rate (CAGR)

Ethanol 89.1 billion (2019) 4.8% by 2027
Acetic acid 8.92 billion (2019) 5.2% by 2027

Succinic acid 181.6 million (2019) 9.2% by 2022
Lactic acid 2.7 billion (2020) 8.0% by 2028
Glycerol 2.6 billion (2019) 4.0% by 2027

Nootropics 2.42 billion (2020) 12.7% by 2028
Dried distillers’ grains with solubles 112.5 million (2020) 5.2% by 2026

2. Thin Stillage and Distillers’ Grains

Following ethanolic fermentation and distillation processes, the by-product stillage
contains much of the protein, oil, fiber, and non-starch carbohydrate that were not available
to the yeast during fermentation. A common process for using these components starts
with the separation of whole stillage into a liquid portion with suspended solids (thin
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stillage) and wet solids (distillers’ wet grains), using centrifugation, vibratory separation,
or a press [23,24]. These by-products can then be further processed (i.e., drying and
fractionation) or extracted into specific components.

Without any further processing, all or a portion of thin stillage can be returned or
backset to the next fermentation. This practice replaces some of the water required to soak
incoming feedstocks intended for fermentation [25]. Protein is a major nutrient remaining
in the stillage, and many methods have been developed to recover stillage proteins. Grain
thin stillage contains approximately 37% protein (w/w dry basis) [26], and research has
been conducted to develop stillage protein concentrates. Physical clarification techniques
using additives [27,28], gas flotation [29,30], centrifugation [31], and filtration [32,33] have
been tested as approaches to produce protein-enriched solids from thin stillage. Another
approach for improving stillage protein quality and concentration is through a two-stage
fermentation strategy [15,34], where it is also possible to upgrade glycerol to higher value
compounds. Where thin stillage is not suited for use as a feed, it may be used as a
nitrogen-rich fertilizer for crops [35]. Another strategy is to pair thin stillage valorization
with a protein extraction process. Protein extraction from oilseed meal requires the use
of large volumes of solution to dissolve proteins before precipitation. Thin stillage has
some dissolved protein, but it can be used as a solution for protein extraction from oilseed
meal [36]. An economical use of thin stillage that avoids the need for evaporation while
providing the benefit of the stillage as a nutrient solution involves simply providing stillage
in the water for cattle. In this way, the stillage becomes a nutrient-rich water source [37].

Once thin stillage is separated by dewatering distillers’ wet grains [38,39], the thin
stillage can then be dried to a concentrated syrup called distillers’ solubles (DS), which is
useful as an animal feed component. Remaining solids or distillers’ wet grains (DWG) can
be dried to produce distillers’ dried grains (DDG) for storage and shipping. An alternative
practice is to add DS to the grains as they dry to produce dried distillers’ grains with
solubles (DDGS), a product that is commonly used with cattle feed [40]. Compared to
wet feed products, DDG and DDGS have extended shelf-life and are more easily shipped.
The sale of fermentation by-products for use as cattle feed generally provides 10–20% of
the total revenue of ethanol production facilities [41] while avoiding revenue losses that
would be incurred if co-product disposal was necessary. Fractionation of the DDGS can
concentrate protein and generate fractions with high fiber contents to produce additional
protein and fiber products [42]. In some rations, the higher fiber content of DDGS is
undesirable. Producing a higher protein- and fat-content feed ingredient can improve the
value of this product stream. In addition to the use of stillage products in animal feed, a
portion DDGS proteins can be more readily solubilized and extracted for a wide variety of
industrial uses (e.g., biopolymer production) [43].

DDG, produced during first-generation biofuels processes, can be used as a substrate
for a second fermentation after pre-treatment that converts unhydrolyzed and unprocessed
cellulose into fermentable sugars [44]. Pre-treatment conditions are like those employed
in second-generation biofuel processes and can include physical (e.g., milling), chemical
(e.g., alkaline treatments), physicochemical (e.g., steam or CO2 explosion), or biological
processes (e.g., enzymatic hydrolysis) [2]. Nonetheless, variability of DDG composition
could affect uniform enzymatic digestibility, and fermentability. Modification of the overall
process design to accommodate new processing steps, or variable input materials would
affect the economics of biofuel production [44].

Alternatively, separation of fiber and germ, prior to fermentation, can enhance the
value of non-starch/sugar nutrients in grain [45]. This can be accomplished through a com-
bination of processes, including soaking, grinding, enzymatic hydrolysis, and sieving [45].
Wet milling ethanol production facilities can also implement front-end fractionation using
conventional hydrocyclone systems [41], to further separate starch, protein, and fibre [46],
prior to alcoholic fermentation.

Finally, oil is another product of bioethanol production that is often poorly utilized.
For corn, methods of oil extraction from thin stillage have been patented [47], and other
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oil extraction methods from corn DDGS have been developed [48]. However, due to
the lower oil content of wheat and other grains, oil recovery techniques have remained
largely undeveloped. In addition to fractionating fermentation products, other high-value
compounds can also be extracted during the initial and two-stage fermentation processes.

3. α-Glycerylphosphorycholine

α-Glycerylphosphorylcholine (α-GPC) (Figure 1) is a yeast metabolite and precur-
sor involved in the synthesis of acetylcholine and membrane phospholipids [49]. This
compound has garnered interest in the natural products, medical, pharmaceutical, food,
athletic performance, and cosmetic industries [50,51]. As α-GPC is a source of choline, it
has broad potential applications in foods related to health and performance. It is commonly
marketed as a nootropic, due to its ability improve cognitive recovery and neurologi-
cal function in healthy individuals, maintain neurological function after brain injury or
mitigate deterioration of those affected by brain disease [49,52]. For example, α-GPC
has been used to improve the learning and memory abilities in stroke patients [53] and
is also being investigated as a nootropic in treating psychiatric and neurological condi-
tions (e.g., Alzheimer’s, dementia, schizophrenia, etc.) [53–57]. Furthermore, relating to
its applicability as a nootropic supplement, α-GPC has been demonstrated to improve
muscle strength [58]. With Alzheimer’s disease predicted to increase three-fold, to affect
131.5 million people, by 2050 [58], the demand for α-GPC could increase correspondingly,
in addition to its use for muscle therapy. Collectively, the global market projections for
nootropic supplements are predicted to surpass $10 billion by 2025 [59], making this
nootropic an attractive value-added product if it can be recovered efficiently.
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Synthesis of α-Glycerylphosphorylcholine

α-GPC can be produced chemically or with the use of enzymes. Chemical methods
typically involve either hydrolysis of phosphatidylcholine (PC) or condensation of glyc-
erol derivatives with phosphocholine donors using basic catalysts [60–62]. The chemical
processes can produce toxic fumes and require the use of strong acids and harmful or
undesirable solvents [62,63]. The use of toxic substrates can produce α-GPC that is not
safe for use in food and, thus, not marketable. Alternatively, α-GPC has been produced by
enzymatic hydrolysis of PC in aqueous media [52,57,64–66], employing phospholipases
(Figure 2) [64]. Enzymatic production of α-GPC is advantageous, as the amounts of chem-
ical reagents can be reduced, thereby making a comparably inexpensive product that is
suited for use in food and cosmetic products [64]. However, enzymatic production of
α-GPC can also be difficult due to the limited solubility of PC in aqueous phases and long
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reaction times (e.g., low activity) for phospholipases [67–69]. Surfactants can be used to
improve α-GPC production, while being environmentally friendly [69].
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Figure 2. Synthesis and metabolism pathway of α-glycerylphosphorylcholine (Adapted from Li and
Vance 2008 [70]; Gallazzini and Burg 2009 [71]). The blue area represents processes of the Kennedy
Pathway, and the green area represents the synthesis of phosphatidycholine via methylation of
phosphatidylethanolamine.

Fermentation of ginger feedstocks using Schizosaccharomyces pombe yeast [72] has also
resulted in the production of a nootropic compound (e.g., 6-paradol) [72]; however, these
fermentations are often slower and produce by-products [73,74] that can make purification
costly. Nonetheless, the ability to isolate and purify these nootropic coproducts can add
significant revenue for bioethanol producers, by providing ethanol producers with new
products that meet the needs of other markets. For example, nootropics (e.g., α-GPC) had
a value of 7.21 billion USD in 2020, and they are expected to grow with a CAGR of 80%
until 2028 [75]. Accumulation of α-GPC in the mash has been observed during alcoholic
fermentation of cereal crops, such as wheat, barley, and oat, although the concentration
produced can differ among cultivars [3,13]. For example, fermentation of 28 barley and
12 oat cultivars resulted in the accumulation of between 0.84 g/L to 1.81 g/L for barley
and 0.62 g/L to 0.88 g/L for oat, depending on cultivar [3]. Meanwhile, fermentation of
wheat resulted in α-GPC accumulation of approximately 1.68 g/L [13]. Oyeneye et al.
also found that treatment of the grain with phospholipase A1, an enzyme that readily
hydrolyses phosphatidyl choline and lysophosphatidyl choline, produced a beer with
higher α-GPC than other treatments. This treatment effect strongly suggests that α-GPC
might accumulate as a result of phosphatidyl choline hydrolysis. Pre-treatment of the
feedstock (e.g., soaking, germination, incubation temperature, etc.) can also influence
α-GPC yield (unpublished data). Therefore, alcoholic fermentation of cereal feedstocks can
be highly advantageous due to the inexpensive processes involved and because α-GPC
can be concurrently produced with ethanol during fermentation. α-GPC is a naturally
produced endogenous choline derivative; however, it is rarely found at high concentrations
in nature. Therefore, there is great potential in developing alternative, inexpensive, and
sustainable means for commercial production to supply this compound.
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4. Fusel Alcohols

A series of primary alcohols are found as natural co-products, generated during the fer-
mentation process. These compounds are largely produced by metabolic processes, called
the Ehrlich pathway in yeast, that recover nitrogen required for growth and metabolism.
Enzymes of the pathway catalyze the transfer of amines between amino acids and ketones
and the decarboxylation of α-keto acids to produce aldehydes, and they reduce aldehydes
to form fusel alcohols (Figure 3). Products from the Ehrlich pathway can be influenced by
the presence of certain amino acid intermediates (Table 2).
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Table 2. Amino acids intermediates and products of the Ehrlich pathway. Reconstructed from Hazelwood et al., (2008) [10].

Amino Acid α-Keto Acid Fusel Aldehyde Fusel Alcohol

Isoleucine α-Ketomethylvalerate Methylvaleraldehyde Active amyl alcohol
Leucine α-Keotisocaproate Isoamylaldehyde Isoamyl alcohol

Methionine
Phenylalanine

Threonine

α-Keto-γ-
(methylthio)butyrate

Phenylpyruvate
2-Ketobutyrate

Methional
Phenylethanal

Propanal

Methionol
Phenylethanol

Propanol

Tryptophan 3-Indole pyruvate 3-Indole acetaldehyde Tryptophol

Tyrosine p-Hydroxyphenylpyruvate p-Hydroxyphenylacetaldehyde p-Hydroxyphenylethanol or
tyrosol

Valine α-Ketoisovalerate Isobutanal or isovaleraldehyde Isobutanol

Fusel alcohols are somewhat volatile, and as such, distillation enables their separation
from fermented mash. These are a mixture of primarily alcohols, including active amyl
alcohol (2-methyl-1-butanol), isoamyl alcohol, isobutyl alcohol, and, in lesser amounts,
n-amyl alcohol, n-butyl alcohol, and methionol. Less volatile alcohols are also present
in the mash and are poorly extracted by distillation, including phenethyl alcohol and
tyrosol. Some of these alcohols are aromatic and are associated with strong tastes and
pungent odours. Used sparingly, fusel alcohols and esters can contribute positively to foods
and beverage flavours, but at higher concentrations, they are associated with unpleasant
flavours and “hangover” symptoms [76]. These compounds can be detrimental to yeast
growth; therefore, their removal is essential in maintaining efficient fermentation [10,76–78].
When these materials are extracted from backset or continuous distillation processes, the
fermentation efficiency is increased, and a valuable co-product can be isolated.

During ethanol distillation, fusel alcohols concentrate in the distillation column as they
are less volatile than the ethanol water azeotrope. The removal of these compounds is not
required for fuel production but is essential for ethanol destined for food or pharmaceutical
applications. If these higher alcohols are not removed, they can reach their limit of solubility
and increase vapour pressures in the column. In turn, the increase in vapour pressure can
cause boiling and flooding and thus interfere with distillation. In bioethanol plants with
continuous distillation processes, the fusel alcohols are distributed in the distillation or
rectifier column, where the product at the top of the column is purified alcohol (~95% by
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wt.), and at the bottom is mostly water. Fusel alcohols are most volatile at lower ethanol
concentrations and tend to collect in the intermediate region where ethanol concentration
is approximately 45% (v/v) [76]. In continuous distillation columns, fusel alcohol removal
is accomplished by drawing a solution of water, ethanol, and fusel alcohols from the center
of the rectifier (Figure 4).
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In batch distillation, fusel alcohols form azeotropes with water that can accumulate at
the bottom of the column to become concentrated late distilling fractions called “tails” that
evaporate when the column temperature rises at the end of a distillation.

The accumulation of fusel alcohol in commercial fermentations can vary from 1–11 mL/L
of ethanol produced [79]. With global biofuel production capacity increasing, the capacity
for the production of substantial amounts of fusel alcohol is possible. For example, the US
Energy Information Administration announced that the total US biofuels plant production
capacity reached 21 billion gallons per year as of January 2021 [80]. If fusel oils were sepa-
rated from fuel ethanol, hundreds of millions of litres of fusel alcohols could be recovered
annually. Ultimately, it is beneficial to investigate additional uses for these compounds to
promote sustainability and discover new market values for these co-products. Typically,
fusel alcohols are blended with ethanol to make a product that is suited for fuel applica-
tions. Separated fusel oils can also be used as an energy source, but this is not an ideal
fuel, as negative environmental impacts can outweigh the value of energy recovered when
combusting these materials [81]. Despite some of the drawbacks in fermentations that
accumulate fusel alcohols, they have utility as gasoline and diesel additives that improve
fuel properties and combustion [5,10,76–78,82]. In particular, fusel alcohol gasoline blends
do not exhibit any phase separation, and engines operating on these blends can achieve
higher compression ratios and performance than possible with gasoline alone.

Fusel alcohols can also be purified and esterified to yield a range of valuable esters.
Isoamyl alcohol is the primary component in fusel alcohols and can be used in the pro-
duction of organic esters for industrial purposes. For example, isoamyl acetate is formed
by esterification of isoamyl alcohol with acetic acid, and it has applications in commercial
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products such lacquers and as a food flavouring additive, with a banana-, caramel-, or
pear-like flavour profile [76–78]. As such, the recovery of isoamyl alcohol can add sig-
nificant value to the bioethanol producer, as this compound has three-times the market
value of fuel ethanol [81]. Unfortunately, isolating and purifying isoamyl alcohol from
fusel alcohols is challenging, due to the formation of heterogenous azeotropes of several
alcohols with water during distillation. Multiple decanters have been used to collect fusel
alcohol draws at alternating positions in the distillation column, to separate and purify
fusel alcohols, although these methods typically do not afford products that are sufficiently
pure for commercial application [76,79,81]. Esterification of fusel alcohols, a process called
reactive distillation, has also been proposed and demonstrated successfully at a bench-scale
to simultaneously obtain highly enriched alcohol esters [76,77]. Another method to aid in
fusel alcohol separation is the addition of water to promote phase separation of higher al-
cohols from the aqueous phase (containing methanol, ethanol, propanol, and isopropanol).
The organic phase can then be further distilled to enrich isoamyl alcohol [76,79].

Enrichment and purification of individual fusel alcohols and their esters can produce
value-added compounds, suitable for inclusion in flavours and fragrances. The accumula-
tion of these alcohols depends greatly on yeast genetics [76–78] and fermentation medium
components (e.g., sugar source) [76,77]. For example, the production of isopropanol can be
manipulated through the addition of exogenous acetone to the mash [76,77]. Yeast genetics
determines the production of volatile compounds, such as fusel alcohols, that contribute to
the product flavours and aromas [77,83,84]. Identifying yeasts that appropriately influence
the flavour profiles of the final product is of great importance for the distillation of materi-
als such as beers, ciders, and spirits. Alteration of fusel compounds is possible, although
the complete suppression of fusel alcohol formation by selection of yeast is not, due to
the biosynthesis of the α-keto acid present in the Ehrlich pathway (Figure 3) [83,85,86].
Overall, modifications can influence the production of alcohol by-products, and they can
add considerable value to the bioethanol producer if these compounds can be further
isolated and purified.

5. Two-Stage Fermentation of Thin Stillage

In additional to physical processing, stillage can be fermented by a range of organisms.
The biorefinery of thin stillage has been accomplished via fermentation with a consortium
of LAB (e.g., Lactobacilli) selectively recovered from a stillage storage tank (Figure 5) [14,15].
Fermentation was effective in modifying the stillage, allowing the efficient separation of
a protein-rich fraction. The consortium organisms belong to species that are classified
as Generally Recognized as Safe (GRAS) and are routinely used in the food industry.
Clarification of thin stillage via LAB fermentation may result from a combination of gas
production that leads to anoxic gas flotation [87], production of exopolysaccharides that
cause particle aggregation [14], and/or allowing sufficient time for settling/floatation of
aggregated particles or separation of the particles from the solution with decanting and
desludging centrifuges. The resulting protein-rich slurry contains much of the original
thin stillage protein, as well as proteins produced by the LAB. Drying the slurry creates a
concentrate of up to 60% protein [88]. The bacteria-rich protein concentrate can then serve
as a probiotic animal feed supplement [89]. Furthermore, LAB are capable of utilizing
and thriving on complex carbohydrates as their carbon source. Two-stage fermentation
of wheat-based thin stillage using LAB produced succinic acid (>2.0 g/L), lactic acid
(>4.5 g/L), and acetic acid (>4.5 g/L) within 72 h at 37 ◦C [15].
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5.1. Organic Acids

Many of the organic acids (e.g., acetic acid, succinic acid, and lactic acid) produced
by yeast are acids that typically arise from glycolysis (e.g., acetic acid and lactic acid) and
the citric acid cycle (e.g., succinic acid) [90]. These compounds are typically produced
commercially via fermentation microbial processes [90–92] for use in the food, beverage,
and manufacturing industries. The efficiency of production of these organic acids is
dependent on the microorganisms, feedstock, fermenter productivity, and development of
efficient recovery processes [93–95].

Due to its pH tolerance and simple nutrient requirements, Saccharomyces cerevisiae has
been investigated and genetically modified for organic acid production [96]. Organic acids
are not traditionally produced by Saccharomyces cerevisiae fermentation. The production of
these organic acids could produce considerable additional value (Table 1), but a portion
of the organic acids (e.g., acetic acid and lactic acid) seen in commercial ethanol beers are
typically attributable to nuisance organisms present during bioethanol production. At
modest concentrations, these organic acids can inhibit fermentation [5,97,98]. For example,
acetic acid present in commercial Saccharomyces cerevisiae fermentations is undesirable, with
concentrations > 0.4 g/L signifying bacterial contamination and concentrations > 0.6 g/L
leading to impaired fermentations [95,99]. Thus, during ethanolic fermentation, it is often
preferred to minimize production of these compounds. However, after the completion of
primary ethanolic fermentation, the resulting thin stillage by-product can be used as culture
media for lactic acid bacteria (LAB) fermentation (two-stage fermentation; discussed below)
for producing additional succinic acid, lactic acid, and acetic acid [14,15]. For example,
fermentation (72 h at 37 ◦C) on wheat-based thin stillage with an initial glycerol content of
10 g/L using Lactobacilli resulted in the accumulation of succinic acid (>2.0 g/L), lactic
acid (>4.5 g/L), and acetic acid (>4.5 g/L) in the stillage medium [15].

5.2. Conversion of Glycerol to 1,3-Propanediol

In addition to the production of organic acids, during fermentation, glycerol is also
produced by yeast to protect cells against lysis and regenerate NAD+ needed for glycoly-
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sis [6–8]. Interestingly, glycerol in the fermentation mash can be further upgraded through
its conversion to 1,3-propanediol using Lactobacilli [14,15]. This compound is useful for
the production of textiles, carpets, adhesives, moldings, etc. [100,101]. The conversion of
glycerol to 1,3-propanediol is catalyzed via a two-step reaction. First, glycerol is converted
to 3-hydroxypropionaldehyde by glycerol dehydratase, and subsequently, it is converted
to 1,3-propanediol by 1,3-propanediol oxidoreductase [101,102]. Glycerol dehydratase and
1,3-propanediol oxidoreductase activity require cobalamin (aka vitamin B12) as a cofactor
for catalysis [101,102]. Furthermore, cobalamin is an essential nutrient for DNA synthe-
sis and cellular energy production. Some lactic acid bacteria (e.g., Lactobacillus reuteri)
can produce this essential nutrient [103–106]. A two-stage fermentation of wheat-based
thin stillage with a consortium of Lactobacilli converted most glycerol (10 g/L) present
to 1,3-propanediol (6.1 g/L) [14,15] within 72 h. Genetic sequencing of members of the
consortium identified Lactobacilli gene sequences that encoded for proteins that likely
produce cobalamin [15]. The inoculum size for this study was 0.01% (v/v), and thus, it
could be easily implemented at other bioethanol facilitate, to facilitate the production of
these valuable compounds and vitamins.

5.3. Bacteriocins

Bacteriocins are another potential value-added product that could be purified af-
ter a second two-stage fermentation of ethanol stillage with Lactobacillus. Bacteriocins
are antimicrobial proteins produced by most bacteria [107,108]. This broad class of com-
pounds inhibits the growth of competing bacteria. Typically, the bacteria that produce
bacteriocins simultaneously produce immunity proteins [109]. Some bacteriocins exhibit
broad-spectrum antagonistic effects. For example, bacteriocins produced by Gram-negative
bacteria typically affect closely related species, whereas Gram-positive bacteria can pro-
duce bacteriocins that exhibit a broader spectrum of activity [110]. These antimicrobial
compounds might have utility as natural food preservatives or for pharmaceutical applica-
tions [110,111]. Bacteriocins derived from Generally Recognized as Safe (GRAS) organisms
would have greater potential for such applications (e.g., Lactobacilli). Genes encoding
known bacteriocin proteins were present in a consortium of Lactobacilli that was capable
of two-stage fermentation of wheat-based thin stillage [15]. It is not known if the iden-
tification of bacteriocins was complete, as most bacteriocins and their sequences remain
unidentified, and only a few have been investigated for their utility in foods as antag-
onistic compounds [112]. Furthermore, growth media composition [113], fermentation
temperature [114], and pH [115] can also affect bacteriocin production and yield.

Currently, there are five recognized classes of bacteriocins that are segregated primarily
on their molecular size and properties [34]. Unlike traditional antibiotics, which typically
act as enzyme inhibitors [116], bacteriocins elicit adverse effects by inhibiting bacterial
cell growth, by disrupting essential functions (e.g., translation and transcription) [117],
and by targeting the cell surface and altering membrane permeability [110,117–121] (e.g.,
formation of membrane channels). Bacteriocin-producing organisms simultaneously ex-
press bacteriocin-immunity proteins that protect producing organisms from their own
toxins [122,123]. Bacteria can acquire or lose immunity against specific bacteriocins through
horizontal gene transfer [124–130].

Although the applications for bacteriocins as a food preservative and for pharmaceuti-
cal use are promising, the purification of bacteriocins can be difficult. This is likely due to
their complex molecular structure, physicochemical properties, and heterogeneity [110];
therefore, specific purification processes might be required for individual bacteriocins [110].
These difficulties and current separation and approaches to bacteriocins purification are
further reviewed in Tse and Reaney (2020) [34].

6. Spent Yeast

Spent yeast is another by-product from the brewing and biofuels industry. The
spent yeast is typically removed at the end of the fermentation, although a small amount
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can be retained for subsequent fermentation batches [131]. Due to its protein content,
discarded yeast is typically used as inexpensive animal feed materials [131]. However,
spent yeast also contains valuable nutrients, such as vitamins (e.g., vitamins B1, B2, B3,
B6, B9, and B12) [132–134], minerals (e.g., Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Se, Cr, and
Mo) [134,135], proteins (e.g., mannoproteins and hydrolysates) [135], carbohydrates (e.g.,
β-glucans) [135], antioxidants (e.g., glutathione) [136], and phenolic compounds (e.g., gallic
acid and (±)-catechin) [132]. Retrieval of these compounds can have added value in animal
feeds, nutritional supplements, and functional foods (e.g., flavor enhancers) and non-food
additives (e.g., cosmetics) [131,137]. Hydrolysis of spent yeast can yield a complex mixture
of oligopeptides, peptides, and free amino acids, also known as hydrolysates [137]. Total
solids recovery of hydrolysates, proteins, and α-amino nitrogen content in dried spent
yeast was reported to be 50%, 55.9%, and 4.8%, respectively [137]. However, the composi-
tion of the spent yeast (e.g., the presence of contaminating bacteria) during fermentation
can have direct implications on the yeast extract and concentration of nutrients in these
fractions [138]. Furthermore, as yeast are living cells with vigorous metabolism, they have
a high ratio of RNA to other nutrients. Consumption of large amounts of nucleic acids
can impart detrimental health effects to foods. Consumption of nucleic acid-rich materials
can lead to uric acid accumulating in tissues and the consequent symptoms of gout [131].
Therefore, processing of spent yeast should include RNA degradation processes, prior to
its application in food supplements.

7. Enzymes and Pharmaceuticals Products Produced via Microbial Fermentation

Hydrolytic enzymes have a market value close to a $1 billion/year, and they play an
important role in many industries, including in the preparation of pharmaceutics, cosmet-
ics, medicines, nutritional supplements, chemicals, beverages, and foods (Table 3) [139].
Although hydrolytic enzymes and pharmaceutical products may be recovered from mi-
crobial fermentation, other methods are more effective, so they are not described in detail
here. Solid-state and submerged fermentations have been employed for enzyme produc-
tion [140–146], with the former method demonstrating advantages for certain enzymes’
production (e.g., invertase, pectinases, and tannases from Aspergillus sp.), rather than liquid-
based fermentation systems [145,147]. Solid-state fermentation can also be more productive
than liquid systems while being simpler technically and requiring lower capital investment,
lower energy input, lower water requirement, better product recovery, and a lack of foam
build up when compared to submerged fermentations [148]. Improved enzyme produc-
tion has also been demonstrated using co-cultivation methods [145]. Nonetheless, both
submerged and solid-state fermentation technologies are being investigated and improved
upon to increase industrial enzymes production.
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Table 3. Examples of industrial enzymes and the microbial producers. Reconstructed from Ventura-Sobreville et al., 2015
[139]; de Souza Vandenberghe et al., 2016 [149]; Singh et al., 2019 [150], and citations therein.

Enzyme Type Enzyme Application Microbial Producer

Oxidoreductases

Glucose oxidase Food industry [149,150] Aspergillus sp. [151]

Lactases Food industry [149,150]
Bacteria (Lactobacillus sp.),

fungi (Aspergillus sp.), yeast
[152–154]

Transferases

Glycosyltransferases
Fructosyltransferases

Food, cosmetics,
pharmaceutical industries

[149,150]

Bacteria (e.g., Bacillus sp.,
Klebsiella sp., Geobacillus sp.,

Thermoanaerobacter sp.)
[155–157]

Transglutaminase Food industry [149,150] Bacillus sp., Streptomyces sp.
[158,159]

Hydrolases

Amylases
Food, brewing, and

bioethanol industries
[149,150]

Bacillus sp., Lactobacillus sp.,
Aspergillus sp., Mucor sp.,

Saccharomyces sp. [148]

Cellulases and hemicellulases Food and biofuel industries
[149,150]

Aspergillus sp., Trichoderma sp.,
Bacillus sp., Cellulomonas sp.,

Clostridium sp. [149,160]

Chitinases Pharmaceutical industry [150]
Bacillus sp., Streptomyces sp.,
Talaromyces sp., Trichoderma

sp., Nocardia sp. [161]

Invertase Food industry [149,150] Aspergillus sp., Saccharomyces
sp. [162]

Lipases Food industry [149,150]

Aspergillus sp., Bacillus sp.,
Rhizopus sp., Trichosporon sp.,
Lactobacillus sp., Penicillium
sp., Pseudomonas sp. [149]

Mannanases Food, animal feed, and
biorefinery industries [163]

Bacillus sp., Trichoderma sp.,
Aspergillus sp., Thermomyces

sp., Rhizopus sp. [149]

Pectinases Food and animal feed
industry [149,150]

Aspergillus sp., Rhizopus sp.,
Penicillium sp. [149]

Phytases
Food, animal feed, and
bioethanol industries

[149,150]

Aspergillus sp., Lactobacillus
sp., Saccharomyces sp., Bacillus
sp., Candida sp., Pseudomonas

sp. [149]

Proteases Food industry [149,150]
Bacillus sp., Aspergillus sp.,

Pseudomonas sp., Synergistes
sp., Rhizopus sp. [149]

Xylanases Food, pulp, and ethanol
industries [149,150]

Aspergillus sp., Rhizomucor sp.,
Bacillus sp. [149]

Peroxidase Peroxidases Pharmaceutical industry [150] Bacillus sp., Ensifer sp.
[164,165]

Acylase Penicillin acylase Pharmaceutical industry [150] Bacillus sp., Eschericha sp.
[166–168]

8. Conclusions

In conclusion, microbial fermentation is often utilized to produce a wide variety of
valuable compounds used in several industries. First-generation biofuel producers uti-
lizing Saccharomyces cerevisiae for grain fermentation can potentially generate substantial
revenue through the production, isolation, and purification of numerous added-value
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co-products. These products can be co-produced during initial ethanolic fermentation
(e.g., ethanol and α-GPC), distillation (e.g., fusel alcohols), and two-stage fermentation
processes (e.g., 1,3-propanediol, organic acids, essential nutrients, and high protein do-
mestic feed). The application of two-stage fermentation using LAB opens the possibility
of not only upgrading and enriching thin stillage products, but it is also safe for feed
production, due to the GRAS status of known Lactobacilli. Fortunately, these technologies
have demonstrated success in producing value-added products, and they can be rapidly
implemented into existing facilities, and downstream LAB fermentation utilizes minimal
inoculant (0.01% v/v). However, production yields of these products can vary depending
on the composition of the feedstock, the fermentation medium, microorganisms present,
and fermentation conditions. In addition, complications can arise in the development of
isolation and purification for these compounds. Nonetheless, the co-production of these
added-value compounds will not only increase the value and utilization of grain crops, but
it can also provide ethanol producers with significant additional revenue and new market
entries for these fermentation co-products.
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37. Lapišová, K.; Vlček, R.; Klozová, J.; Rychtera, M.; Melzoch, K. Separation techniques for distillery stillage treatment. Czech J. Food
Sci. 2006, 24, 261–267. [CrossRef]

38. Scheimann, D.W. Method of Dewatering Grain Stillage Solids. U.S. Patent 7,566,469 B2, 14 May 2009.

http://doi.org/10.1021/acs.jafc.7b00772
http://doi.org/10.1021/acs.jafc.9b07414
https://www.marketwatch.com/press-release/nootropics-market-size-rising-at-cagr-of-125-during-2021-2027-global-industry-brief-analysis-of-top-countries-data-trends-and-drivers-with-top-key-players-2021-07-22
https://www.marketwatch.com/press-release/nootropics-market-size-rising-at-cagr-of-125-during-2021-2027-global-industry-brief-analysis-of-top-countries-data-trends-and-drivers-with-top-key-players-2021-07-22
https://www.marketwatch.com/press-release/nootropics-market-size-rising-at-cagr-of-125-during-2021-2027-global-industry-brief-analysis-of-top-countries-data-trends-and-drivers-with-top-key-players-2021-07-22
https://www.marketwatch.com/press-release/ddgs-market-size-in-2021-52-cagr-with-top-countries-data-global-forecast-to-2026-by-trends-product-type-future-growth-leading-key-players-demand-forecast-and-revenue-analysis-updated-117-pages-report-2021-08-18
https://www.marketwatch.com/press-release/ddgs-market-size-in-2021-52-cagr-with-top-countries-data-global-forecast-to-2026-by-trends-product-type-future-growth-leading-key-players-demand-forecast-and-revenue-analysis-updated-117-pages-report-2021-08-18
https://www.marketwatch.com/press-release/ddgs-market-size-in-2021-52-cagr-with-top-countries-data-global-forecast-to-2026-by-trends-product-type-future-growth-leading-key-players-demand-forecast-and-revenue-analysis-updated-117-pages-report-2021-08-18
http://doi.org/10.2527/1994.72123246x
http://www.ncbi.nlm.nih.gov/pubmed/7759376
http://doi.org/10.1016/j.indcrop.2005.08.004
http://doi.org/10.1002/(SICI)1097-0010(200004)80:5&lt;607::AID-JSFA582&gt;3.0.CO;2-F
http://doi.org/10.1021/jf010137o
http://doi.org/10.1016/j.cej.2008.07.036
http://doi.org/10.1016/j.biortech.2009.12.127
http://www.ncbi.nlm.nih.gov/pubmed/20138754
http://doi.org/10.1002/9781119534167.ch2
http://doi.org/10.1007/s12155-014-9473-1
http://doi.org/10.1186/2191-0855-2-5
http://doi.org/10.17221/3323-CJFS


Fermentation 2021, 7, 267 15 of 19

39. Ingledew, W.M.; Austin, G.D.; Kelsall, D.R.; Kluhspies, C. The alcohol industry: How has it changed and matured. In The Alcohol
Textbook, 5th ed.; Ingledew, W.M., Kelsall, D.R., Austin, G.D., Kluhspies, C., Eds.; Nottingham University Press: Nottingham, UK, 2009.

40. Bhadra, R.; Muthukumarappan, K.; Rosentrater, K.A.; Kannadhason, S. Drying kinetics of Distillers Wet Grains (DWG) under
varying Condensed Distillers Solubles (CDS) and temperature levels. Cereal Chem. 2011, 88, 451–458. [CrossRef]

41. Rosentrater, K.A.; Ileleji, K.; Johnston, D.B. Manufacturing of Fuel Ethanol and Distillers Grains—Current and Evolving Processes.
In Distillers Grains—Production, Properties, and Utilization; Liu, K.S., Rosentrater, K.A., Eds.; AOCS Publishing: Boca Raton, FL,
USA, 2012.

42. Singh, V.; Moreau, R.A.; Hicks, K.B.; Belyea, R.L.; Staff, C.H. Removal of Fiber from Distillers Dried Grains with Solubles (DDGS)
to Increase Value. Trans. ASAE 2002, 45, 389–392. [CrossRef]

43. Villegas-Torres, M.F.; Ward, J.M.; Lye, G.J. The protein fraction from wheat-based dried dis-tiller’s grain with solubles (DDGS):
Extraction and valorization. New Biotechnol. 2015, 32, 606–611. [CrossRef]

44. Kim, Y.; Hendrickson, R.; Mosier, N.S.; Ladisch, M.R.; Bals, B.; Balan, V.; Dale, B.E.; Dien, B.S.; Cotta, M.A. Effect of compositional
variability of distillers’ grains on cellulosic ethanol production. Bioresour. Technol. 2010, 101, 5385–5393. [CrossRef]

45. Rausch, K.D.; Belyea, R.L. The Future of Coproducts From Corn Processing. Appl. Biochem. Biotechnol. 2006, 128, 047–086.
[CrossRef]

46. Rausch, K.D.; Hummel, D.; Johnson, L.A.; May, J.B. Wet Milling: The Basis for Corn Biorefineries. In Corn; Elsevier BV: Amsterdam,
The Netherlands, 2019; pp. 501–535.

47. Cantrell, D.F.; Winsness, D.J. Method of Recovering Oil from Thin Stillage. United. States Patent US 8,008,517 B2, 30 August 2011.
48. Haas, M. Extraction and Use of DDGS Lipids for Biodiesel Production. In A Distillers Grains—Production, Properties, and Utilization;

Liu, K.S., Rosentrater, K., Eds.; AOCS Publishing: Boca Raton, FL, USA, 2012.
49. Sangiorgi, G.B.; Barbagallo, M.; Giordano, M.; Meli, M.; Panzarasa, R. Alpha-Glycerophosphocholine in the mental recovery of

cerebral ischemic Attacks. Ann. N. Y. Acad. Sci. 1994, 717, 253–269. [CrossRef] [PubMed]
50. Shurtleff, W.; Aoyagi, A. History of Soy Lecithin. 2007. Available online: http://www.soyinfocenter.com/HSS/lecithin1.php

(accessed on 13 October 2021).
51. Van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci.

Technol. 2014, 116, 1088–1107. [CrossRef] [PubMed]
52. Schettini, G.; Ventra, C.; Florio, T.; Grimaldi, M.; Meucci, O.; Scorziello, A.; Postiglione, A.; Marino, A. Molecular mechanisms me-

diating the effects of l-α-glycerylphosphorylcholine, a new cognition-enhancing drug, on behavioral and biochemical parameters
in young and aged rats. Pharmacol. Biochem. Behav. 1992, 43, 139–151. [CrossRef]

53. Grimm, M.O.W.; Grösgen, S.; Riemenschneider, M.; Tanila, H.; Grimm, H.S.; Hartmann, T. From brain to food: Analysis of
phosphatidylcholins, lyso-phosphatidylcholins and phospha-tidylcholin—plasmalogens derivates in Alzheimer ’ s disease
human post mortem brains and mice model via mass spectrometry. J. Chromatogr. A 2011, 1218, 7713–7722. [CrossRef]

54. Moreno, M.D.J.M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine
precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin. Ther. 2003, 25, 178–193.
[CrossRef]

55. Parnetti, L.; Amenta, F.; Gallai, V. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: An analysis of
published clinical data. Mech. Ageing Dev. 2001, 122, 2041–2055. [CrossRef]

56. Amenta, F.; Parnetti, L.; Gallai, V.; Wallin, A. Treatment of cognitive dysfunction associated with Alzheimer’s disease with
cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech. Ageing Dev. 2001, 122, 2025–2040. [CrossRef]

57. Bellar, D.; Leblanc, N.R.; Campbell, B. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. J. Int. Soc.
Sports Nutr. 2015, 12, 42. [CrossRef]

58. Wimo, A.; Ali, G.-C.; Guerchet, M.; Prince, M.; Wu, Y.-T. World Alzheimer Report 2015 The Global Impact of Dementia.
Alzheimer’s Disease International. 2016. Available online: https://www.alzint.org/resource/world-alzheimer-report-2015/
(accessed on 3 October 2021).

59. Wood, L. Global Brain Health Supplements Market, 2017 to 2025—ResearchAndMarkets.com. Available online: https://
www.businesswire.com/news/home/20180404005510/en/Global-Brain-Health-Supplements-Market-2017-2025 (accessed on
3 October 2021).

60. Sonkar, K.; Ayyappan, V.; Tressler, C.; Adelaja, O.; Cai, R.; Cheng, M.; Glunde, K. Focus on the glycerophosphocholine pathway
in choline phospholipid metabolism of cancer. NMR Biomed. 2018, 32, e4112. [CrossRef]

61. Brockerhoff, H.; Yurkowski, M. Simplified Preparation of L-α-Glyceryl Phosphoryl Choline. Can. J. Biochem. 1965, 43, 1777.
[CrossRef]

62. Kim, H.J.; Song, Y.S.; Song, E.S.; Kang, D.S.; Song, I.W.; Kang, P.G.; Oh, S.S.; Moon, S.C.; Lee, B.G. A Process for Preparation of
I-Alpha-Glycerophosphoeyl Choline. W.O. Patent 2007145476 A1, 21 December 2007.

63. PubChem Compound Summary for CID 1146, Trimethylamine. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/
compound/Trimethylamine (accessed on 25 November 2020).

64. Kim, J.; Song, Y.; Lee, S.J.; Lee, J.E.; Chung, M.; Kim, I.; Kim, B.H. Enzymatic preparation of food-grade l -α-glycerylphosphorylcholine
from soy phosphatidylcholine or fractionated soy lecithin. Biotechnol. Prog. 2020, 36, e2910. [CrossRef]

65. Uziel, M.; Hanahan, D.J. An enzymatic route to L-alpha-glycerylphosphorylcholine. J. Biol. Chem. 1956, 220, 1–7. [CrossRef]

http://doi.org/10.1094/CCHEM-02-11-0018
http://doi.org/10.13031/2013.8510
http://doi.org/10.1016/j.nbt.2015.01.007
http://doi.org/10.1016/j.biortech.2010.02.054
http://doi.org/10.1385/ABAB:128:1:047
http://doi.org/10.1111/j.1749-6632.1994.tb12095.x
http://www.ncbi.nlm.nih.gov/pubmed/8030842
http://www.soyinfocenter.com/HSS/lecithin1.php
http://doi.org/10.1002/ejlt.201400219
http://www.ncbi.nlm.nih.gov/pubmed/25400504
http://doi.org/10.1016/0091-3057(92)90650-5
http://doi.org/10.1016/j.chroma.2011.07.073
http://doi.org/10.1016/S0149-2918(03)90023-3
http://doi.org/10.1016/S0047-6374(01)00312-8
http://doi.org/10.1016/S0047-6374(01)00310-4
http://doi.org/10.1186/s12970-015-0103-x
https://www.alzint.org/resource/world-alzheimer-report-2015/
https://www.businesswire.com/news/home/20180404005510/en/Global-Brain-Health-Supplements-Market-2017-2025
https://www.businesswire.com/news/home/20180404005510/en/Global-Brain-Health-Supplements-Market-2017-2025
http://doi.org/10.1002/nbm.4112
http://doi.org/10.1139/o65-197
https://pubchem.ncbi.nlm.nih.gov/compound/Trimethylamine
https://pubchem.ncbi.nlm.nih.gov/compound/Trimethylamine
http://doi.org/10.1002/btpr.2910
http://doi.org/10.1016/S0021-9258(18)65326-8


Fermentation 2021, 7, 267 16 of 19

66. Zhang, K.; Wang, X.; Liu, Y. Aqueous medium enzymatic preparation of l-alpha glycerylphosphorylcholine optimized by response
surface methodology. Eur. Food Res. Technol. 2012, 234, 485–491. [CrossRef]

67. Bang, H.-J.; Kim, I.-H.; Kim, B.H. Phospholipase A 1 -catalyzed hydrolysis of soy phosphatidylcholine to prepare l-α-
glycerylphosphorylcholine in organic-aqueous media. Food Chem. 2016, 190, 201–206. [CrossRef]

68. Yang, Y.R.; Jang, H.-J.; Ryu, S.H.; Suh, P.-G. Phospholipases in Health and Disease. In Phospholipases in Health and Disease; Springer
International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 10, pp. 3–38.

69. Lu, Y.; Zhang, A.; Wang, X.; Hao, N.; Chen, K.; Ouyang, P. Surfactant enhanced l-α-glycerylphosphorylcholine production from
phosphatidylcholine using phospholipase A1 in the aqueous phase. Biocatal. Biotransform. 2019, 37, 361–366. [CrossRef]

70. Li, Z.; Vance, D.E. Thematic Review Series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49,
1187–1194. [CrossRef] [PubMed]

71. Gallazzini, M.; Burg, M.B. What’s New About Osmotic Regulation of Glycerophosphocholine. Physiology 2009, 24, 245–249.
[CrossRef]

72. Choi, J.W.; Park, H.-Y.; Oh, M.S.; Yoo, H.H.; Lee, S.-H.; Ha, S.K. Neuroprotective effect of 6-paradol enriched ginger extract by
fermentation using Schizosaccharomyces pombe. J. Funct. Foods 2017, 31, 304–310. [CrossRef]

73. Minnaar, P.; Jolly, N.; Paulsen, V.; Du Plessis, H.; Van Der Rijst, M. Schizosaccharomyces pombe and Saccharomyces cerevisiae
yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Int. J. Food Microbiol.
2017, 257, 232–237. [CrossRef] [PubMed]
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