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Abstract: As barley and oat production have recently increased in Canada, it has become prudent
to investigate these cereal crops as potential feedstocks for alcoholic fermentation. Ethanol and
other coproduct yields can vary substantially among fermented feedstocks, which currently consist
primarily of wheat and corn. In this study, the liquified mash of milled grains from 28 barley
(hulled and hull-less) and 12 oat cultivars were fermented with Saccharomyces cerevisiae to determine
concentrations of fermentation products (ethanol, isopropanol, acetic acid, lactic acid, succinic acid, α-
glycerylphosphorylcholine (α-GPC), and glycerol). On average, the fermentation of barley produced
significantly higher amounts of ethanol, isopropanol, acetic acid, succinic acid, α-GPC, and glycerol
than that of oats. The best performing barley cultivars were able to produce up to 78.48 g/L (CDC
Clear) ethanol and 1.81 g/L α-GPC (CDC Cowboy). Furthermore, the presence of milled hulls did
not impact ethanol yield amongst barley cultivars. Due to its superior ethanol yield compared to
oats, barley is a suitable feedstock for ethanol production. In addition, the accumulation of α-GPC
could add considerable value to the fermentation of these cereal crops.

Keywords: barley; oats; α-glycerylphosphorylcholine; fermentation; ethanol; Saccharomyces cereivisae

1. Introduction

Barley and oats are major crops grown in Canada, with production of 10.4 and 4.2 Mt in
2019, respectively [1]. Barley and value-added barley products return over CAD $2 billion
in Canadian exported goods alone [2]. Demand for these grains continues to be strong,
with an increase of 14.0% and 18.1% acres planted in 2019 compared to the prior year
for barley and oats, respectively [3]. These crops are primarily used as animal feed, but
are also used to produce food and alcohol [2–4]. Oats and barley are excellent sources of
carbohydrates and fibre (e.g., β-glucans) [5,6], and have an abundance of starch (>60% of
the grain dry weight) [7,8].

The abundant starch in these grains is suitable for renewable fuel production via
alcoholic fermentation by the yeast Saccharomyces cerevisiae. With increasing barley and oats
production in Canada, it is beneficial to investigate these cereal crops as feedstocks for pro-
ducing ethanol, as lower grades and damaged crops can still be suitable for fermentation.
In addition to ethanol, valuable organic solutes can also be coproduced during fermenta-
tion [9]. Recovery of these compounds could increase the profitability of ethanol production
by fermentation [9–11]. These coproducts include isopropanol, acetic acid, succinic acid,
α-glycerylphosphorylcholine (α-GPC), and glycerol [12,13]. Therefore, monitoring for
these coproducts is essential in optimizing fermentation conditions and increasing ethanol
product yields.

n-Propanol is naturally synthesized from amino acids and simple sugars during fer-
mentation processes (e.g., Ehrlich pathway reactions) [14–16]. Isopropanol can also be
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produced through acetone reduction by lactic acid bacteria [17], a common contaminant of
fermentation [18]. The presence of nuisance organisms can also result in increased produc-
tion of acetic acid [19] and lactic acid [20]. Production of succinic acid is also gaining atten-
tion due the potential of converting this compound to a range of industrial chemicals (e.g.,
plastics and organic solvents) [21]. However, successful biological production of succinic
acid requires the selection/development of succinic acid producing microorganism [22,23],
selection of feedstock, specific productivity of the fermenters, and the development of
efficient recovery processes [24]. Nonetheless, the production and purification of succinic
acid from renewable feedstocks could potentially create supplemental value.

Glycerol is also coproduced during anaerobic fermentation via Saccharomyces cereivisae
[20,21]; however, it is relatively inexpensive. Glycerol is produced by yeast to maintain
the balance between the NAD+/NADH ratio during cell growth [25]. However, this
compound is also produced under osmotic stress conditions, as a means to protect the
cells against lysis [26–28]. Therefore, fermentation conditions can play an important role in
decreasing glycerol production and improving ethanol yield [29]. Nonetheless, the glycerol
in the fermentation mash can be upgraded through conversion to 1,3-propanediol (a more
valuable compound) using lactobacilli [10,11].

Finally, α-GPC is a biosynthetic precursor of the neurotransmitter acetylcholine, as
well as membrane phospholipids [30]. This compound can improve cognitive abilities [31]
and isometric strength [32], and appears to have benefits for various other physical and
mental performance tasks [33]. More importantly, α-GPC is marketed as a nootropic
nutraceutical and pharmaceutical for the treatment of Alzheimer’s disease [34]. It is esti-
mated that by 2050, more than 130 million people will be diagnosed with Alzheimers [35].
The potential to treat neurodegenerative diseases using α-GPC has increased the value
of this compound substantially [36–38]. Therefore, there is great potential in developing
alternative, inexpensive, and sustainable means for commercial production to supply
this compound.

In this study, 28 cultivars of barley and 12 cultivars of oats were subjected to Sac-
charomyces cerevisiae fermentation to identify which cultivars produced optimum yields
of ethanol and organic solutes (α-GPC, acetic acid, ethanol, succinic acid, glycerol, iso-
propanol, and lactic acid).

2. Materials and Methods
2.1. Fermentation Conditions

Barley and oat cultivars (Table 1) were obtained from the Crop Development Centre,
University of Saskatchewan (Saskatoon, SK, Canada). Commercial enzymes, yeast (Saccha-
romyces cerevisiae), and urea were obtained from Terra Grain Fuels, Belle Plaine, SK, Canada.
Whole barley and oat kernels were milled to a coarse flour using a Glen Mills Type C/11/1
tabletop grinder/disc mill, with the coarseness set to 18 (Clifton, NJ, USA). Milled whole
barley and oat flour were gelatinized with boiled distilled water (36%, w/v) and incubated at
130 ◦C for 15 min using a VWR Constant Temperature Oven (Model 1350GM; Mississauga,
ON, Canada). Saccharification was initiated by adding α-amylase (0.2%, v/v) and the mash
was incubated at 80 ◦C for 60 min. A 1:3 mixture of glucanase:xylanase was then added to
the mash (0.01%, v/v) which was then heated for an additional 30 min at 55 ◦C. The mash
was stirred every 15 min during heating after enzyme additions. Samples were then cooled
to 37 ◦C and glucoamylase (0.1%, v/v), liquid yeast (0.5%, v/v; Saccharomyces cerevisiae), and
liquid urea (0.05%, v/v) were added, and a gas trap was fitted to the fermenter. The total
liquified fermentation volume was 1 L. Each fermentation broth was incubated at 37 ◦C
until completion at 72 h. An aliquot of 500 µL was collected for analysis at 0, 24, 48, and
72 h.
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Table 1. Barley cultivars (28 cultivars; all 2-row except for 6-row CDC Clyde) and oats (12 cultivars)
subjected to Saccharomyces cerevisiae fermentation.

Barley Cultivars Oat Cultivars

Cultivar Hulled vs. Hull-Less Cultivar Hulled

AAC Synergy Hulled CDC Arborg Hulled

AC Metcalfe Hulled CDC Dancer Hulled

CDC Austenson Hulled CDC Morrison Hulled

CDC Bow Hulled CDC Nasser Hulled

CDC Clear Hull-less CDC Norsemen Hulled

CDC Clyde Hulled CDC Seabiscuit Hulled

CDC Copeland Hulled OT3071 Hulled

CDC Cowboy Hulled OT3087 Hulled

CDC Fibar Hull-less OT3102 Hulled

CDC Fraser Hulled OT3103 Hulled

CDC Hilose Hull-less OT3104 Hulled

CDC Kindersley Hulled OT3105 Hulled

CDC Maverick Hulled

CDC McGwire Hull-less

CDC Meredith Hulled

CDC Rattan Hull-less

Champion Hulled

Claymore Hulled

FB207 Hulled

FB208 Hulled

HB16337 Hull-less

Oreana Hulled

Sirish Hulled

TR14150 Hulled

TR16156 Hulled

TR17163 Hulled

TR17166 Hulled

TR17167 Hulled

2.2. NMR Spectroscopy

Immediately following yeast inoculation, an aliquot (2 mL) was taken from each
fermentation mash using a VWR® disposable transfer pipets (Mississauga, ON, Canada),
with additional samples taken every 24 h. Aliquots were dispensed into VWR microcen-
trifuge tubes (2 mL) and centrifuged at 10,000 rpm for 10 min, using a Labnet Spectrafuge
24D Digital Microcentrifuge (NJ, USA). The samples were then filtered using a 3 mL BD
syringe (New Jersey, USA) equipped with a VWR 0.45 µm nylon membrane syringe filter
(25 mm; Mississauga, ON, Canada). After filtration, an aliquot (500 µL) was dispensed
into a nuclear magnetic resonance (NMR) tube containing deuterium oxide (50 µL; EMD
Millipore, Oakville, ON, Canada) and pyrazine (40 µL of 20 mg/µL; Sigma Millipore,
Oakville, ON, Canada) as an internal standard. Double-pulse field gradient spin echo 1H-
NMR spectroscopy was conducted according to Ratanapariyanuch et al. [39] Spectra were
recorded at 500 MHz (AMX 500, NMR Bruker, Mississauga, ON, Canada) with 16 scans
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per spectrum. Spectroscopy data collection and analyses were conducted with TopSpin™
3.8 software (Bruker BioSpin GmbH, Billerica, MA, USA).

2.3. Statistical Analysis

Statistical analyses of organic solute content, determined via 1H-NMR, were per-
formed using the Statistical Package for the Social Sciences (SPSS) version 25.0 (IBM Corp.,
Armonk, NY, USA). A Pearson coefficient correlation test was used to identify significance
between average oat and barley fermentation. Significant differences were reported at the
95% confidence interval (p < 0.05).

3. Results

The concentrations of ethanol, isopropanol, acetic acid, succinic acid, α-GPC, and
glycerol found during barley and oat fermentations are reported in Figures 1 and 2. Fer-
mentation was deemed complete after 72 h, as observed glucose in the barley and oat
mash was largely consumed (≤14% remaining). The average concentrations of compounds
found in barley and oat mashes over 72 h were calculated (Figure 3). Concentrations of
glucose were also monitored throughout the barley and oat fermentations (Figures 1G
and 2G).
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3.1. Concentration of Organic Solutes in Barley

Glucose content after saccharification (Figure 1G) varied between 191.7 (CDC Mor-
rison) and 366.3 g/L (Claymore) with an average of 318.8 ± 55.2 g/L (Figures 3A, 4A
and 5A). Average ethanol content after fermentation of the various barley cultivars was
72.7 ± 3.4 g/L (Figure 3A) after 72 h (Figure 4A), with CDC Hilose exhibiting the lowest
yield at 68.0 g/L and CDC McGwire achieving the highest yield at 78.5 g/L (Figure 1A).
The average production of isopropanol, acetic acid, and succinic acid was 0.89 ± 0.23, 0.83
± 0.07, and 0.60 ± 0.07 g/L, respectively (Figure 3B–D). The highest concentrations for
isopropanol, acetic acid, and succinic acid were found in CDC Kindersley, CDC Austenson,
and CDC Clyde, respectively, with the lowest concentrations found in Claymore, FB207,
and CDC McGwire, respectively (Figure 1B–D). Interestingly, α-GPC was observed in
all barley cultivars, with an average α-GPC across cultivars at 72 h of 1.38 ± 0.22 g/L
(Figure 3E). The difference in α-GPC concentration between barley cultivars was consid-
erable, with the concentration at 72 h varying from 0.84 g/L for HB13667 to 1.81 g/L for
CDC Cowboy (Figure 1E). In contrast, glycerol content was more similar among barley
cultivars, with a range of 8.54 (CDC Copeland) to 13.23 g/L (TR14150), and an average
across cultivars of 11.69 ± 1.15 g/L after 72 h of fermentation (Figure 3F). Furthermore,
glycerol content plateaued after 24 h of fermentation (Figure 5A). The average yield of
all measured fermentation products was similar between cultivars with hulls and those
without (Figure 6). Barley mash had significantly higher average concentrations of ethanol
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(p < 0.01), isopropanol (p < 0.05), acetic acid (p < 0.01), α-GPC (p < 0.05), and glycerol (p <
0.01) when compared to oats.
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3.2. Concentration of Organic Solutes in Oat Cultivars

Compared to the average product accumulation observed in the fermented barley
mash, oat mash accumulated less ethanol, isopropanol, acetic acid, α-GPC, and glycerol
(Figure 3A–C,E,F). However, succinic acid production was similar between mash from the
two crops (Figure 3D). Average ethanol content for mash from the 12 oat cultivars was
59.4 ± 6.9 g/L after 72 h of fermentation (Figure 4B), with a range of 50.6 (CDC Arborg) to
72.0 g/L (CDC Morrison) (Figure 2A). Meanwhile, oat glucose content (Figure 2G) after
saccharification was substantially less than in barley, varying between 169.3 (CDC Nasser)
and 265.3 g/L (OT3104) with an average of 230.3 ± 39.9 g/L (Figure 4B). Similar to the bar-
ley mash, the isopropanol, acetic acid, and succinic acid content were lower than ethanol,
with averages of 0.61 ± 0.10, 0.45 ± 0.09 and 0.63 ± 0.12 g/L, respectively (Figure 3B–D).
Yeast fermentation of milled oats also produced mash with α-GPC, although the concen-
trations were much lower than for barley mash (Figure 3E). The average accumulation of
α-GPC was 0.75 ± 0.08 g/L, with CDC Nasser accumulating the lowest concentration at
0.62 g/L and OT3087 the highest at 0.88 g/L (Figure 2E). Finally, average glycerol in oat
mash was 9.26 ± 1.54 g/L, varying between 6.89 (CDC Morrison) and 11.48 g/L (CDC
Dancer) (Figure 2F). Similar to barley, the average glycerol content plateaued after 24 h of
fermentation (Figure 5B). Interestingly, average succinic acid concentration in oat mash
was significantly greater than that observed in barley (p < 0.01).

4. Discussion

Ethanol production is a billion-dollar industry [40], with important implications for
the food, pharmaceutical, and fuel industries. In the United States, corn is the primary
feedstock used in the production of fuel ethanol, due to its low price and abundance [41].
Both corn and wheat are routinely used in the production of ethanol in Canada [42]. These
crops can produce variable yields of ethanol, with some wheat cultivars producing between
59.9 and 71.8 g/L of ethanol after 72 h of fermentation [9]. Fermentation of barley produced
greater amounts of ethanol in this study (up to 78.5 g/L). The presence of milled hulls
did not appear to impact ethanol yield. However, hull-less barley has been previously
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observed to ferment faster than wheat mashes, as well as producing higher yields of ethanol
compared to wheat mashes [43].

The differences in ethanol and glycerol production among individual cultivars could
be attributed to differences in starch content among grain type, variety and the environ-
ment in which the crop was grown [44–46]. This was observed in the differences in glucose
content among cultivars, after saccharificiation. However, the use of 1H-NMR spectroscopy
has limitations in accurately quantifying the concentration of sugars, as the C-H units of the
carbohydrate backbone can lead to “accidental overlap” [47]. Furthermore, measurement
of glucose in a complex solution with changing pH can be difficult [48] and as this molecule
undergoes mutarotation [49] accurate measurement of glucose can be complicated us-
ing these methodologies. Nonetheless, on average, barley observed substantially higher
amounts of glucose than in oats.

In contrast, oat cultivars did not perform nearly as well, owing to the lower glu-
cose content observed in oats. The average ethanol content in oats was observed to be
59.4 ± 6.8 g/L. Only the cultivar CDC Morrison yielded >70 g/L of ethanol when fer-
mented. Corn bioethanol production is even lower at 20–25 g/L when using solid state
fermentation [50,51] and liquid state fermentation [52]. However, pre-treatment processes
and immobilization techniques can increase ethanol production while reducing process
costs [53]. The fermentation of corn meal via the immobilization of yeast can result in
approximately 90 g/L of ethanol [54]; unfortunately, the industrial use of immobilized cells
is still limited [55].

Isopropanol, acetic acid, and succinic acid were minor components produced during
the fermentation process. Acetic acid is a normal by-product of alcoholic fermentation by
Saccharomyces cerevisiae, and of contaminating lactic acid and acetic acid bacteria [56–59].
In fact, acetic acid typically does not surpass 0.4 g/L in bacteria-free fermentations [60].
In typical alcoholic fermentations, 0.2 to 0.6 g/L acetic acid does not appear to impair
fermentation [59]. The average concentrations of acetic acid observed after fermentation
of barley and oats were 0.83 ± 0.07 and 0.45 ± 0.09 g/L, respectively. The relatively low
accumulation of acetic acid in oat mash suggests minimal contamination from acetic or
lactic acid bacteria. However, the significantly higher acetic acid accumulation in barley
mash (p < 0.01) might be attributed to endogenous acidogenic bacteria. Furthermore, the
hydrolysis of lignocelluloses in these cereal crops may have also contributed to the forma-
tion of acetic acid [61,62]. Therefore, the concentration of acetic acid does not appear to
suggest consequential negative effects on the progression of fermentation in oat mash [59].
Although barley mash showed a somewhat elevated acetic acid content, the fermentations
did not stagnate or halt, which can result with high acetic acid levels [59].

Glycerol is also produced during alcoholic fermentation, and is the main solute pro-
duced by Saccharomyces cerevisiae in response to osmotic stress, in order to prevent dehydra-
tion [11]. Increased glycerol production by yeast can result in decreased ethanol [63] and car-
bon dioxide production [62] through the redirection of the yeast’s carbon metabolism [64].
Consequently, minimizing glycerol production can result in increased ethanol yields [65].
The sudden increase in glycerol in oats and barley at 24 h can most likely attributed to the
efficiency for yeast to adapt to the osmotic stress [12] in the fermentation medium. After
24 h, it appears that glycerol production ceased (concentration plateaued) and ethanol
production increased, suggesting that the consumption of glucose was primarily due to the
production of ethanol.

Glycerol content in barley and oat mash (11.7 ± 1.2 and 9.3 ± 1.5 g/L, respectively)
were comparable to wheat (~10 g/L) [9]. Mash produced from some barley cultivars
(i.e., TR14150) accumulated up to 13 g/L glycerol. Through metabolic and stress man-
agement, decreased glycerol and increased ethanol production during fermentation can
be attained [11]. Conversely, glycerol found in the thin stillage by-product could also
be used in a second fermentation with lactobacilli [10,11]. These organisms can convert
inexpensive glycerol into higher value products, such as 1,3-propanediol, which is used in
the manufacturing of textiles. The presence of these organisms can also increase protein
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content in distillers’ grains [10,11], which can then be used as domestic feed. In regard
to protein content, hull-less barley cultivars contain similar amounts to wheat and are
typically higher than hulled barley cultivars [43].

Alpha-glycerylphosphorylcholine was another important substance found in the bar-
ley and oat mash. This compound is a naturally produced endogenous choline derivative;
however, it is rarely found at high concentrations in nature. Therefore, there is great
potential in developing alternative, inexpensive, and sustainable means for commercial
production to supply this compound. Production of α-GPC can be catalyzed chemically
or enzymatically through phosphatidylcholine (PC) hydrolysis [13,36–38]. It can also be
produced through the condensation of glycerol derivatives [13,66,67], although published
methods require the use of toxic substrates such as trimethylamine, strong acids and harm-
ful solvents [68]. As a result, enzymatic hydrolysis of PC [69–71] is preferred as it avoids
the use of harmful substrates and is relatively inexpensive.

This compound has previously been observed in wheat mash, with concentrations
ranging between 1.03 and 1.34 g/L [9]. Similarly, most of the barley mash produced more
than 1 g/L of α-GPC, including CDC Cowboy, which produced the highest amount of
α-GPC observed in this study. The compound α-GPC has considerable value [36,37], and
can be used as a supplement to treat cognitive disorders (e.g., Alzheimer’s disease) and
improve muscle strength [29,30].

Increases in phosphatidylcholine have been observed in plant cells deprived of phos-
phate [72]. Deprivation of phosphate results in a decrease in the phospholipid content of
plants leading to mobilization in the phosphate reserve, and an increase in the production
of non-phosphorous membrane lipids (e.g., digalactosyldiacylglycerol) [72]. In this study,
CDC Cowboy mash accumulated similar concentrations of ethanol to wheat [9], while
also accumulating considerably more α-GPC. Therefore, future studies should investigate
pre-treatment methods to increase PC content, followed by developing methods to decrease
metabolic and osmotic stress during yeast fermentation. This could provide optimum
conditions to increase α-GPC and ethanol yields, while minimizing glycerol accumulation.

5. Conclusions

Overall, barley mash accumulated greater concentrations of ethanol, isopropanol,
acetic acid, α-GPC, and glycerol than oat mash. Alpha-GPC for mash prepared from the
barley cultivars such as CDC Cowboy exceeded the amounts previously found from wheat
mash. The isolation and purification of this compound can create new opportunities for
commercial growth in the food and health industries. The use of barley as a feedstock for
bioethanol production may therefore be appealing, due to its affordability, abundance, and
comparable ethanol yields to wheat. The optimization of ethanol and α-GPC production via
the minimization of glycerol production and phosphate deprivation, respectively, should
be investigated to fully maximize the economic return of barley fermentation. Like wheat
thin stillage, barley thin-stillage could also undergo a two-stage fermentation process with
lactobacilli organisms to convert the relatively high yield of inexpensive glycerol into a
more valuable product [10,11]. Overall, barley appears to be a suitable replacement for
wheat in fermentation for ethanol, producing mash with similar or higher ethanol yields
and increased α-GPC concentrations after 72 h of anaerobic fermentation.
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