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Abstract: Saccharomyces cerevisiae remains the baker’s yeast of choice in the baking industry. However,
its ability to ferment cereal flour sugars and accumulate CO2 as a principal role of yeast in baking
is not as unique as previously thought decades ago. The widely conserved fermentative lifestyle
among the Saccharomycotina has increased our interest in the search for non-conventional yeast
strains to either augment conventional baker’s yeast or develop robust strains to cater for the now
diverse consumer-driven markets. A decade of research on alternative baker’s yeasts has shown that
non-conventional yeasts are increasingly becoming important due to their wide carbon fermentation
ranges, their novel aromatic flavour generation, and their robust stress tolerance. This review presents
the credentials of non-conventional yeasts as attractive yeasts for modern baking. The evolution
of the fermentative trait and tolerance to baking-associated stresses as two important attributes of
baker’s yeast are discussed besides their contribution to aroma enhancement. The review further
discusses the approaches to obtain new strains suitable for baking applications.

Keywords: alternative baker’s yeast; non-conventional yeasts; stress tolerance; aroma profile;
carbon metabolism

1. Background

Saccharomyces cerevisiae, the “conventional” baker’s yeast, is the most decorated indus-
trial workhorse of all times [1–6]. Due to its monopoly in the baking sector, beverages and,
recently, in the pharmaceutical industry coupled with its long list of credentials of being
the pioneer in a number of areas, it is deemed indispensable [4,5]. The principal role of
this yeast in baking is the fermentative degradation of simple sugars found in flour dough,
generating CO2 required for leavening of dough during fermentation and rising of the
dough during baking [6–10]. This yeast also exhibit a secondary role of a baker’s yeast,
associated with formation of desirable secondary products of fermentation such as higher
alcohols, aromatic esters, fatty acids, and other organic compounds which are responsible
for aromatic and sensorial properties of bread [11–14]. In addition to the fermentative
role, a baker’s yeast of preference should exhibit additional phenotypes such as ability
to tolerate baking-associated stresses and ability to assimilate or ferment other sugars
found in flour dough [15–18]. Yeasts encounter numerous stresses during preparation of
biomass and fermentation such as osmotic stress, thermal stress, salinity stress, oxidative
stress, air-drying stress, freezing and thawing stress, ethanol stress, and others [16–19].
However, the conventional baker’s yeast is sensitive to many of these baking-associated
stresses [9,17], has a streamlined carbon substrate utilisation base [20,21], and has poor
aromatic profiles [22] as its major drawbacks. Given these three major drawbacks, it still
baffles consumers and the scientific community why the conventional baker’s yeast has
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remain as the baker’s yeast of choice. Its long historical intimacy with humankind could
have earned itself its GRAS (Generally Regarded As Safe) status (FDA, USA) and its QPS
(Qualified Presumption of Safety) status (European Food Safety Authority, EFSA) rather
than its outright suitability. New research into the existence of other yeasts, also known as
non-conventional yeasts, suggests that there are many other yeasts with the same creden-
tials that qualifies them as alternative baker’s yeast [6,7,10,23,24]. The increasing interest in
diversity of bread and farinaceous products and the demand for natural baking ingredients
in the modern markets, driven by diverse consumer preferences, is prompting the review
of potential non-conventional yeasts as alternatives to the conventional baker’s yeast,
S. cerevisiae. By 2025, the global yeast market size is estimated to reach about USD 6 billion,
which is an annual growth rate of about 10% from the year ending 2020 [25]. The increasing
demand of novel bakery products further exacerbates the need for alternative baker’s yeast.

Against this background, this review is aimed at giving an extensive overview of the
potential of non-conventional yeasts for use as alternative baker’s yeast. The shortfalls as
well as challenges encountered by the conventional baker’s yeast are discussed. In addi-
tion, the baking credentials such as the fermentative ability and its evolution among the
Saccharomycotina, as the primary role of a baker’s yeast, is briefly discussed. Key stress
tolerance traits in non-conventional yeasts as advantageous traits and strategies to improve
the desirable traits towards development of robust non-conventional baker’s yeasts are
summed up, especially regarding fermentation ability and aroma improvement.

2. Non-Conventional Yeasts as Leavening Agents: Gaps, Limitations and Challenges

The credentials behind the primary and secondary roles of a baker’s yeast are not
exclusive to the conventional baker’s yeast S. cerevisiae [6,10,24,26,27]. The traits are
widespread among non-conventional yeasts, a circumscription of “other yeasts” [28] com-
prising of 11 genera of non-Saccharomyces yeasts (Figure 1). Yeasts from these genera
have been extensively studied and are known to have evolved alcoholic fermentation
traits (Figure 2) [6,10,26,29]. During alcoholic fermentation, CO2 is also accumulated as a
by-product of decarboxylation of pyruvate [30,31], a trait desirable in baking. Extensive
characterisation of fermentative physiology of several non-conventional yeasts exhibiting
the ability to ferment irrespective of the presence of O2, also known as Crabtree effect,
conducted by Hagman and his co-workers [32] suggests that there is a huge dough leav-
ening potential among non-conventional yeasts as shown in Figure 1. It then baffles the
consumer and scientific community as to why the conventional baker’s yeast continues to
monopolise the baking industry. Elsewhere, other researchers have even isolated several
non-conventional yeasts from sourdough to further suggest the immense potential of
non-conventional baker’s as alternative baker’s yeasts [33–35]. Other than the fermentative
capacity as the primary role, there is a requirement for baker’s yeast with aromatic diver-
sity to replace synthetic aromas in baked farinaceous products [36]. The poor aromatic
profile exhibited by the conventional baker’s yeast [22] is a major metabolic drawback in
modern consumer lifestyles. In addition, the use of chemical leavening agents has become
common but the increase in chemophobic individuals and production of off-flavours are
punitive [37]. The former circumscribes a new target group for the search of alternative
baker’s yeasts with natural aromatic flavours. Other than the two attributes discussed
above, conventional baker’s yeast has been extensively described as characterised by a
poor performance under baking-associated stressful environments [8,15]. The conventional
baker’s yeast fermentative performance is heavily impaired by the presence of high sugar
doughs, which exert a high osmotic pressure [38,39].
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Figure 1. Phylogenetic position of non-conventional yeasts. This figure was adapted from [6]. The figure shows 12 clades
resolved by a concatenation of gene sequences reported [40]. Non-conventional yeasts and their attributes of importance as
alternative baker’s yeasts are highlighted in green, whereas the conventional yeasts are highlighted in red.

Despite its monopoly of the baking industry, the conventional baker’s yeast has a
streamlined carbon substrate utilisation range [20,21]. Native strains of S. cerevisiae cannot
utilise carbon sources found in flour such as starch and xylose [21,41–44]. For bread with
reduced amounts of starch, costly gelatinisation and enzymatic liquefaction would be re-
quired. In addition, other farinaceous products often include use of milk for emulsification
purposes. A major concern is the inability of the native conventional yeast to ferment lactose
due to the absence of amylase or glucoamyase activity (lacks the β-galactosidase) [21,45,46].
Since there are increasing incidences of individuals in the human population who become
lactose intolerant with age [47], an inability to ferment lactose by the conventional baker’s
yeast is a major drawback for the quality of the bakery products. Such inabilities heavily
impact on the carbohydrate content and, subsequently, the bread quality as many sugars
remain in the final product. There has been an increasing trend to utilise inexpensive carbon
sources to reduce the costs of modern biomass production. An inability to utilise lactose
in abundant and inexpensive cheese whey waste streams is a major cause for concern.
It is also noteworthy that some S. cerevisiae strains lack the α-galactosidase enzyme and
therefore cannot utilise melibiose [48], a disaccharide accumulated after the breakdown
of raffinose when molasses are used for biomass production [21]. This inability reduces
the production efficiency and hence affecting cost-effective productivity of the biomass
production process. Furthermore, poor tolerance to metabolic stress due to the presence of
accumulated ethanol, organic acid production, and reactive oxygen species, characteristic
of conventional baker’s yeast, is a major challenge [49]. Extensive research suggests that
most of these major challenges evident in the usage of the conventional baker’s yeast can
be ameliorated by use of non-conventional yeasts whose desirable attributes as baker’s
yeast have come to light [6].
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However, there are two challenges, on the other hand with exploitation of non-
conventional yeasts as baker’s yeast. One major obstacle, probably due to a poor his-
tory of domestication, information on their safety designated as GRAS or QPS status is
lacking. However, a majority of non-conventional yeasts are increasingly being isolated
from traditionally and spontaneous fermented foods, which bears testimony of their silver
lining [50,51]. In addition, with the advent of advanced technologies in standard toxicology
and clinical trials, the safety of non-conventional yeasts can be conclusively established
rather than just based on substantial historical safe use evident in the use of S. cerevisiae as
the conventional baker’s yeast. A second obstacle is the limited availability of information
required to establish if these non-conventional yeasts are virulent. Information on many of
these non-conventional yeasts is, however, becoming readily available due to the advent
of omic technologies. The number of available genomes of non-conventional yeasts, both
privately and publicly owned database, has increased three-fold in recent years [52–54].
The knowledge of genomic architecture for understanding molecular events, metabolic
pathways, and their associated regulatory mechanisms is indispensable for developing
tools and other processes important for their exploitation in the baking industry [55,56].
The combination of genomic and physiological data is increasingly becoming instrumental
to allow inferences of genomic features and metabolic pathways with a potential in bak-
ing applications [57]. Such information was trivial for the conventional baker’s yeast for
many decades, but the power of comparative genomics on non-conventional yeasts could
also allow us today to study molecular mechanisms and undesirable genes that could
be responsible for virulence or emergence thereof. Recent advances in genome editing
technologies, such as CRISPR-Cas9 [58] which can be used to modify large spectrum of
genomes, could also allow specific targeting of genes and pathways with potential in
baking to allow expansion of desirable baking traits among non-conventional yeasts. Such
gaps, limitations, and challenges pertinent to the search for non-conventional yeasts are
discussed in the next sections.
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Figure 2. Alternative yeasts and molecular events behind their respirofermentative lifestyle. The figure is redrawn from [6].
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3. Fermentation of Multiple Simple Sugars Found in Flour Dough: A Key Baking
Yeast Trait Is Conserved in Non-Conventional Yeasts

Wheat flour contains a wide range of fermentable monosaccharides and disaccharides,
with glucose, galactose, and fructose as monosaccharides and sucrose and maltose as
disaccharides [63]. The baking potential of baker’s yeast is directly linked to the ability to
ferment these sugars [64]. The ability of yeasts to assimilate even a small amount of a vari-
ety of all available sugars could enhance the leavening productivity as well as its economic
potential. Utilisation of sugars occurs in this respective order: glucose, sucrose, galactose,
fructose and, lastly, maltose in S. cerevisiae. The first four carbon sources are utilised within
an hour of dough fermentation [65,66]. The conventional baker’s yeast utilises maltose
at the very end of dough fermentation as the most predominant sugar in dough without
sucrose added and, thus, the leavening ability is closely linked to the fermentation of
maltose [67,68]. Fermentation of simple sugars is well conserved in the Saccharomycotina
and in the distant relatives that separated 200–500 mya, the Dekkera/Brettanomyces and
Schizosaccharomyces pombe lineages (Figure 2). The fermentative capacity, which directly
translates to the gassing power of the baker’s yeast, although well pronounced in the Sac-
charomyces genera of which the conventional baker’s yeast is found, is not unique [26,32,69].
Many non-conventional yeasts that separated from Saccharomyces–Lachancea Kluyveromyces–
Eremothecium lineages about 125–150 mya exhibit the alcoholic fermentation lifestyle [26,32].
This trait, extensively described as the Crabtree effect, suggests that there are multitudes of
non-conventional yeasts with potential as alternative baker’s yeasts. Extensive comparative
genomics work suggests that all non-conventional yeasts harbouring the URA1 gene and
that underwent whole genome duplication (WGD) as well as promoter rewiring have
the potential to be used as baker’s yeast (Figure 2). The baking potential increases with
decreasing phylogenetic distance to the conventional baker’s yeast (Figure 2).

4. Assimilation of Multiple Complex Sugars in Flour Dough: A Desirable Trait in
Baking Yeasts Is Patchily Distributed in Non-Conventional Yeasts

In addition to simple fermentable sugars, non-fermentable oligosaccharides such as
glucofructans and trisaccharides such as starch, raffinose and glucose and fructose are also
found in wheat flour [70]. Starch is the principal carbohydrate in plant seeds such as wheat
and rye, often used for making flour [71]. However, native strains of the conventional
baker’s yeast cannot break down starch [21]. The addition of fungal amylases to wheat flour
for degradation of starch, increasing the amounts of maltose in the dough [72], is common
among bakers [73,74]. Starch-degrading traits among non-conventional yeasts such as
Sacharomycopsis fibigulera, Debaryomyces castelli, Cryptococci spp., Candida famata, Aureoba-
sidium pullulans, and Clavispora lusitanie has been reported [75]. Other sugars that could
be important in influencing the outcome of the bread, for example in whole wheat bread
where the outer layer of kennel (bran) is also used, are cellulose and hemicellulose. Again,
these sugars cannot be utilised or fermented by S. cerevisiae [18]. Cellulases and hemicellu-
lases are exogenously added during baking to release simple sugars [76]. The addition of
enzymes during baking increases the cost of production of bread. “One step forward, many
steps backwards”, the conventional baker’s yeast strains again cannot naturally utilise
pentose sugars released upon degradation of hemicellulose such as xylose, arabinose, and
mannose [77]. By contrast, fermentation of these carbon sources has been reported in
non-conventional yeasts such as Pichia stipitis, Pichia kudriavzevii, Schfferomyces shehatae,
Candida tropicalis, and others [78]. A number of approaches to enhance fermentation by
the introduction of specific baking traits into the conventional baker’s yeast via pathway
bioengineering have been reported [79]. However, consumers’ negative perception and
acceptance remains the major obstacle in the use of genetically modified strains in the
baking industry. Use of yeasts with such desirable genetic traits to reduce the final producer
price of bread and farinaceous products remain a priority.
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5. Robust Stress Tolerance of Non-Conventional Yeasts: A Key Trait Sought for in
Alternative Baking Yeasts

The baker’s yeast encounters a number of environmental and metabolic stressors
during preparation of biomass and during dough fermentation [15]. Osmotic stress, ther-
mal stress, salinity stress, oxidative stress, air-drying stress, freezing and thawing stress,
and ethanol stress, among others, are typical examples. These stresses potentially damage
cellular components, which subsequently leads to a reduction in fermentation performance.
Non-conventional yeasts, as previously reported, possess beneficial robust stress toler-
ance when compared to S. cerevisiae [6,80]. S. cerevisiae is characterised by poor resistance
to many of these baking-associated stresses [9,81]. Process optimisations such as using
chemical stress protectants as ingredients and formulations to improve the quality of bread
are well documented [82]. Several desirable traits of non-conventional yeasts have been
documented suggesting extreme stress tolerance phenotypes such as ethanol tolerance,
osmotolerance, thermotolerance, halotolerance, and freezing and thawing tolerance, among
others (Table 1). These non-conventional yeasts are increasingly becoming attractive alter-
natives for baking as well as other different industrial bioprocesses as their extremophilic
stress tolerance traits improve the fermentation performance and subsequently improve
the techno-economics in the baking industry. Tolerance under different stressors among
non-conventional yeasts is discussed in the next sections highlighting current literature.

Table 1. Overview of non-conventional yeasts and their relevant traits for baking.

Trait Yeast Species

Gassing power

Wickerhamomyces anomalus [80,83]
Wickerhamomyces subpellicullosus [10]
Torulospora delbrueckii [83,84]
Torulospora pretoriensis [85]
Kluyveromyces marxianus [66,86]
Picha kudriavzevii [83,87,88]
Kazachstania gamospora [10]
Kazakstania humilis [83]
Kazachstania exigua [89]
Brettanomyces (=Dekkera) bruxellensis [69,80,90]
Kluyveromyces marxianus [91]

Thermotolerance

Wickerhamomyces anomalus [80]
Metschnikowia pulcherima [92]
Wickerhamomyces subpellicullosus [10]
Kluyveromyces marxianus [86,92,93]
Pichia kudriavzevii [88]
Torulospora delbrueckii [49,94]
Pichia kudriavzevii [87,92,95]
Lachancea thermotolerans (Hino et al. 1987) [96]
Candida thermophila [95]

Osmotolerance

Wickerhamomyces anomalus [97]
Wickerhamomyces subpellicullosus [10]
Torulospora delbrueckii [84,92]
Metschnikowia pulcherima [92]
Zygosaccharomyces spp [92]
Pichia kudriavzevii [98]
Kazachstania gamospora [99]
Brettanomyces (=Dekkera) bruxellensis [100]
Kluyveromyces marxianus [101]
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Table 1. Cont.

Trait Yeast Species

Halotolerance

Wickerhamomyces anomalus [102]
Wickerhamomyces subpellicullosus [10]
Torulospora delbrueckii [87]
Pichia kudriavzevii [87]
Brettanomyces (=Dekkera) bruxellensis [100]
Kluyveromyces marxianus [101]
Debaryomyces hanseni [103]

Ethanol tolerance

Wickerhamomyces anomalus [92]
Lachancea thermotolerans [92]
Saccharomycoides ludwigii [92]
Wickerhamomyces subpellicullosus
Zygosaccharomyces rouxii [92]
Torulospora delbrueckii [104]
Pichia kudriavzevii [87,92]
Hanseniaspora valbyensis [92]
Brettanomyces (=Dekkera) bruxellensis [90]
Kluyveromyces marxianus [105]

Freezing and thawing stress tolerance

Torulospora delbrueckii [84,106]
Zygosaccharomyces rouxii [106]
Saccharomyces rosei [106]
Kluyveromyces thermotolerans [106]

Wide range of sugar utilisation Kluyveromyces marxianus [80,107]
Pichia kudriavzevii [108]

Aroma complexity

Wickerhamomyces anomalus [109]
Saccharomycopsis fibigulera [109]
Wickerhamomyces subpellicullosus [10]
Torulospora delbrueckii [110]
Pichia kudriavzevii [109]
Kazachstania gamospora [10]
Kazachstania humilis [109]
Kazachstania exigua [89]
Kazachstania zonata [111]
Brettanomyces (=Dekkera) bruxellensis [112]
Kluyveromyces marxianus [7]

5.1. Osmotolerance

Bread can be made as lean or sweet dough, which depends on the concentration of
added sucrose in flour. Lean dough is characterised by no sugar or very little amounts of
added sucrose, whereas sweet dough contains approximately 25–40% sucrose [18]. High
sugar concentrations exert an unwarranted osmotic stress to the baking yeast, hindering
its optimal fermentative capacity [18,113]. The conventional baker’s yeast’s poor fermen-
tative capacity in sweet doughs has been extensively characterised [8,15]. Osmotic stress
leads to rapid cell dehydration and a reduction in gassing power [114]. Fermentation of
sweet dough increases the relative concentrations of reactive oxygen species (ROS), further
reducing the fermentative capacity of the baking strain [115]. The presence of osmotol-
erant strains among non-conventional yeasts that can survive such concentrations has
been reported in literature [92]. Recent research highlights that not all non-conventional
yeasts possess this attribute [75] but increasing number of non-conventional yeasts are
continuously being explored. Table 1 shows a few osmotolerant non-conventional yeasts.

5.2. Thermotolerance

Thermotolerance of yeasts is an important attribute of interest in the baking industry.
Despite the fact that dough preparation and fermentation are carried out at mesophilic tem-
peratures, baker’s yeast may encounter very low or very high temperatures during baking
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and storage [15]. Downstream processing for preparation of dried baker’s yeast biomass
involves air-drying, where hot air temperature can easily increase to over 37 ◦C [18]. The in-
crease in temperatures during preparation and storage of biomass may affect many factors
such as misfolding of proteins, change in vacuolar pH, and malfunction of mitochon-
dria [18,116]. In addition, during fermentation of the dough, elevated temperatures could
become another obstacle. There is a reduction in fermentation efficiency of S. cerevisiae
strains grown at high temperatures. An increased fluidity and permeability of membranes
increase the sensitivity of yeast cells to organic acids, which then impairs fermentation [117].
In addition, high temperatures denature and inactivate enzymes, leading to an imbalance
of metabolic activities together with those specific for fermentation of dough. Thermo-
tolerance is a rare trait among non-conventional yeasts. The trait is required for biomass
production process but not exclusively for fermentation during baking. Such a trait is
desirable in biomass production to reduce costs associated with cooling after sterilisation of
growth media as well as to reduce contamination [118]. Yeast strains usually tolerate only a
narrow mesophilic temperature range and, so far, only a few species such as Kluyveromyces
marxianus and Ogataea polymorpha have been found to present fermentation capability at
temperatures above 40 ◦C [119]. Other species with thermotolerance ability have been
reported (Table 1).

5.3. Freezing and Thawing Stress Tolerance

Freezing and thawing stress tolerance is another desirable characteristic of a baker’s
yeast. The practice of storing frozen dough is very common among bakeries since historical
times. This follows the need to reduce the costs of labour associated with starting the dough
every time it is needed. In modern bakeries, frozen doughs are indispensable for providing
a constant supply of oven-ready frozen doughs to the consumers [18,120]. However,
freezing and thawing conditions are detrimental to the conventional baker’s yeast [121].
Freezing and thawing physically damages cellular components, which leads to reduction
in fermentation capacity [18,120,122]. Studies have shown that freeze-injured yeasts have
an impaired leavening capacity, leading to poor bread quality [122]. ROS are also generated
during freezing and thawing, which further exerts oxidative stress on the fermentative
yeasts [121]. Attempts to develop freeze-tolerant strains of the conventional baker’s yeast
using mutation procedures and recombinant DNA technologies have, however, yielded
strains with poor flavour profile [122]. Yeast trains that retain their fermentative and
flavouring abilities after freezing and thawing are highly desirable. A few examples of
non-conventional yeasts with freezing and thawing stress tolerance are presented (Table 1).

5.4. Ethanol Tolerance

One of the most important attributes of the industrial workhorse, S. cerevisiae, in baking
as well as in other processes, such as beer brewing and wine making, is its ability to ferment
sugars and accumulate ethanol and CO2. However, the accumulation of ethanol negatively
impacts the fermentative performance of the yeast. Ethanol is toxic as it denatures enzymes
required for alcoholic fermentation such as hexokinases and dehydrogenases [123] and
alters cellular lipid and unsaturated fatty acid concentrations, subsequently impairing
growth and fermentation [124]. Ethanol tolerance is a desirable and beneficial trait in
non-conventional yeasts with potential as baker’s yeast. Many studies have reported yeasts
with such an ability (Table 1).

5.5. Oxidative Stress Tolerance

During production of biomass and during fermentation of dough, oxidative stress
is a major concern in the baking industry. ROS generated during normal aerobic cellular
metabolism are known to exert oxidative stress. ROS inactivate proteins, damage nu-
cleic acids, denature proteins, and damage mitochondrial membranes [18,125–129]. Serial
repitching of fresh dough with previously fermented dough is a common practice among
traditional bakeries. However, due to the deterioration of the baker’s yeast due to the pres-
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ence of ROS, this practice is not ideal because of increased cellular ageing and replicative
lifespan after every pitch cycle [130,131]. Thus, non-conventional yeasts with oxidative
stress protection mechanisms are attractive. Oxidative stress can also be exerted by the
presence of other stressors such as freezing and thawing and air-drying, as discussed in the
respective sections above. Yeasts with such desirable attributes among non-conventional
yeasts are tabled (Table 1).

6. Aromatic Diversity of Non-Conventional Yeasts: A Key Trait Sought for in
Baking Yeasts

The aroma profile constitutes an important quality parameter of bread affected not
only by the baking ingredients but also by the secondary metabolites produced by yeasts
during fermentation, such as esters, aldehydes, and ketones [9,132,133]. Aroma can also be
derived from the Maillard reaction between reducing sugars and amino acids [134] as well
as from lipid oxidation [135]. Nevertheless, microbial metabolic pathways are considered
the main source of aromas in bread and other food products [133].

Yeast species principally contribute to the leavening of flour dough and aroma of
bread [136]. However, S. cerevisiae produces a limited diversity of aromas, whereas certain
non-conventional yeasts recently tested in baking have shown a huge potential in this sense,
especially those present or isolated from sourdoughs [7,10,22,136,137]. In sourdoughs,
generally, there is a single predominant yeast species, but the diversity among different
doughs is known to be relatively high. Around 30 different species have been isolated. The
genera Saccharomyces (S. cerevisiae), Kazachstania (K. humilis, K. exigua), Wickerhamomyces
(W. anomalus), Pichia (P. kudriavzevii), and Torulaspora (T. delbrueckii) are the most isolated
and geographically widespread in Asia, Europe, as well as in Africa and Australia in certain
cases [136]. Studies detailing the use of non-conventional yeasts in bakery are still limited,
but certain authors have made several attempts in this regard either using non-conventional
yeasts as pure cultures or in combination with lactic acid bacteria [7,10,137,138]. Aslankoohi
et al. [7] evaluated the ability of eight non-conventional yeasts as alternatives for bread
fermentation as well as two non-baker’s Saccharomyces species, all of them isolated from
food. Among the evaluated yeasts, T. delbrueckii and S. bayanus presented adequate dough
fermentation ability and novel flavour profiles, as presented by trained sensory panellists.
The obtained bread employing T. delbrueckii was described as having a more complex,
nutty, forest-like flavour reminiscent of some bread types resulted from spontaneous
fermentation, whereas the bread prepared using S. bayanus exhibited a more aromatic
profile, characterised by fruity notes, when compared to the control. GC–MS analyses
showed that the bread produced by T. delbrueckii and S. bayanus presented several volatiles
in higher concentrations than the control, some of them being already described as relevant
aromas in bread crumb, such as 1-heptanol, 2-phenyl ethanol, benzaldehyde, heptanal,
ethyl octanoate and phenylacetaldehyde [132,133,139,140]. T. delbrueckii bread contained
more aldehydes and ketones (carbonyl compounds) than the control, suggesting that these
compounds were reduced to their corresponding acids, alcohols, and esters at a lower
rate. In addition, other aroma compounds produced by these non-conventional yeasts
were not present in control bread. This indicated that non-conventional strains produce
different concentrations of certain aroma compounds and they can also be responsible
for whole new set of aroma compounds that are not synthesised by the conventional
baker’s yeast [7]. Zhou et al. [10] tested seven non-conventional yeasts isolated from
environment and food for their baking potential. These authors found that when the dough
was leavened with the alternative baker’s yeasts, the buttery, nutty, and fruity aromas
were significantly more pronounced than in the control bread prepared using conventional
baker’s yeast. In particular, bread produced by Kazachstania gamospora and Wickerhamomyces
subpelliculosus displayed more complex aroma profiles and obtained better overall results
in sensory analyses. In addition, these strains presented higher stress tolerance to sugar
and salt [10].

Studies involving combinations of non-conventional yeasts and lactic acid bacteria
have also been carried out as mentioned above. Plessas et al. [138] tested diverse starter cul-
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tures for sourdough bread making using different combinations: (i) the non-conventional
yeast Kluyveromyces marxianus as pure starter culture; (ii) K. marxianus in mixed culture with
the lactic acid bacteria Lactobacillus delbrueckii ssp. bulgaricus; (iii) K. marxianus in mixed cul-
ture with the lactic acid bacteria Lb. helveticus. Fermentation employing natural sourdough
microflora was used as a control. The aroma of the resulting bread after employing mixed
cultures was more complex as evidenced by the higher number of aroma compounds
identified. GC–MS analyses showed the presence of relevant volatiles to bread quality in
these cases, such as 2-nonen-1-ol, 3-nonen-1-ol, benzyl alcohol, and furfural as well as a
variety of esters. In addition, bread produced by mixed cultures reached the highest overall
quality scores in sensory evaluation [138]. Another study tested Meyerozyma guilliermondii
and P. kudriavzevii, together with Lb. sanfranciscensis isolated from Chinese liquor Daqu.
These microorganisms were used as mixed starter cultures on sourdough bread making.
The outcome was an improved consumer acceptance and flavour complexity due to a
higher production of esters, aldehydes, and other aroma compounds [137].

7. Improvement of Non-Conventional Yeasts for Baking

Improvement of production strains is important to increase the product yields and
productivity required for economic viability. There are multiple strategies to develop yeast
strains towards specific industrial characteristics [79,141]. Current methods can be either
through non-genetic modification (non-GM) or genetic modification (GM) strategies.

8. Non-GM Strategies

When the developed strains are for use in the food production sectors, consumer
acceptance is of utmost importance. Genetic improvement of food grade yeasts is contro-
versial [142]. Non–genetic modification techniques used to improve strains are therefore
attractive. The isolation of yeasts from their natural environment or screening from col-
lection centres is one way to explore the wealthy biodiversity of yeast. Another strategy
is to artificially develop such yeasts using classical and emerging methods with poten-
tial to alter productivity of the strains. However, this method’s major drawback is the
limit or absence of natural yeasts with such desirable characteristics. Yeasts are known
to be only adapted for survival and reproduction in their niches, which are completely
different from the highly stressful production environments, such as those encountered
during baking, brewing, or many other industrial processes [79]. Such native phenotypic
traits are therefore often not easily transferred to baking applications. Thus, maximising
phenotypic traits through artificial strain development strategies is attractive. Evolution-
ary engineering is one of the simplest yet very attractive and powerful ways that exploit
the natural biodiversity by selecting robust strains for specific industrial processes. This
technique, also known as adaptive laboratory evolution, exploits the plasticity of microbial
genomes. When a selective pressure is applied, it confers a specific selective advantage
to evolving yeasts, leading to derived mutants presenting an industrially relevant trait
as set by the investigator [79,141]. The selective advantage of derived strains is often
responsible for an increased growth rate and decreased death rate as well as increased re-
tention in culture [143]. This technique has been shown to be important for improvements
of wild type and yeast strains engineered towards stress tolerance, ability to consume
new substrates, and increased product formation rates [79,141]. This strategy is highly
advantageous in certain situations over rational metabolic engineering. For example, not
much genetic background information for the trait of interest is required before evolu-
tion [144]. In addition, this method is considered a non-genetic modification strategy and,
hence, the evolved strains developed using this technique will have no challenges with
consumer acceptance [145–147]. Furthermore, limited laboratory equipment is required,
serial transfer in simple shake flasks is an inexpensive approach to develop strains.
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9. GM Strategies

The commercial application of genetically modified yeasts is attractive as alternative
baker’s yeast. Randez-Gil et al. recommended the use of recombinant DNA technology to
develop strains with improved baking attributes [8]. Although consumer acceptance is the
major drawback of such a development strategy, technological advancements demonstrat-
ing clear, safe, and beneficial use of microorganisms in foods may be appreciated sooner
than anticipated [148]. Many countries have approved the use of genetically modified
strains but there has been a lag on the entrance of those foods on the market [148].

10. Conclusions and Future of Non-Conventional Yeasts in Modern Baking

Increasing number of studies highlight the potential of non-conventional yeasts to
develop new bakery products with novel aromas. Some of these yeasts present several
attributes interesting for bakery industry such as osmotolerance, halotolerance, or ther-
motolerance, among others, in addition to the ability of synthesise a huge range of aroma
compounds that can result in higher aroma complexity. These species constitute an un-
tapped source for product diversification and innovation. However, further studies are
needed to adjust the different manufacturing processes as well as to demonstrate the QPS
or GRAS status of most of them such that they can be freely used in the food industry.
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