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Abstract: One of the main targets of sustainable development is the reduction of environmental,
social, and economic negative externalities associated with the production of foods and beverages.
Those externalities occur at different stages of food chains, from the farm to the fork, with deleterious
impacts to different extents. Increasing evidence testifies to the potential of microbial-based solutions
and fermentative processes as mitigating strategies to reduce negative externalities in food systems.
In several cases, innovative solutions might find in situ applications from the farm to the fork,
including advances in food matrices by means of tailored fermentative processes. This viewpoint
recalls the attention on microbial biotechnologies as a field of bioeconomy and of ‘green’ innovations
to improve sustainability and resilience of agri-food systems alleviating environmental, economic,
and social undesired externalities. We argue that food scientists could systematically consider the
potential of microbes as ‘mitigating agents’ in all research and development activities dealing with
fermentation and microbial-based biotechnologies in the agri-food sector. This aims to conciliate
process and product innovations with a development respectful of future generations’ needs and
with the aptitude of the systems to overcome global challenges.

Keywords: microbial biotechnologies; biodiversity; fermentation; food; systems; bacteria; yeast;
sustainability; resilience; bioeconomy

1. Microbial Resources and Food Fermentations: The ‘Oldest Biotechnologies’

Microbes, the first forms of life that appeared on Earth at least 3.8 billion years
ago, represent the organisms more diffused on the Earth [1,2]. Microorganisms have
crucial roles in the environment (cycling of elements and, more generally, of nutrients),
in the biology of macroorganisms (of outstanding importance for human, animal, and
plant health), and in human advances (e.g., in agriculture, relevant food chains, and
biotechnologies) [1,2]. The huge variable in terms of catabolic pathways and for the
aptitude to survive to stress conditions make microbes versatile key players on the live
planet and drivers of innovations for human activities, such as in biogeochemical processes,
biotechnologies, and health [3,4]. Microbes associated with a given ‘macroorganism’ are
defined as their microbiome. Microbiomes are involved in critical physiological activities
of their hosts, contributing to the maintenance of a state of well-being. The microbiomes
associated with plants and animals domesticated for food uses are fundamental to modulate
their productivity and affect the quality of the obtained products.

Since the Neolithic period, humans have developed an unawareness of the manage-
ment of microbes and experience the benefits of food fermentation, also known as the
oldest biotechnologies [5], with a vast variability of raw matrices (cereals, vegetables, and
bamboo shoots, legumes, roots/tubers, milk, meat, and fish products) and microorganisms
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involved (bacteria, yeasts, and molds belonging to several genera and species) [6]. It has
been estimated that about one-third of the food and beverage consumption worldwide
concern fermented matrices: more than 5000 different products that account for an essential
part of global systems [6,7]. In general, a given food/beverage is reported as fermented
when is “produced through controlled microbial growth, and the conversion of food com-
ponents through enzymatic action” [8]. The controlled growth of desired bacteria, yeasts,
and filamentous fungi modulate all the main aspects of fermented food/beverage safety
and quality (organoleptic, nutritional, functional) (Figure 1) [9].
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In addition, the target of microbial-based solutions has been broadened throughout the
advances in microbial biotechnologies. In fact, protective cultures and microbial biocontrol
agents can also be found on non-fermented products (e.g., fresh fruits and vegetables, fresh
meat) [11,12].

2. Food Systems and Negative Externalities

Food systems embrace all resources and activities related to production, processing,
distribution, preparation, and food consumption. Also, food systems include the prod-
uct market, its institutional networks needed for its governance, and it is the ultimate
responsibility for the socioeconomic and environmental outcomes of all the activities listed
above [13]. According to Organization for Economic Co-operation and Development
(OECD), the term externalities ‘refers to situations when the effect of production or con-
sumption of goods and services imposes costs or benefits on others which are not reflected
in the prices charged for the goods and services being provided’ [14].

The idea of sustainable development is tailored to mitigate the negative externali-
ties [15]. In effect, these phenomena undermine the pillars of growth compatible with the
needs of future generations. For instance, negative environmental externalities reflect into
pollution, natural resource exhaustion/degradation threatening the long-term balance of
the ecosystem. These trends also threaten the economic sustainability of markets when com-
panies produce limited quantities leaving unsatisfactory market demand as well as whether
companies produce low quality or without placing interest in saving energy, water and
preventing pollution. Lastly, negative externalities also challenge sustainable development
from a social point of view occur if companies produce with the limited observance of the
code of good social responsibility practices: for instance, when companies pay unfair prices
to supplies exploiting their work, as well as whether they produce unmatching consumers’
and societies’ priorities in terms of animal welfare or workers welfare standards.

The rising occurrence of negative externalities generated by food systems has called
into action different sectoral stakeholders, such as policymakers, non-governmental organ-
isations (NGOs), and academics, to prioritise the development of strategies contrasting
the environmental, economic, and social externalities generated with the food production.
Important examples of initiatives are reported in Table 1, testifying the global interest in
tailored policies oriented toward sustainability and food systems resilience.
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Table 1. Example of tailored initiatives of policy organisations.

Organisation Initiatives Website

United Nations General
Assembly

2030 Agenda, Sustainable
Development Goals (SDGs)

https://www.un.org/
sustainabledevelopment/,
accessed on 13 December 2020

Food and Agriculture
Organization (FAO)

Food and agriculture in the
2030 Agenda for Sustainable
Development

http://www.fao.org/sustainable-
development-goals/en/, accessed
on 10 January 2021

European Commission Food 2030

https://ec.europa.eu/info/
research-and-innovation/research-
area/food-systems/food-2030_en,
accessed on 14 December 2020

United States
Environmental Protection
Agency

Sustainable Management of
Food

https://www.epa.gov/
sustainable-management-food,
accessed on 21 December 2020

United Kingdom
Government

Food Industry Sustainability
Strategy (FISS)

https://www.gov.uk/government/
publications/food-industry-
sustainability-strategy-fiss, accessed
on 20 November 2020

In association with food production, it is possible to highlight several significant
negative externalities, ‘namely effects on the environment, the economy and the society
that are not reflected in the cost of food’ [16]. These include the release of CO2 and other
greenhouse gases, increase of wastes and pollution, contamination of freshwater, enhanced
water deficiencies, soil depletion, a decrease of biological diversity, reduced benefits of
microbiomes, the market of unsafe products, diffused antibiotic resistance, lessening of
the supply for selected consumers groups, lastly whether the production is foster the rise
of socioeconomic disparities [16–20]. Taken together, these undesirable trends threaten
food security (Figure 2), human health, environmental resources, and economic networks,
especially if we consider future generations.
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3. Microbial Biotechnologies to Reduce Negative Externalities in Agri-Food Systems

Microbial-based solutions can find global applications in the food systems, counteract-
ing, at the farm level, to relevant negative externalities on a global scale (Table 2). These
include, among others, pollution in the animal/plant food chains, diffusion of contam-
inations, productions associated with and considerable environmental footprints, and
reduction of water availability and soil fertility.
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Table 2. A non-exhaustive list of possible microbial-based solutions as potential mitigating strategies
against negative externalities.

Microbial Biotechnologies to Counteract/Prevent Negative Externalities Ref.

Biological fixation of nitrogen [22–24]
Alternative nitrogen sources to be used as feed or food [19]
Microbial protein production [19,25]
Microbial biotechnology for CO2 capture [19,22]
Microbial biotechnology to limit diffuse methane emissions [19]
Microbial-based bioconversion of pollutants in water [19,26,27]
Microbial-based bioremediation of soil [28,29]
Microbial biotechnologies for potable water production [30,31]
Biodegradation of endocrine disruptors from trophic chains [22]
Optimisation of microbial biofertilizers/biostimulants [32,33]
Optimisation of microbial biopesticides [32,34]
Bioprotection and alternatives to antibiotics [35–37]
Rhizospheric microorganisms for improving the nutrient quality of crops [38,39]
Beneficial plant-microbe interactions to breed ‘microbe-optimized plants’ [32]
Microalgae and new application in food, feed, and nutraceuticals chains [40,41]
Microbial-based tailored solutions for sustainable feeding regimen [42]

As reported in the scientific literature, it is possible to find so many examples as to
suggest a potential systemic application of microbes as mitigating agents in the primary
production. In several cases, the target is the ‘remediation’ of negative trends: microorgan-
isms selected to reduce carbon dioxide [19,22], bioconversion of pollutants in water via
microbial [19,26,27], microbial-driven bioremediation of soil [28,29], and microbial-based
decomposition of endocrine disruptors from trophic chains [22]. In addition, we can find
‘green’ microbial alternatives to standard solutions, such as substitute to antibiotic [35–37],
pesticides [32,34], fertilizers/stimulants [32,33], feeding regimen [42], nitrogen sources [19],
protein production [19,25], and to make water potable [30,31]. Finally, there are posi-
tive activities exerted by microbial resources (e.g., biological fixation of nitrogen [22–24],
microalgae beneficial application [40,41], modulation of nutrient crops quality [38,39],
and breeding of ‘microbe-optimised plants’ [32]) that can counteract to the effects of
negative externalities.

4. Tailored Food Fermentative Processes to Reduce Negative Externalities in Food Systems

Moving from the farm to the fork, we shift from general microbial biotechnologies to
food/fermentative biotechnologies (Table 3). This technological exploitation of microor-
ganisms can find direct application in food manufacture, with a considerable potential
for in situ uses tailored to modulate specific aspects of food quality and, more generally,
food production.

The examples reported in Table 3 encompass a broad spectrum of subjects of interest
in the food and beverage industry. A family of solutions reduces the risk of biological
and chemical contaminants, respectively, with biocontrol applications against microbial
pathogens and spoilers [43–47] and exploiting microbial biochemical activities responsible
for the degradation of chemical contaminants [49–51]. Another group of bio-based innova-
tions oriented at ‘label cleaning’, conceive alternatives to chemical preservatives [52–54]
and to fortification via the addition of exogenous nutrients [55–57]. Some studies proposed
pathways towards enhanced nutrient bioavailability [10,58–60] and improved human
health/well-being [61–64] (including microbiome therapies [63–66]), advances of interest
to contrast the adverse effects of some negative externalities. Furthermore, the design of
several works looking at reducing resource dissipation, saving energy [52,69], valorising
foods by-products [52,70,71], foods wastes [72–74], and wastewater [75–77]. Finally, some
strategies can preserve microbial diversity associated with food fermentation [78–80].
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Table 3. A non-exhaustive list of possible microbial-based solutions as potential mitigating strategies
against negative externalities.

Fermentative Processes to Counteract/Prevent Negative Externalities Ref.

Microbial-based biocontrol of microbial pathogens and spoilers [43–48]
Microbial-based degradation of chemical contaminants [49–51]
Bioprotection and alternatives to chemical preservatives [52–54]
Microbial production of nutrients [55–57]
Microbes to improve nutrient bioavailability [10,58–60]
Synbiotic approaches to improve human health and well-being [61–64]
Microbial biotechnology and microbiome therapies [65–68]
Microbial resources and strategies to save energy during fermentation [52,69]
Fermentative valorization of foods by-products [52,70,71]
Fermentative valorization of foods wastes [72–74]
Microbial-based valorization of wastewater associated with food systems [75–77]
Strategies to preserve microbial diversity associated with food fermentation [78–80]

Some implementations are common to the primary sector and to the studies in food
processing. It is the case of protein production that receives interest for both feed and food
applications, involving biotechnologies to address a societal or a business need [19,25].
Fermentation and microbial cell factories for producing proteins [81], but also enhancing
the nutritional quality of alternative protein sources [82].

It is crucial to underline that the safety of the microbial resources, to avoid any negative
side-effects, represents a milestone to assure the sustainability of the solutions reported
in Tables 2 and 3 [83,84]. At the same time, the management of microbial resources as
‘commons’, following the standard of microbial biological resource centers (mBRCs), it is of
outstanding interest to promote innovation in the field [85,86].

5. Microbes as Mitigating Agents: A Common Denominator of R&D Activities in the Field

This viewpoint article suggests that the challenge of lowering negative externalities
would represent a constant part of research and development activities dealing with fer-
mentation and microbial-based biotechnologies in the agri-food sector; a sort of ‘lateral
thinking’ [87] with the aims to conciliate product and process innovations with a devel-
opment respectful of the needs of future generations. In other terms, as the food industry,
together with the ‘conventional’ quality of the product (e.g., hygienic, sensory, nutritional,
functional) [9], has an increasing ‘side’ focus to sustainable product footprint [88,89], at
the same way, food scientists (in the field of microbial-related solutions) could systemat-
ically consider the potential as mitigating agents, ‘laterally’ to the innovation proposed.
This in consideration that microbial biotechnologies are a driver of innovation but may
play a pivotal role in matching sustainability goals and fostering the agri-food system’s
resilience. The exploitation of microbial resources is generally considered a knowledge-
based reservoir of ‘green’ innovations susceptible to be used in an environmentally, social,
and economically conscious manner [1]. However, microbial biotechnologies’ successful
implementation needs careful attention since microbial-based solutions are resources of
knowledge as created through creative processes and productions and are the primary
output of universities and private research centers [90]. Then, microbial biotechnologies
are adopted according to the economic conditions in which a company operates as well as
to the extent the civil society and consumer accept the use of such biotechnologies [91,92].
Thus, to fully exploit the potential benefits of microbial biotechnologies, there is a need
to raise the awareness of their ability to lower the many negative externalities across all
the food systems stakeholders (industries, policymakers, academics, and civil society)
(Figure 3) [93,94].
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It is important to consider that microbial biotechnology can contribute to economic
progress and employment creation [96]. Also, it is worth saying that microbes and fer-
mented base foods are amply accepted by consumers given the widespread use of fermen-
tation across the many food sectors since ancient time, as well as the general consumers’
acceptance of microbes and related fermentation is rising due to the consumer demand for
a more ‘natural’ food that replaces chemical preservatives with natural alternatives (bio-
preservatives) [91,97]. These findings contrast the widespread contention that consumers
are opposed to the use of biotechnology as they mainly associate biotechnology terms with
genetically modified (GM) foods that are, indeed, perceived as an unnatural modification of
food and for which consumers ask restrictive policy measures [91,97]. Lastly, related to the
microbial biotechnologies and the sustainable economic growth, it is crucial to underline
the importance of specific educative programs in the field to favour the people inclination
to fair behaviours concerning global challenges such as climate changes and the COVID-19
pandemic [98–101].
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