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Abstract: This work presents a strategy for optimizing the production process of ethanol via in-
tegrated gasification and syngas fermentation, a conversion platform of growing interest for its
contribution to carbon recycling. The objective functions (minimum ethanol selling price (MESP), en-
ergy efficiency, and carbon footprint) were evaluated for the combinations of different input variables
in models of biomass gasification, energy production from syngas, fermentation, and ethanol distilla-
tion, and a multi-objective genetic algorithm was employed for the optimization of the integrated
process. Two types of waste feedstocks were considered, wood residues and sugarcane bagasse, with
the former leading to lower MESP and a carbon footprint of 0.93 USD/L and 3 g CO2eq/MJ compared
to 1.00 USD/L and 10 g CO2eq/MJ for sugarcane bagasse. The energy efficiency was found to be 32%
in both cases. An uncertainty analysis was conducted to determine critical decision variables, which
were found to be the gasification zone temperature, the split fraction of the unreformed syngas sent
to the combustion chamber, the dilution rate, and the gas residence time in the bioreactor. Apart
from the abovementioned objectives, other aspects such as water footprint, ethanol yield, and energy
self-sufficiency were also discussed.

Keywords: gasification; multi-objective optimization; bioethanol; syngas fermentation; model-
ing; sustainability

1. Introduction

In recent years, significant progress has been achieved in the field of biobased pro-
duction, especially regarding ethanol production from lignocellulosic materials such as
sugarcane bagasse, corn stover, and wood residues—the so-called 2nd-generation (2G)
ethanol [1]. However, 2G ethanol is still hardly competitive with sugar-based or 1st-
generation ethanol, and despite the existence of several commercial-scale plants based on
2G technologies, the actual throughput remains mostly below the installed capacity [2];
most of these production routes are based on hydrolysis and sugar fermentation [3]. In con-
trast, gasification-based pathways are considered promising due to the alleged feedstock
flexibility and the potential to convert all parts of the biomass (including lignin) [4].

Gasification has a long history of applications with different purposes (heat, electricity,
chemicals, or fuels), but most large-scale gasifiers operate with coal, while biomass gasifi-
cation has been applied on a far more limited scale and has mostly been used for heat and
power generation as an alternative to natural gas and biomass combustion [5]. Regarding
biomass-to-fuel via gasification, there are currently only eight facilities with a technology
readiness level (TRL) above six that are operational or under construction/commissioning,
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with five of them targeting ethanol production (two operational) and only one at a com-
mercial scale: the Enerkem plant in Alberta, Canada, which converts municipal solid waste
(MSW) to syngas, with further chemical conversion to ethanol and other chemicals [6].

Syngas can also be converted to ethanol via fermentation (i.e., using microbes in-
stead of chemical catalysts). Among the abovementioned projects, only one (by LanzaT-
ech/Aemetis) is projected for use in a gasification–fermentation route. This plant, which
is still expected to begin construction, will first convert agricultural waste to syngas via
plasma gasification [6], a relatively new technology with the ability to convert nearly any
type of carbonaceous material yet at still high costs and limited process understanding [7].
Gas fermentation technology is a challenge despite significant developments in the past
few years, which include the construction and operation of several demonstration plants
to convert basic oxygen furnace (BOF) gas, a CO-rich gas, into ethanol [8].

The integration of biomass gasification and syngas fermentation (i.e., thermo-biochemical
route), has been advocated as a promising and versatile contribution to the biobased econ-
omy [9]. The understanding of this linkage may be achieved through experiments at laboratory
scale, designed with the perspective of the large-scale [10]. Since data sharing regarding the
operation of existing large-scale lignocellulose gasification and syngas fermentation plants
is still constrained by knowledge protection laws and agreements, the use of mathematical
models is necessary to gather insights regarding the large-scale. The modeling strategies for
the gasification process are currently more advanced than those developed for the fermen-
tation process. Strategies used for simulating syngas-fermenting bacteria inside large-scale
bioreactors include the use of black-box models [11] and largely complex genome-scale mod-
els [12] as well as combinations of the two strategies and thermodynamics [13,14]. As for the
detailed simulation of mass transfer in large-scale bioreactors that are appropriate for syngas
fermentations, there is only study that is currently known, which is at an early development
stage [15].

Some of the aforementioned fermentation models have been included in process sim-
ulations aimed at assessing the link between gasification and fermentation [16,17], yet little
research has been conducted to explore the simultaneous effects of the process conditions
and design choices of different units on the performance of the whole process or to optimize
it in terms of multiple objectives [18,19]. At the same time, integrated optimization may be
indispensable for the commercialization of thermo-biochemical processes. As highlighted
by Ramachandriya et al. [20], different challenges arise when integrating both conversion
steps (e.g., low product yield, energy requirements in the gasifier, and inhibition caused by
syngas impurities), but most studies in this field have focused on the microbial physiology
of syngas fermenting bacteria [21–23]. On the other hand, research on biomass gasification
has unveiled a complex relationship between the performance of different gasifier systems
and multiple process conditions (steam to biomass ratio, temperature, air equivalence ratio,
feedstock moisture, etc.) [24].

In this context, the main goals of this work are (i) the development of a framework for
modeling and optimizing the integrated process for ethanol production from biomass via
the thermo-biochemical route by considering two types of feedstock (sugarcane bagasse
and wood residues); (ii) the holistic impact analysis of the operating conditions and design
parameters; (iii) the analysis of the optimal trade-offs between economic, energy, and
environmental performance; and (iv) the analysis of the Pareto-optimal conditions of the
multiple units involved in the process by taking into account their interactions.

2. Materials and Methods
2.1. Modeling Framework

The ethanol production process is divided into five main units, as presented in Figure 1.
In unit A100, the biomass feed is dried and gasified, after which the syngas is sent to a
reformer. Hot streams from this unit are then cooled in A200, recovering its heat for steam
and power generation, after which the cold syngas (~60 ◦C) is passed through a scrubber
to remove contaminants. In A300, the syngas is compressed to the pressure at the bottom
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of the bioreactor, cooled to 37 ◦C, and mixed with recycled gas before being fed to the
bioreactor. Cells are separated in a microfiltration membrane and recycled with a small
purge, and the product stream (dilute ethanol with traces of acetic acid) is sent to A400
for ethanol recovery and purification using distillation and molecular sieves. Unit A500
produces cooling water and chilled water for the whole plant.
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Figure 1. Block flow diagram of the thermo-biochemical route for ethanol production from biomass. Dashed lines: electricity
streams; blue lines: cooling or chilled water; red lines: steam.

This section provides details about the operation of areas A100 and A200, while
information about A300 and A400 can be found elsewhere [18].

Our approach to modeling syngas fermentation has been described elsewhere [17,18].
Previously we demonstrated the application of surrogate modeling and machine learning
(specifically, artificial neural networks) as tools to simplify the evaluation of the responses
originally obtained by rigorous models of the bioreactor and the distillation columns [18].
This strategy is repeated in the present work and is applied to the gasification model, which
is described next.

2.1.1. Drying, Gasification, and Tar Reformer (A100)

As in de Medeiros et al. [25], the gasification process consists of a dual fluidized
bed gasifier with the circulation of the char and bed material between the two beds, as
schematized in Figure 2. Hot flue gas from the combustion zone (CZ) is used in the air
pre-heater and the biomass dryer. Since char formation is regulated by the temperature in
the gasification zone (TGZ) and char is the main fuel in the combustion zone, the system in
Figure 2 will reach an equilibrium point for TGZ and TCZ (temperature in the combustion
zone), therefore making TGZ an output of the process instead of an input. To transform
TGZ into an independent variable, we propose that other variables (namely, air flow rate
and additional fuel fed to CZ) can be tuned to satisfy the energy balance for the desired
TGZ, which is not necessarily at the aforementioned equilibrium point. Therefore, the
gasification model proposed here comprises an optimization routine in which, for a given
TGZ, we wish to minimize the square difference of the heat duty between GZ and CZ, here
named Qdiff, by finding the corresponding values of three variables: AE (air excess fed to
CZ), DT (temperature difference, TCZ–TGZ), and f (split fraction of biomass that is diverted
to CZ instead of GZ). The energy difference Qdiff also considers a 2% loss of the lower
heating value (LHV) of the biomass. Since we also wish to minimize the resources input
for the whole process, for a given TGZ, the objective function becomes:

min
[(

Qdi f f

)2
+ (AE) + ( f ) + (DT)

]
= f (TGZ, AE, f , DT) (1)
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The calculation of the energy difference Qdiff starts by estimating the outcomes of the
gasification zone (syngas and char yields, and compositions), for which we use temperature-
dependent correlations, which were previously adopted by NREL [26]. These correlations
are second-degree polynomial functions of TGZ that predict the yield of the syngas (scf/lb
maf biomass) and the mass fractions (dry basis) of its main components (i.e., CO, CO2, H2,
CH4, C2H4, C2H6, C2H6, C2H2, C6H6). Although there is a correlation for the char yield,
we follow NREL’s recommendation of instead using the following algorithm based on the
elemental balances: (i) for carbon, determine the total amount of C in the syngas from the
results of the correlations and consider any remaining C to be in the form of char; (ii) for
oxygen, assume that at least 4% of O in biomass ends in the char; then, if the O balance
results in a deficit of this element, the water is decomposed. If there is an excess of O, then
the exceeding amount is assumed to also be in the char; (iii) for sulfur, assume that at least
8.3% of the S in biomass is in char and that the remaining S is converted to H2S in the
syngas; (iv) for nitrogen, assume that at least 6.6% of the N in biomass goes into the char
and that the remaining is converted to NH3 in the syngas; (v) for hydrogen, determine the
total amount of H in all of the components of the syngas and consider the remaining H to
be in the char. To be coherent with the correlations, other conditions were assumed to be
fixed and equal to the experiments described by the correlations, i.e., biomass moisture
entering the GZ equal to 10% and steam to biomass ratio SBR = 0.4 kg/kg dry biomass.

To calculate Qdiff, the gasification unit was simulated in Aspen Plus following the
flowsheet presented in Figure 3. The Aspen flowsheet is presented in Figure S1 in the Sup-
plementary Materials. Biomass was specified as a non-conventional component described
by its heating value and composition given by proximate and ultimate analyses. These can
be found in de Medeiros et al. [25] and Capaz et al. [27], for bagasse and wood residues,
respectively (see also Table S1 in the Supplementary Materials). For each temperature, the
results of the GZ algorithm explained above were used as input in the yield reactor repre-
senting the GZ (R-01). A combustion reactor (R-02) is a stoichiometric reactor that is fed
with the char generated in GZ, as well as the biomass that may be diverted for this use in the
splitter (SP-01). In the simulation, there was also a yield reactor (not depicted in Figure 3)
to transform the non-conventional component biomass into conventional components that
could participate in combustion reactions. The dryer (D-01) was modeled in Aspen with
a stoichiometric reactor and flash operation: the former converts the non-conventional
biomass stream into a stream containing biomass and H2O, which is later separated in the
flash operation. The amount of H2O generated in this stage is the difference between the
initial moisture of the wet biomass and the final desired moisture of 10%. The output Qdiff
is then the sum of the three heat streams related to these operations: the decomposition of
nonconventional biomass, the gasification reactions R-01, and the combustion reactions
R-02. The tar reformer was simulated as a stoichiometric reactor where the conversions
of CH4, C2H6, C2H4, and tars into CO and H2 take place in fixed amounts, i.e., 80%, 99%,
90%, and 99%, respectively (the same as those adopted by NREL [26]). The heat duty
was calculated in Aspen, and it was assumed to be provided by the combustion of the
unconverted syngas from A300 as well as by a fraction of the unreformed syngas from the
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gasifier. The latter can be adjusted to not only meet the requirements of the tar reformer but
to also increase the amount of energy available for steam/electricity production in A200.
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Figure 3. Simplified process flow diagram of A100: drying, gasification, and tar reformer. D-01: biomass dryer; SP-01
to SP-03: stream splitters; R-01 and R-02: gasification (GZ) and combustion (CZ) zones of dual bed gasifier; S-01 to S-04:
cyclones; R-03 and R-04: tar reformer and catalyst regenerator; C-01: air blower; E-01: air pre-heater.

The minimization problem (Equation (1)) was solved in MATLAB for a range of
TGZ. Since the calculation of QDIFF and other the outputs require the Aspen simulation,
one possible approach is to link both programs and to run the simulation every time the
objective function needs to be evaluated. However, to make the framework more robust
and to reduce the number of simulation runs, we instead decided to train artificial neural
networks (ANNs) with the data generated in Aspen for multiple combinations of inputs
(TGZ, AE, f, DT). This procedure was previously explained in a different case [18]. These
surrogate models were then used in the optimization problem, which was solved with
fmincon in MATLAB. The ranges used to obtain the data were TGZ between 700–1000 ◦C;
AE between 10–150%; f between 0–0.5; and DT between 30–100 ◦C.

2.1.2. Heat Recovery and Power Generation (A200)

Energy is recovered from three streams of hot gases: syngas from the tar reformer,
flue gas from the char combustor, and flue gas from the tar reformer/combustor (catalyst
regenerator). These hot gases are used as energy inputs in a Rankine cycle with reheat
(Figure 4) to produce electricity. In this cycle, there are two expansion stages (ST-01 and
ST-02) with an intermediate re-heating operation (E-02) to increase the energy efficiency. In
the 2nd stage, a slipstream is extracted to provide steam for the gasification and as process
heat (for the distillation). The specifications of inlet/outlet pressure and temperature at the
turbine were considered the same as those reported by NREL [26]. Since the properties
(mass flow and temperature) of the hot streams are not fixed (i.e., they depend on the
conditions of the process), the heat exchanger network (represented in the flowsheet by the
exchangers E-01, E-02, and E-05) is designed with an algorithm that roughly maximizes
the sensible heat that can be transferred from the hot to the cold streams. In this unit, the
mass flow rate of the water/steam circulating in the Rankine cycle is set to meet the plant
targets of electricity and steam consumption, but if heat is still available, then more water is
provided to increase electricity production. This is achieved by a small optimization routine
to maximize the amount of water while respecting the 1st and 2nd laws of thermodynamics.
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Electricity generated in unit A200 is used to supply the gas compressors, air blowers,
and pumps in the entire plant, as well as the water chiller (which produces chilled water
for the bioreactor that must be kept at 37 ◦C). After heat recovery, the reformed syngas
stream is further cooled to 60 ◦C using cooling water, and is fed to a scrubbing system
following the same specifications as adopted by Dutta et al. [26], i.e., comprising a venturi
scrubber, cyclone separator, and a quench water circulation system with a small purge and
freshwater makeup.

2.2. Evaluation of Model Outputs and Multi-Objective Optimization

The modeling framework considers nine decision variables for the overall process
optimization: in A100, (i) the TGZ (temperature in the gasification zone of the gasifier), and
(ii) fs (fraction of unreformed syngas sent to combustion) are considered; in A300, (iii) the
Drate (dilution rate in the bioreactor), (iv) GRT (gas residence time, defined as the volume
of liquid divided by fresh gas volumetric flow), (v) GRR (gas recycle ratio), (vi) L (column
height), and (vii) VR (volume of bioreactor) are considered; and in A400, (viii) the SFC1
(mass ratio of side stream to feed stream in the first distillation column) and (ix) RRC2
(molar reflux ratio in the second distillation column) are considered. The sustainability
performance is measured by four types of responses: (i) economic; (ii) energetic; (iii) carbon
footprint; and (iv) water footprint. The variable fs is used to regulate the amount of energy
(electricity and heat) that is produced inside the plant: if fs is too high, the process exports
energy and produces less ethanol; if it is too low, then the energy must be imported, which
therefore increases the carbon footprint of the process and the utility cost. There is, of
course, a point at which the process becomes self-sufficient, but it does not necessarily
correspond to optimal process in terms of all of the sustainability criteria. The optimization
was conducted for two feedstocks: sugarcane bagasse and wood (eucalyptus) residues.

The capital costs were calculated following the bare module costing technique detailed
in Turton et al. [28]. For the gasification unit and steam turbine, the base costs were taken
from NREL [26] and were corrected for inflation to the year 2019. The capacity was
considered the same for both case studies: 2000 tonnes of dry biomass per day. The costs of
heat exchangers, pumps, air blowers, and towers were calculated with the purchase–cost
correlations available in Turton et al. [28]. For all types of equipment, the capacity ranges
were respected by dividing the equipment into more units if necessary (for example, if
the calculated heat exchanger area is greater than 1000 m2). The economic performance
indicator used for the optimization is the minimum ethanol selling price (MESP), i.e., the
price to achieve NPV = 0. Other economic assumptions were the same as those in de
Medeiros et al. (2020).
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Table 1 presents the considerations of the prices and carbon footprint (emission factors)
associated with raw materials and utilities used in the process. The costs of other raw
materials, such as olivine and the tar reformer catalyst, were taken from NREL [26] and
were assumed to have negligible carbon footprint contribution. It is worth mentioning
that the fermentation nutrients were excluded from the analysis since they could not
be calculated with our model, but they were not expected to have a significant impact
on either MESP or CO2 emissions, as shown in [16]. In an LCA study using data from
LanzaTech, Handler et al. [29] reported that inputs such as nutrients, water, and chemicals
together amounted to 9–20% of the CO2eq emissions related to feedstock procurement (corn
stover, switchgrass, or forest residue). Regarding the carbon footprint of lignocellulosic
feedstocks (sugarcane bagasse or eucalyptus residues), these are considered here as co-
products instead of waste, i.e., a fraction of the impacts associated with the production of
sugarcane/ethanol or eucalyptus are allocated to the residual biomass according to their
economic value [30].

Table 1. Prices and carbon footprint considered in this study.

Raw Material Price Carbon Footprint

Sugarcane bagasse USD 45/t (db) (Bonomi et al., 2016) 0.042 kg CO2eq/kg (db) (Capaz et al., 2020)
Wood residues USD 11.3/t (db) (SEAB, 2019) 0.0189 kg CO2eq/kg (db) (Capaz et al., 2020)

Electricity USD 0.14/kWh (CPFL Energia, 2019) 0.17 kg CO2eq/kWh (Capaz et al., 2020)
Steam variable (Ulrich and Vasudevan, 2006) 70 kg CO2eq/GJ (Ecoinvent)

Natural gas USD 0.274/kg 2.63 kg CO2eq/kg (Ecoinvent)

The energy efficiency considered here reflects how much of the energy input from
biomass and heat/power (if these are not produced inside the plant) is available in the final
product (anhydrous ethanol). If there is an excess of electricity production, for example, the
carbon footprint of the process will be lower, but so will the energy efficiency. Finally, the
water footprint is the total water consumed in the process divided by the production rate
of ethanol. Cooling water make-up due to losses from evaporation, drift, and blowdown
were assumed to be 0.4% of the total cooling water consumption.

Prior to the multi-objective optimization, a sensitivity analysis was conducted to de-
termine the correlations between the input and output variables as well as the correlations
between different responses. For the latter, principal component analysis was applied to a
set of responses obtained under different combinations of input variables (4000 points),
and the values of the main component coefficients (also called loadings) were used to inter-
pret the correlations between the responses and thus to reduce the number of objectives.
With the final set of objectives, the multi-objective optimization was then conducted in
MATLAB using a genetic algorithm. The search ranges of the decision variables are shown
in the Results section together with the ranges of the optimal Pareto results in Table 2
(Section 3.4).

Table 2. Multi-objective optimization of thermo-biochemical route: ranges of the Pareto-optimal so-
lutions.

Decision Variables Search Space Bagasse Wood Residues

TGZ (◦C) 700–1000 839–989 909–983
fs 0–0.35 0.00182–0.280 0.111–0.330

Drate (h−1) 0.05–0.15 0.0568–0.080 0.0560–0.0644
GRT (min) 5–40 21.6–32.1 21.7–33.0

GRR 0–0.5 0.0990–0.293 0.124–0.304
L (m) 30–50 43.1–47.2 40.4–48.9

VR (m3) 400–900 455–600 418–596
SFC1 0.06–0.13 0.0894–0.0940 0.0886–0.0950
RRC2 3–6 4.84–5.95 4.75–5.87
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3. Results and Discussion
3.1. Gasification

As explained in Section 2.1.1, the gasification model expands the NREL algorithm [26]
by tuning other process conditions to maintain a desired temperature in the gasification
zone. The main results are presented in Figures 5 and 6. In Figure 5, the compositions
are shown for bagasse only, but since the model uses temperature-dependent correlations
for the dry molar fractions in the gas phase, there are virtually no differences between
the dry composition obtained for the two feedstocks. This is certainly a limitation of the
model because it means the feedstock composition has no effect on the dry gas composition;
however since the differences are small (e.g., the bagasse has lower carbon content, 46.96%
against 50.89%, as shown in Table S1 in the Supplementary Materials), we can assume
that in view of the whole process and by recalling that the moisture at the entrance of the
gasifier is the same (i.e., 10%), the main distinctive aspects of the feedstocks will be the
initial moisture (50% for bagasse and 12% for wood), price, and carbon footprint. It is worth
mentioning that the composition correlations were developed for different types of wood;
hence, it is safe to affirm that the gasifier model is more accurate for eucalyptus residues.
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Differences in feedstock composition are compensated in the char yield, which is
therefore lower for bagasse (Figure 6a). Another difference can be observed in the fraction of
biomass that must be diverted to the combustion zone to maintain the desired temperature
in the gasification zone (Figure 6b): in the case of bagasse, the fraction rises from zero at a
lower temperature than the wood resides, not only due to the feedstock composition but
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also due to the heating value, which is lower for bagasse (16.05 MJ/kg against 18.61 MJ/kg,
dry basis).

Another limitation of the model is the inability to predict the formation of toxic HCN.
Although it is produced in much lower amounts than NH3 [31], HCN has been reported
to be the main reason behind the shutdown of the INEOS Bio gasification–fermentation
plant in Florida [32]. On the other hand, recent studies have suggested that the syngas-
fermenting microbe Clostridium ljungdahlii can adapt to the presence of cyanide and can
achieve similar growth performance as it can without the contaminant [33]. Moreover,
HCN removal from syngas can be accomplished through different cleaning processes, such
as absorption into an aqueous solution followed by alkaline chlorination or oxidation or
even direct through decomposition using heterogeneous catalysts during the gasification
process [34]. It may be hypothesized that INEOS Bio underestimated the amount of HCN
that would be produced in the gasifier and then, with the plant already constructed, it
might have been too problematic to include further cleaning stages.

3.2. Bubble Column Bioreactor

A bubble column bioreactor is affected by several variables. For the optimization
study, five variables were direct inputs of this unit (Drate, GRT, GRR, L, VR), but other
variables were fixed (e.g., cell recycle ratio, at 0.85), or they were outcomes from other
units (e.g., syngas composition). In a previous study [11], we showed how the syngas
composition affects the gas conversion and ethanol productivity predicted by the biokinetic
model. Figure 7 presents the main performance indicators of the bubble column reactor for
different values of Drate and GRT, with the syngas molar composition fixed at (CO:H2:CO2)
= (0.4:0.5:0.1), column height L (m) = 40, volume VR (m3) = 500, and no gas recycling
(GRR = 0). The responses presented in Figure 7 are conflicting and cannot be optimized
simultaneously: for example, the highest ethanol titers are achieved under very low Drate
(<0.075 h−1) and GRT, while the highest CO conversions are achieved with high GRT. The
energy efficiency ηLHV is also favored under high GRT (due to higher conversion), but the
productivity is favored at low GRT, achieving a maximum close to Drate = 0.1 h−1.
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3.3. Global Effects of Input Variables and Correlations between Responses

Within the framework of the entire production process, the model was first used to
predict the relevant responses to a set of combinations of decision variables. The results
were then used to calculate the correlation coefficients between the decision variables and
each of the responses, which are presented in Figure 8. First, it is worth noting that all of
the decision variables have absolute correlation coefficients greater than 0.1 for at least one
of the responses; for this reason, all of them are kept in the optimization problem. Second,
TGZ, fs, and GRT dominate, with the highest correlation coefficients for all of the responses.
Moreover, a few interpretations can be highlighted.
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presented in Figure S2 in the Supplementary Materials).

GRT is a measure of the amount of fresh syngas fed to the bioreactor: for a fixed
reactor volume, the higher the value of GRT, the lower the fresh gas volumetric flow rate
fed to each vessel, which means that for the same syngas production rate (an outcome
of the gasification unit), the number of reactor vessels must be increased, hence the large
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positive effect on CAPEX. The effect on OPEX is not straightforward because as seen in
Figure 7, increasing the GRT increases the gas conversion but also decreases the ethanol
titer (which means that more resources are used downstream). MESP and ηLHV show
similar correlation coefficients but with opposite signs, also meaning that lower values
of MESP are an indication of higher energy efficiency. The effect on the water use is
approximately opposite to the energy efficiency, corroborating that higher energy use per
liter of the product also prompts a higher cooling water requirement and therefore, more
water make-up.

The split fraction of the unreformed syngas that was diverted to combustion (fs) has
large negative effects on both, the OPEX and the carbon footprint, since increasing fs implies
decreasing the input of external energy to the plant, hence lower costs and CO2eq emissions.
However, as seen in Figure 8c, fs also has a small positive effect on MESP, meaning that the
abovementioned gains are overshadowed by the reduced ethanol production.

Although increasing the temperature in the gasification zone (TGZ) means sacrificing
more biomass to combustion (Figure 6b), this loss is compensated by the reduced formation
of char (Figure 6a), thus a higher syngas yield, plus a higher production of H2 (Figure 5),
which favors ethanol production during fermentation. The small increase in CAPEX
(probably due to higher gas flow rates) is therefore repaid by these gains, as observed with
the correlation coefficients of this variable compared to other responses.

To conduct the sustainability optimization, MESP was elected as the main economic
indicator, while the other responses shown in Figure 8, apart from CAPEX and OPEX,
were initially considered as objectives. The results of the correlation analysis described
above also indicated existing correlations between the responses (e.g., between MESP,
ηLHV, and water); such hypothesis was verified using principal component analysis (PCA).
PCA takes a set of multidimensional data and reduces the dimensions by creating new
variables (principal components) that are linear combinations of the original variables.
The values of these linear coefficients (sometimes called loadings) can then be compared
to find correlations among the variables. In the present case, two principal components
were found to explain more than 90% of the variance in the original data set; therefore, the
coefficients of the first two components provide an accurate overview of these correlations,
as depicted in Figure 9. As expected, MESP, −η, and water use are clustered in the same
region with similar coordinates. Based on these results, we decided to exclude the water
footprint from the multi-objective optimization and to proceed with three minimization
objectives only: (i) MESP, (ii) −η (because one of the goals is to maximize the energy
efficiency), and (iii) carbon footprint.
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3.4. Multi-Objective Sustainability Optimization

Figure 10 presents the Pareto fronts and their respective interpolant surfaces that were
obtained for the two feedstocks. Significantly lower carbon footprint and MESP values
can be obtained with wood residues (0.93 USD/L against 1 USD/L and 3g CO2eq/MJ
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against 10 g CO2eq/MJ). The main reasons behind these results are the lower feedstock
price, the lower feedstock-related emissions, and the initial moisture of the wood residues.
The energy efficiency however approached 32% in both cases, a result that is lower than
a previous estimation (η = 38%) [25] that considered a much more simplistic bioreactor
model. Indeed, as demonstrated in de Medeiros et al. [18], an optimistic estimation of the
gas–liquid mass transfer coefficient (kLa) can lead to a substantial improvement in energy
efficiency and a reduction of MESP. Considering the high values of MESP, even under
optimal conditions, and its dependence on the energy efficiency, the results presented here
and in de Medeiros et al. [18] corroborate the need for improvement in the bioreactor, be it
with novel reactor designs that facilitate gas–liquid mass transfer while keeping low cost
or with genetic improvement of the microorganisms. These changes must, however, be
followed by new optimization studies to re-evaluate the optimal process conditions.
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For both feedstocks, the optimal MESP can be decreased at the cost of higher GHG
emissions; however, even at the lowest MESP values, the process still represents a signif-
icant emission reduction compared to gasoline (94 gCO2eq/MJ) [35] and 1st-generation
ethanol (38.5–44.9 g CO2eq/MJ) [36]; however, it should be mentioned that our calcula-
tions do not take into account the emissions related to the distribution of ethanol. The
results are comparable to other combinations of 2G technology and feedstock, for exam-
ple, the biochemical route using wheat straw (16 g CO2eq/MJ) [2] or sugarcane residues
(17.5 gCO2eq/MJ) [27]. Similarly, Handler et al. [29] reported GHG emissions from gas
fermentation between 8.0 gCO2eq/MJ for corn stover and 31.4 for basic oxygen furnace gas.

There are different sources of uncertainty in the modeling framework. First, those
associated with the process models: for example, in the correlations used to predict syngas
composition as a function of temperature or in the equations and parameters used for
the calculation of the gas–liquid mass transfer coefficient (kLa) and reaction rates in the
bioreactor model. These are uncertainties that can be attenuated with research to deliver
more experimental data, either laboratory or industrial, to validate and improve the models.
The other type of uncertainty is related to economic and environmental parameters and
assumptions that are unrelated to process models, such as the price of raw materials, capital
cost correlations, and emission factors. For example, biomass residues are not traditional
materials with established market prices, but they acquire a so-called opportunity price
as second-generation technologies or as other types of biomass valorization processes
gain popularity. Similarly, one can expect that values of CO2eq emissions due to feedstock
procurement to depend not only on the location and type of biomass but also on the impact
assessment methodology and database used for the calculation of these emission factors.
In this context, Figure 11 presents the two-dimensional projections of the Pareto fronts
from Figure 10 along with the uncertainty intervals obtained when four economic and
environmental assumptions are varied within ±30% ranges: (i) feedstock price; (ii) CAPEX
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calculation; (iii) feedstock emission factor; and (iv) electricity emission factor. The points
A, B, C, and D were selected as the most desirable candidates, as discussed further in
Section 3.4.
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The large uncertainty intervals demonstrate the importance of being transparent
about the assumptions and limitations of techno-economic and environmental assessments.
Nevertheless, the main contribution of this paper is not the calculation of MESP, energy
efficiency, and carbon footprint, but rather the strategies presented for sustainability opti-
mization and the insights regarding the effects of interconnected input variables and their
behavior at optimal solutions. This is illustrated in Figure 12 for the most relevant variables:
TGZ, fs, Drate, and GRT. As seen in Section 3.3, these variables showed the strongest correla-
tions with the responses, which is why they are also more dispersed along the Pareto fronts.
Other variables, however, were limited to more narrow ranges of optimal values when
compared to their original search space. Ranges of Pareto-optimal values obtained for all
of the decision variables are shown in Table 2, together with their original search space.
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The optimal trends presented in Figure 12 reinforce, to some extent, the correlations
discussed in Section 3.3 (Figure 8). For example, lower MESP (and higher efficiency) can
be achieved with a higher gasification temperature, while the opposite is observed for the
variable fs (fraction of unreformed syngas that is sent to combustion). The optimal values
of Drate are constrained to the range 0.055–0.08 h−1, similar to what was observed in de
Medeiros et al. [18]. Finally, GRT is spread over the range 22–32 min, but although its
patterns are not as evident as seen for TGZ and fs, there seems to be a rough tendency of a
higher GRT leading to a higher MESP (and lower η), which is, at first sight, in contrast to
the results presented in Figure 8. However, when considering the entire GRT search space
(see Table 2), the optimal values are closer to the upper bound than to the lower bound,
therefore confirming that higher GRT is better for both MESP and η. It is when the data set
is limited to the Pareto fronts that this pattern is not clear anymore, demonstrating that
other input variables also exert strong effects on the optimal results.

Although the Pareto-optimal solutions are, by definition, equally optimal, points A, B,
C, and D from Figure 11 can be selected as the best candidates according to the following
criteria: first, given the current context, in which profitability is still the prevailing standard,
points A and B are those for which both profitability and energy efficiency are maximized.
It should be noted that it is not always the case that these two targets can be optimized at the
same time (for example, see de Medeiros et al. [18]). Points C and D take into account the
carbon footprint but do not consider it the most crucial target: beyond these points, minor
improvements in the energy efficiency are followed by a proportionally larger increase
in carbon emissions. Table 3 presents the values of the decision variables at these four
solutions along with the corresponding values of the three targets. The main differences
between the two types of solutions (A and B against C and D) are related to the gasification
temperature (slightly lower in the second case), the bioreactor volume (also lower in the
second case), and, more notably, the syngas fraction fs, which is much higher when the
carbon footprint is taken into account.

Table 3. Multi-objective optimization of thermo-biochemical route: selected optimal points.

Decision Variables A (Wood) B (Bagasse) C (Wood) D (Bagasse)

MESP (USD·L−1) 0.934 1.09 0.958 1.14
η 0.319 0.310 0.305 0.304

g CO2eq/MJ 8.60 34.1 4.11 19.4
TGZ (◦C) 974 974 961 962

fs 0.119 0.00182 0.186 0.119
Drate (h−1) 0.0572 0.060 0.058 0.058
GRT (min) 30.3 28.9 31.8 29.8

GRR 0.245 0.248 0.247 0.283
L (m) 45.8 46.0 47.4 45.1

VR (m3) 503 554 485 551
SFC1 0.0940 0.0920 0.0930 0.0921
RRC2 5.11 5.13 5.10 5.00

Water footprint was also included in the analysis as a measure of direct water use
(i.e., excluding the water footprint to produce the feedstock and raw materials), but as
explained in Section 3.3, it was excluded from the multi-objective optimization due to its
high correlation with both MESP and η. In Figure 13a the water footprint of the Pareto-
optimal points is plotted against the corresponding results of MESP, with the minimum
values being around 5 kg of water per liter of ethanol for both the bagasse and wood
residues. As a comparison, Dutta et al. [26] reported 2.0 kg/L for ethanol production from
wood via gasification and mixed alcohol synthesis, yet the LanzaTech process is expected
to consume around 8.5 kg/L [29]. The ethanol yields (Figure 13b) are also comparable to
other 2G processes found to be in the range 205–330 L/ton dry biomass [25,26,37].
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Finally, Figure 14 illustrates the trade-off between energy efficiency and self-sufficiency.
The results indicate that energy self-sufficiency is not necessarily beneficial, as higher
values of efficiency can be achieved when energy is purchased (in the form of steam and
electricity) instead of produced entirely inside the plant, which sacrifices syngas that could
be converted into ethanol. Though this conclusion may seem counterintuitive, it can be
clarified by comparing Figure 14 with Figure 13b: as the energy demand increases with η,
so does the ethanol yield, with gains that outweigh the extra energy requirement (MESP
and η go in different directions, as seen in Figures 10 and 11a).
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4. Conclusions

This work shows how the sustainability of a gasification–fermentation route can be
improved and optimized by tuning the process conditions and design parameters related to
different units of the process. The modeling framework of the whole process, from biomass
to ethanol fuel, and the interconnected effects of input variables on multiple outcomes
are discussed. The correlation coefficients among various decision variables and each of
the responses were obtained from the parametric studies of gasification and fermentation
models. A multi-objective optimization was applied as a tool for sustainability optimization
that does not rely on assigning weights to goals of different natures (e.g., economic and
environmental) and optimal trade-offs, were also discussed. Wood residue feedstock was
found to be better in terms of a lower MESP and carbon footprint (0.93 USD/L, and 3 g
CO2eq/MJ) compared to sugarcane bagasse (1 USD/L, and 10 g CO2eq/MJ). This is due to
the lower price of the wood, lower feedstock-related emissions, and lower initial moisture.
The optimal energy efficiency was found to be the same (32%) in both cases.
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Further, the Pareto-optimal solutions and uncertainties in the economic and environ-
mental factors that were used were illustrated. Although early stage economic calculations
bear large uncertainties, the optimization results indicate the low competitiveness of this
technology against current ethanol production from sugarcane or corn, unless improve-
ments are made to increase the efficiency of bioreactors or if other actions are considered,
such as subsidy schemes or carbon taxes; however, this was not evaluated in the present
work. The water usage of this integrated process was shown to be lower than that of the
current existing production processes, and the purchasing energy was found to be the
better option over the energy self-sufficient process at the expense of syngas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/fermentation7040201/s1, Figure S1: Aspen flowsheet of the gasification unit. Figure S2:
Correlation coefficients between decision variables and responses (a) CAPEX, (b) OPEX, (c) MESP,
(d) ηLHV, (e) Water use and (f) CO2eq emissions. Results shown only for wood residues. Table S1:
Elemental analysis (% dry basis) and moisture (%) of sugarcane bagasse and wood residues.
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