
fermentation

Article

Yeast Morphology Assessment through Automated Image
Analysis during Fermentation

Mario Guadalupe-Daqui, Mandi Chen, Katherine A. Thompson-Witrick and Andrew J. MacIntosh *

����������
�������

Citation: Guadalupe-Daqui, M.;

Chen, M.; Thompson-Witrick, K.A.;

MacIntosh, A.J. Yeast Morphology

Assessment through Automated

Image Analysis during Fermentation.

Fermentation 2021, 7, 44. https://

doi.org/10.3390/fermentation

7020044

Academic Editor: Claudia

Gonzalez Viejo

Received: 5 March 2021

Accepted: 20 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA;
mguadalupe@ufl.edu (M.G.-D.); mandi.chen@ufl.edu (M.C.); kthompsonwitrick@ufl.edu (K.A.T.-W.)
* Correspondence: andrewmacintosh@ufl.edu; Tel.: +1-352-294-3594

Abstract: The kinetics and success of an industrial fermentation are dependent upon the health of the
microorganism(s) responsible. Saccharomyces sp. are the most commonly used organisms in food and
beverage production; consequently, many metrics of yeast health and stress have been previously
correlated with morphological changes to fermentations kinetics. Many researchers and industries
use machine vision to count yeast and assess health through dyes and image analysis. This study
assessed known physical differences through automated image analysis taken throughout ongoing
high stress fermentations at various temperatures (30 ◦C and 35 ◦C). Measured parameters included
sugar consumption rate, number of yeast cells in suspension, yeast cross-sectional area, and vacuole
cross-sectional area. The cell morphological properties were analyzed automatically using ImageJ
software and validated using manual assessment. It was found that there were significant changes in
cell area and ratio of vacuole to cell area over the fermentation. These changes were temperature
dependent. The changes in morphology have implications for rates of cellular reactions and efficiency
within industrial fermentation processes. The use of automated image analysis to quantify these
parameters is possible using currently available systems and will provide additional tools to enhance
our understanding of the fermentation process.

Keywords: yeast morphology; automated image analysis; heat stress; vacuoles; cell size;
computer vision

1. Introduction

The fermentative properties of yeast have been utilized for thousands of years in a
spectrum of applications including brewing, baking, biofuels, etc. For an optimal per-
formance in most applications, the health of the yeast should be maintained throughout
the fermentation [1]. Yeast health is typically measured through the determination of
viability and vitality via metabolic dyes, however, there are other known morphological
characteristics that have been shown to be indicators of yeast health [2,3] including size,
number and shape of organelles (i.e., vacuoles). To optimize the fermentation process and
quickly respond to deviations, data collection concerning yeast condition should be rapid
and include automation as to be completed in a timely manner. If implemented, automated
assessment can also provide supplemental information including details of fermentation
rate per suspended cell which may assist both researchers and industry to better under-
stand the fermentative process. This study used an open-source image processing to track
changes in yeast morphology through an automated analysis of various characteristics
during high-stress fermentations.

Commonly measured morphological characteristics of yeast include cell size (com-
monly expressed as cross-sectional area or volume) and the number of buds. These
characteristics are used to evaluate yeast cells under a wide variety of environmental
stress sources, for example, yeast cell size measurements have been used by various re-
searchers [2,4] as an indicator of the effects of stressors such as temperature and ethanol.
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Additionally, cell size and the number of budding vs. single cells were successfully used to
assess the effects of hyperbaric stress and various gas compositions on yeast physiological
state [5]. The vacuolar structure (size and shape) and number are other yeast morphological
characteristics commonly assessed. Yeast vacuoles are dynamic organelles with a changing
morphology during fermentation as a response to different stress sources [6–8]. These re-
searchers studied yeast vacuole formation under osmotic and ethanol stress environments
during fermentation at low temperatures. Both studies concluded that under high osmotic
environments, each cell contained at least two or more yeast vacuoles which presented
a fragmented (small diameter) structure. These studies also reported that yeast vacuoles
formed under high ethanol concentrations were less fragmented and were described as
single swollen vacuoles that occupied almost the entire cytoplasm. Furthermore, defi-
ciencies of this organelle in yeast (observable under the microscope) have been linked to
cell death [9] and the cessation of fermentation. A better understanding of yeast perfor-
mance during fermentation can be attained by combining measurements of fermentation
kinetics with morphological characteristics of the cell. Tibayrenc et al. [2] studied the
evolution of Saccharomyces cerevisiae morphology under different stressors to infer cell
viability. In summary, there have been numerous studies that effectively relate yeast
morphological characteristics such as cell size, length, or state, to yeast properties during
fermentation [2,10,11].

The automated analysis of images facilitates the examination of microorganisms at
specific times throughout a process, providing instantaneous information concerning the
parameters assessed. Typically, automated image analysis is divided into three stages:
image processing, variable acquisition and statistical analysis [12]. Automated analysis of
yeast cell images is not a novel concept and is most commonly used to assess the number
of cells suspended within media. There are existing software and devices such as the
Cellometer developed by Nexcelom Bioscience LLC (Lawrence, MA, USA) that can process
yeast images and assess the number of cells and viability. CalMorph v1.3 is software
created to analyze yeast cells delivering information regarding cell morphology, phase,
etc. However, this software is limited to microscopic images that have been fluorescence
stained [13]. There are numerous examples of researchers independently using various
software programs to assess images of yeast for specific properties. For example, the
software Matlab v.6.1 was used by Coelho et al. [5] to fully automate the image processing
procedure from an image obtained using an optical microscope. These researchers studied
the effects of hyperbaric stress on single and budding yeast cells using cell area size, major
and minor axis length measured through Matlab. The open-source software ImageJ has
been used as an image processing software by numerous researchers [14,15] to assess
properties of various microorganisms. Stolze et al. [16] developed an automated counting
method for Petrifilm plates using ImageJ, reducing the time of analysis significantly.

This study aimed to combine the use of automated image analysis with a modern
understanding of how yeast morphology changes in response to adverse environmental
conditions. This helped to correlate how changes in the morphological state of yeast
influenced the process attributes throughout the fermentation. Specifically, fermentations
were conducted at extreme temperature conditions (30 ◦C and 35 ◦C) where morphological
changes were expected based upon previous work. Throughout the fermentation, hundreds
of images were collected and attributes such as cell cross-sectional area and vacuole size
were quantified through automated analysis. These were then correlated with fermentation
kinetics to enhance understanding of the changes undergone by the yeast, and the effect
upon the entire fermentation. The techniques used in this paper can easily be applied in
the fermentation industries where automated data collection of this nature is often already
taking place allowing rapid assessment of yeast adaptions to different stress sources.
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2. Materials and Methods
2.1. Media and Yeast

The media used in this research was based upon a rum fermentation and was com-
posed of 75% w/w distilled water, 18.5% w/w sugar cane, and 6.5% w/w blackstrap molasses.
This broth was supplemented with 0.8%w/w yeast extract to increase the amount of free
amino nitrogen to 320 mg/L (measured via Ninhydrin method as described in the Ameri-
can Society of Brewing Chemists (ASBC) Wort-12 method [17]). All the ingredients were
dissolved at 50 ◦C and sterilized at 121 ◦C for 15 min. This media had a sugar concentration
of 24% w/w and was used for both the propagation and fermentation processes. However,
in the first propagation, the media was diluted to 15% w/w using deionized water. A
Saccharomyces cerevisiae strain provided by Lallemand (DISTILAMAX® SR—Montreal, QC,
Canada) was utilized throughout the experiments based upon recommendations from
the supplier concerning survivability under adverse conditions and the ability to ferment
sugars found in the raw materials used. The active dry yeast (ADY) was stored between
1 ◦C and 4 ◦C prior to its rehydration and propagation.

2.2. Rehydration and Propagation

For each experiment, 10 g of ADY were rehydrated using 100 mL of sterile tap water at
35 ◦C for 15 min. Rehydrated yeast was propagated in a two-step process to achieve a con-
sistent inoculum and sufficient biomass to pitch the 4 L fermentors. The first propagation
was performed using 150 mL of media (diluted to 15% w/w), while the second propagation
was performed using 350 mL of media at (24% w/w). Both propagation steps were pitched
at 30 × 106 viable yeast cells/mL and run for 24 h at 35 ◦C each as per recommendations
from the supplier.

2.3. Fermentation

Each fermentation run started under identical conditions, using the same media, and
pitched with the same yeast to assess the differences throughout the process by changing
only the temperature. Fermentors (total volume of ~5 L) were filled with 4 L of media (24%
w/w), oxygenated for two minutes, and pitched with 30 × 106 viable yeast cells/mL. Two
temperatures were selected to complete the fermentation processes, 30 ◦C (low temperature)
and 35 ◦C (high temperature). Each experiment was performed by duplicate. Samples were
taken at intervals between 6 to 12 h in an attempt to monitor the reductions in the sugar
concentration every 3–4% w/w, approximately, during peak fermentation. The volume of
each sample was 125 mL and was divided into smaller aliquots to assess the fermentation
attributes and the yeast morphology.

2.4. Measurement of Sugar Concentration and Viable Cells in Suspension

To measure the sugar concentration throughout the fermentation, 30 mL of sample
were degassed, centrifuged and filtered. These samples were analyzed using an Anton Paar
Alex 500 (Graz, Austria), which measured the density of the sample through an oscillating
U-tube glass. The density measured was then used to calculate the real sugar concentration
and expressed in % w/w, or ◦P (analogous to percent sugar by weight). Cells in suspension
were measured during the fermentation process using a hemocytometer and a microscope
with 400× magnification, as described in the ASBC Yeast-4 method [18]. Viable cells were
identified and counted using the methylene blue technique described by Painting and
Kirsop [19]. The number of viable cells in suspension at each sample point was calculated
by multiplying the percent of viable cells by the total number of cells in suspension.
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2.5. Models

The sugar concentration was modeled using the logistic model described in Yeast-
14 [20] method and shown in Equation (1).

P(t) = Pe +
Pi − Pe

1 + exp(−B(t−M))
(1)

where P(t) is a function that represents the sugar concentration at a specific time t (% w/w),
Pi is the upper asymptote of the curve (%w/w), Pe is the lower asymptote of the curve
(%w/w), M is the time of the inflection point of the curve (h), and B is the slope of the curve
(%w/(w*h)). To determine the consumption rate of the sugar during the fermentation,
the first derivative of the logistic model (Equation (1)) was taken with respect to time
(Equation (2)) as follows:

∂

∂t

(
Pe +

Pi − Pe

1 + exp(−B∗(t−M))

)
=

(
B (Pi − Pe)exp−B(x−M)(

exp−B(x−M) + 1
)2

)
(2)

The cells in suspension data were modeled using the step model (Equation (3)) as
described by Rudolph et al. [21]. This model was utilized due the amplitude and the
Heaviside step function that describe the maximum number of cells in suspension during
the fermentation and the final number of cells at the end of the process, respectively.

Y(t) = A

 exp−
1
2 (

t−µ
σ

1+(Ht∗S) )
2

1 + (Ht ∗ S)

+

(
A − A

(1 + S)

)
∗ H(t) (3)

Y(t) is a function that represents the number of cells in suspension at a specific time t
(cells/mL), A is the amplitude (cells/mL), m is the midpoint (h), σ is the width factor (h),
S modifies the height of the step in this function (unitless), and H(t) is the Heaviside step
function.

2.6. Image Collection

Prior to the image collection, yeast cells were centrifuged and washed three times
using deionized water and stained with a 0.01% w/v methylene blue solution to differentiate
living and death cells at each data point. Various images were taken from each experiment
such that approximately 80 to 360 cells were captured at each sampling point. Images
were captured using a Nikon Eclipse Ci-L microscope at 1000× magnification, combining a
100× oil immersion objective and a 10× eyepiece.

2.7. Manual Analysis of Vacuole Count

The manual analysis of the cell images was completed using the Nikon NIS-Elements
software V5.30.01 compatible with the microscope. The cross-sectional area (CSA) of yeast
and vacuoles were measured individually using an auto selection tool in conjunction with
a five-point ellipse and a freehand selection tool. Once the areas were selected, the software
converted the pixels into a measurement of surface area based upon previous calibrations.
Budding yeast cells were assessed as two separate cells, dividing them at the cleavage.
Vacuoles were clearly identifiable due to the difference in shade compared to the rest of the
cell (Figure 1). The light settings on the microscope were adjusted at the beginning of the
experiment to maximize this contrast. The data collected were exported and saved as an
excel file for further calculations to determine the average yeast CSA and the ratio between
vacuole and yeast CSA. Figure 1b shows an image analyzed manually and includes all
the measurements taken using this software. There were 80–360 yeast cells assessed from
images at the beginning, middle, and end of each fermentation process using this method
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to validate the automated image analysis method. Yeast cells that were partially in the
image were not selected for data collection using this method.

Figure 1. (a) Microscope image of yeast during fermentation (1000×) with enlarged budding cell (counted as two individual
yeast cells) to show shading difference between vacuole and yeast cell in a raw image; (b) The same image after manual
analysis of cell and vacuole cross-sectional area (CSA).

2.8. Automated Image Analysis of Yeast and Vacuole Cross-Sectional Area

The images of yeast taken throughout each fermentation were analyzed using Im-
ageJ v1.8.0 software. A sample image is shown in Figure 2a. This analysis included the
measurement of yeast cell CSA, total yeast CSA and total vacuole CSA. The automated
image analysis was calibrated using a scale that correlated the image pixels with the sci-
entific units of micrometers. The outline of yeast cells and the vacuoles were enhanced
using tools sequentially: “binary mask”, “despeckle filter”, “dilation”, and “pixel outlier
removal”. The goals of these tools were to reduce image noise that could affect the results
and to enhance the distinguishing features of yeast cells from the background and the
vacuoles. The binary mask converted the 32-bit image to 8-bit, which results in a black
and white separation of the yeast cells (black), vacuoles (white) and background (white).
The despeckle filter applied was a median filter that replaced every pixel with the median
value of a 3 × 3 pixel region, and it removed sparsely occurring black pixels [22]. Then,
the dilation tool was used to separate any yeast cells that may be touching each other
due to proximity or budding. Finally, after dilation, the pixel outlier tool was applied
to remove black particles with a radius of 4 pixels (0.363 µm) or less. A sample of the
resulting processed images is shown in Figure 2b. These images were then automatically
assessed with an analyze particles tool that selected for analysis, objects with an area of
10–100 µm2 and a circularity of 0.30–1.00 (ideally, this would encompass all yeast cells).
This tool enumerated and collected the cross-sectional area of all individual selected objects
(Figure 2c). To measure the vacuolar cross-sectional area, everything outside of the selected
objects was removed, then the image was inverted to change the black background to white
and white vacuoles to black, resulting in Figure 2d. Yeast cells and the vacuoles that were
partially in the image were not included in the analysis by the software. The data collected
were exported and saved as an excel file for subsequent calculation of the average yeast
cell cross-sectional area and the ratio between vacuole and cell cross-sectional area. The
automated analysis of the cell images was completed after the fermentation processes.
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Figure 2. (a) Microscopic image of yeast cells (1000× magnification) at 6.5 h before processing;
(b) After image processing; (c) After yeast cell area data were collected and region of interest
established; (d) After clearing outside region of interest and inverting image and vacuolar area data
was collected.

2.9. Statistical Analysis

In this study, Minitab 19 was used to determine significant differences (p < 0.05) among
the yeast CSA and CSA ratio between vacuoles and yeast cells throughout each fermenta-
tion and between fermentations at 30 ◦C and 35 ◦C. The validation of the automated image
analysis method was performed by calculating the percentage error between the results
obtained manually using the Nikon software V5.30.01 and automatically using ImageJ.

3. Results
3.1. Fermentation Kinetics

The sugar consumption model (Equation (1)) and the model for number of cells in
suspension (Equation (3)) were fit to the data from each fermentation. The best fit model
parameters for the combined fermentation data at each temperature are presented in
Table 1. The sugar concentration regression resulted in high r2 values of 0.99, while the
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slightly more variable cell in suspension data resulted in values of 0.91 and 0.85 for 30 and
35 ◦C, respectively.

Table 1. Step and logistic model parameters.

Parameters

Attribute Experiment Model
A µ σ S

Model Fit r2
(Cells/mL) h h Unitless

Cells in
suspension

30 ◦C Step model 168.24 20.65 13.77 0.00 0.91
35 ◦C Step model 79.72 13.25 11.38 0.05 0.89

Pi Pe B M
Model Fit r2

%w/w %w/w %w/(w*h) h

Sugar
consumption

30 ◦C Sigmoidal 4P 29.92 3.14 −0.12 11.08 0.99
35 ◦C Sigmoidal 4P 26.93 10.00 −0.14 11.39 0.99

Fermentations at 35 ◦C and 30 ◦C both showed a typical sigmoidal sugar consumption
curve (Figure 3). The times of maximum fermentation rate (parameter M) were similar in
both, at 30 ◦C (11.08 h) and 35 ◦C (11.39 h). At 30 ◦C, yeast metabolized more total sugars
(20.8% w/w) compared to 35 ◦C (13.9% w/w). During fermentations at both temperatures,
the number of viable cells in suspension increased (Figure 4). However, the maximum
number of cells in suspension during the 35 ◦C fermentations was approximately 50%
fewer compared to the 30 ◦C fermentations. These results are in accordance with the results
previously reported by Torija et al. [23] and Reddy and Reddy [24] who used Saccharomyces
cerevisiae strains to study the influence of temperature on the number of cells and the
fermentation rate. Both studies found that at 35 ◦C, the cells in suspension were reduced
approximately 50% compared to 30 ◦C. Similarly, they found a higher final attenuation
level when fermenting at 35 ◦C compared to 30 ◦C. Torrija et al. [23] reported a drop in the
ethanol yield of 11% approximately when fermenting at 35 ◦C. This low yield of ethanol
was almost certainty linked to the reduced consumption of substrate.

Figure 3. Sugar concentration and fermentation rate calculated by taking the 1st derivative of the
sugar consumption model (Equation (2) and Equation (1), respectively). Data shown represent
fermentation data at 30 ◦C (brown circles) and 35 ◦C (purple squares); sugar consumption model at
30 ◦C (purple line) and 35 ◦C (brown line); and fermentation rate model at 30 ◦C (orange dashed line)
and 35 ◦C (blue dashed line). Fermentations were performed in duplicate. The error bars represent
the standard deviation of the data.
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Figure 4. Viable cells in suspension throughout the fermentation. Data shown represent fermentation data at 30 ◦C
(green circles) and 35 ◦C (red squares); cells in suspension model (Equation (3)) at 30 ◦C (green line) and 35 ◦C (red line).
Fermentations were performed in duplicate. The error bars represent the standard deviation of the data.

3.2. Manual Image Analysis

During the fermentation at both temperatures, changes in yeast size, as well as in the
size of the vacuoles present were observed. Figures 5 and 6 show images of yeast cells
and a summary of the average of the yeast and vacuole CSA throughout the fermentation
for 30 ◦C and 35 ◦C, respectively. These values were manually assessed from 80–360 cells
per sampling time using the methods described above. Images at 30 ◦C show that the
average yeast CSA decreased from 43.4 µm2 ± 13.6 µm2 to 37.1 µm2 ± 11.9 µm2, whilst at
35 ◦C there was a slight increase of CSA until after the fermentation peak (approximately
after 15 h). Images also indicate a constant decrease in the size of vacuoles, until almost
no vacuoles were present in the yeast cells towards the end of the fermentation at both
temperatures. Given the large standard deviation in the size of the yeast, it was necessary to
assess a large number of cells to provide statistically significant results. The manual analysis
was labor-intensive, thus, substantial resources would be necessary to observe trends over
the fermentation. To accomplish this goal, the automated analysis tool was developed so
that many sampling times could be automatically assessed within a reasonable amount
of time. Samples at the beginning, middle, and end of the fermentation processes were
manually counted to validate the automated results.
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Figure 5. Bright-field microscopic image of yeast cells (1000× magnification) of the duplicate runs from beginning, middle
and end of the fermentation processes at 30 ◦C. The media included 0.01% w/v methylene blue solution to differentiate
non-viable cells from the analysis. The yeast CSA and CSA ratio (vacuole to yeast area) were determined manually using
the Nikon software.
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Figure 6. Bright-field microscopic image of yeast cells (1000× magnification) of the duplicate runs
from beginning, middle and end of the fermentation processes at 35 ◦C. The media included 0.01%
w/v methylene blue solution to differentiate non-viable cells from the analysis. The yeast CSA and
CSA ratio (vacuole to yeast area) were determined manually using the Nikon software.

3.3. Automated Image Analysis

For this comparison, 80–360 yeast cells were automatically analyzed at each sampling
period. To assess the accuracy of the automated analysis, the results for yeast CSA, total
yeast CSA, and vacuoles CSA obtained through both automated and manual image analysis
are compared in Table 2. The data obtained for yeast CSA and the CSA ratio vacuole to
yeast, using both the automated image analysis and the manual Nikon software, resulted
in an average difference of less than 4% and 2%, respectively. This shows that the data
obtained in this study are reliable and comparable to the manual assessment where the
Nikon software was used to measure cell morphology under the microscope.
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Table 2. Comparison of automated and manual image analysis.

Temp
(◦C)

Time
(h)

Manual Automated Manual Automated

Average
Yeast CSA

(µm2)

Average
Yeast CSA

(µm2)
% Error Average %

Error
Total Yeast
CSA (µm2)

Total
Vacuole

CSA (µm2)

% CSA Ratio
(Vacuole/Yeast)

Total Yeast
CSA (µm2)

Total Vacuole
CSA (µm2)

% CSA Ratio
(Vacuole/Yeast) % Error Average %

Error

30
6.5 43.3 ± 13.6 42.1 ± 11.2 2.8%

−3.9%
6455.3 1362.6 21.1 5828.1 1225.6 22.1 −4.9%

2.0%17.3 37.5 ± 11.0 39.6 ± 10.1 −5.8% 9218.4 944.3 10.2 8711.3 1072.5 12.3 −19.7%
30.5 37.1 ± 40.4 40.4 ± 11.0 −8.8% 13,167.5 1096.6 8.3 11,450.7 661.9 5.8 30.7%

35
6.5 42.6 ± 12.7 41.4 ± 12.0 2.7%

−2.2%
13,999.1 3158.3 22.6 13,304.5 2766.4 20.9 7.3%

1.2%19.0 42.8 ± 12.0 44.7 ± 11.5 −4.4% 15,583.6 2746.6 17.6 12,862.5 1828.6 15.6 17.2%
31.3 37.0 ± 11.4 38.8 ± 13.6 −4.8% 11,169.0 1308.1 11.7 11,133.8 1569.2 14.1 −20.7%
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3.4. Changes in Morphological State over Fermentation

At 30 ◦C, there was a significant difference (p < 0.05) between the initial and the final
yeast CSA at 30, whilst at 35 ◦C, there was not a significant difference (p > 0.05) between
the initial and the final yeast CSA. Results regarding the CSA ratio between vacuole and
yeast CSA showed a significant difference (p < 0.05) at 30 ◦C but not at 35 ◦C. Table 3
shows the average of the results obtained from the morphological analysis of yeast at each
temperature.

Table 3. Average and standard deviation of yeast CSA and Ratio (vacuole to yeast area) summary *.

Temp (◦C) Time (h) Average Yeast CSA
(µm2)

% CSA Ratio
(Vacuole/Yeast)

30

6.5 42.1 ± 11.2 a 22.1 ± 6.5 a
12.5 42.4 ± 10.5 a 16.3 ± 2.5 b
17.3 39.6 ± 10.1 a 12.3 ± 2.2 bc
20.8 38.7 ± 9.8 a 9l8 ± 4.7 cd
30.5 40.4 ± 11.0 a 5.8 ± 2.2 d
48.8 34.7 ± 9.5 b 3.8 ± 2.0 d

35

0.0 41.7 ± 12.4 abc 13.9 ± 4.9 b
6.5 41.4 ± 12.0 bc 20.9 ± 3.7 a

10.5 44.7 ± 12.7 a 18.6 ± 2.8 ab
14.5 44.9 ± 11.3 a 15.6 ± 4.0 b
19.0 44.7 ± 11.5 ab 14.6 ± 4.2 b
25.0 42.0 ± 12.0 abc 16.5 ±3.0 ab
31.3 38.8 ± 13.6 c 14.1 ± 3.2 b

* The letters presented next to the standard deviation at each temperature were obtained through grouping
averages based on Tukey’s analysis. Different letters among each column represent significant difference.

The trend of yeast CSA for both temperatures did not show a significant change in
size until the end of the fermentation (Figure 7). However, yeast at 35 ◦C had on average
larger CSAs compared to yeast at 30 ◦C. These results are consistent with the finding of
Gervais et al. [25] who found similar results of an increased cellular volume with increased
temperature. They proposed that the increase of the cellular volume is due to a cellular
response of yeast to heat shock.

Figure 7. (a) Yeast CSA with respect to time at 30 ◦C; (b) Yeast CSA with respect to time at 35 ◦C. Cross-sectional data are
represented as follows: data at 30 ◦C (empty circles) and 35 ◦C (empty squares); average data at 30 ◦C (filled circles) and 35
◦C (filled squares). Fermentations and automated image analysis were performed in duplicate. The error bars correspond to
the standard error of the data, used to represent the high confidence in the mean associated with a large number of samples.

The ratio between the total CSA of the vacuoles and the total CSA of the cell (Figure 8)
had a decreasing trend for 30 ◦C, but not for 35 ◦C (Table 3). This indicates that the vacuolar
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space within the yeast cells was temperature-dependent. The changes undergone by the
yeast show morphological changes (vacuole size) that were reported by Pratt et al. [6,7] and
Izawa et al. [8]. However, the trends did not match exactly what was described in these
studies. This is likely influenced by the highly stressful nature of rum fermentations. By
quantifying the differences in yeast morphological state, it becomes possible to determine
the impact of stress factors, and the quality of yeast for subsequent fermentations.

Figure 8. Vacuole and yeast CSA ratio with respect time at 30 ◦C (a) and 35 ◦C (b). Ratio data are represented as follows:
data at 30 ◦C (empty circles) and 35 ◦C (empty squares); average data at 30 ◦C (filled circles) and 35 ◦C (filled squares).
Fermentations and automated image analysis were performed in duplicate. The error bars represent the standard error of
the data (used to represent the high confidence in the mean associated with a large number of samples).

The change in the yeast CSA, as well as the ratio between the size of vacuoles and the
cell throughout the fermentation process, was obtained using an automated yeast analysis.
Figures 7 and 8 clearly indicate that yeast has the capacity to undergo large morphological
changes over a single fermentation, as has been observed by many researchers. Therefore,
characterizing the rate of fermentation with respect to temperature, based upon the rate
of sugar consumption per cell, is an incomplete assessment and it could lead to incorrect
conclusions. A more detailed analysis was possible through the combination of the yeast
CSAs obtained from the automated tool developed in this study, and the enumeration of
viable yeast cells within suspension. Using the modeled number of cells in suspension and
combining with the average surface area of yeast within suspension (estimated based on
the assumption of yeast spherical shape), the total surface area of yeast in suspension over
time was determined, as shown in Figure 9. This analysis has implications for reactions
that are dependent upon cell wall area, such as nutrient uptake and stress responses.

Building upon this analysis, it became apparent that the rate of fermentation per cell
changed over the duration of the fermentation and was dependent upon temperature.
There are many factors that influence the rate of fermentation per cell, including tempera-
ture, sugar concentrations within the media, stress levels, etc. However, one parameter that
could be accounted for was the total volume of yeast cells present. To determine the sugar
consumption rate per volume of yeast, the authors used the CSA to determine the average
volume of cells at each time period (assuming spherical cells). As the vacuole volume is not
expected to be involved in cellular metabolism (and makes up a significant portion of the
volume in early fermentation cells (Figure 8)), the vacuolar volume was subtracted from
the average yeast volume calculation, resulting in an estimate of non-vacuolar cell volume.
This value was multiplied by the model of cells in suspension to find the non-vacuolar
cell volume per milliliter. Finally, the rate of sugar consumption model was divided by
this value to find the sugar consumption rate per non-vacuolar cell volume; it is presented
in Figure 10. This analysis shows that the sugar consumption rate per total non-vacuolar
yeast volume declined with respect to time (and sugar concentration), and was higher
at 35 ◦C. This analysis has applications for optimizing the reaction rate for fixed-bed,
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encapsulated yeast and other fermentations where there is not expected to be new yeast
growth. It can also help predict nutrient requirements and properties of yeast populations
produced under different temperature profiles for alternative fermentation processes such
as chemostats reactors.

Figure 9. Total surface area of yeast in suspension per milliliter with respect to fermentation time.
Data are presented as follows: average total surface area of suspended yeast per milliliter at 30 ◦C
(circles) and 35 ◦C (squares).

Figure 10. Fermentation rate per total non-vacuolar volume over time. Data are presented as follows:
fermentation rate per total non-vacuolar volume at 30 ◦C (circles) and 35 ◦C (squares).

4. Conclusions

Fermentations were conducted in duplicate at two different temperatures resulting
in differences in yeast morphology and fermentation kinetics between the experiments.
Standard methods were used to evaluate the fermentation properties, while changes to
morphology were assessed using manual and automated image analysis. Differences in
fermentation rate, number of cells in suspension, and cell size found were consistent with
previous work. An average discrepancy of only 2–4% was found between the manual
and automated analysis of the images. There were high standard deviations for cellular
morphology measurements (due to natural variability present within the yeast population),
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however, through the automated analysis of hundreds of cells, clear trends were observed.
From the automated image analysis, changes to yeast CSA appeared to be temperature-
dependent and progressed throughout the fermentation. Decreases in CSA ratio, defined as
the ratio between the vacuole and yeast CSA, were observed at 30 ◦C and not at 35 ◦C. There
were very small, or no vacuoles present in the cells at the end of the fermentation at 30 ◦C.
Finally, the automated image analysis of cell morphology was combined with traditional
measurements to provide insight into cellular surface areas and sugar consumption rates.
The rate of fermentation per total non-vacuolar yeast volume decreased over the course
of the fermentation and was higher at 35 ◦C despite a lower total rate of fermentation.
This study showed that automated analysis of images can be used to track morphological
changes in yeast over a fermentation, and that the combination of this analysis with
traditional methods can be used to provide additional insight into yeast properties and
behavior.
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