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Abstract: Recently there has been an increased interest in characterising the rates of alcoholic
fermentations. Sigmoidal models have been used to predict changes such as the rate of density decline.
In this study, three published sigmoidal models were assessed and fit to industrial fermentation data.
The first is the four-parameter logistic model described in the ASBC Yeast-14 method. The second
model is a nested form of the four-parameter logistic function, adding an extra parameter, creating
the 5-parameter logistic equation., where an additional parameter was added to allow for asymmetry.
The final model is a three-parameter logistic equation which describes the change in the Apparent
Degree of Fermentation with time. The three models were compared by fitting them to industrial data
from Australian and Canadian lagers, American and Scottish ales and Scotch Whisky fermentations.
The model fits were then compared to one another with a technique developed by Akaike and a
nested F-test. The Akaike information criterion compares the models and accounts for both the
goodness of fit, and the number of parameters in the model. Finally, consideration was given to
the establishment of prediction bands (that enclose the area that one can be 99% sure contains the
true datapoints). Calculation of these bands was “challenging” but successful as the industrial
fermentation data was heteroscedastic.

Keywords: beer; whisky; logistic modelling; fermentation; heteroscedastic error prediction

1. Introduction

In recent years, the development of advanced regression software has facilitated the
application of logistic regression models to beer and whisky fermentations [1]. If one
follows the decline in density of batch fermentations (typically represented as ◦Plato, ◦Brix,
or specific gravity), in almost every instance, a sigmoidal curve results. On rare occasions
where very active yeast is pitched, no lag phase will be observed and only an exponential
decline will be noted. However, this behaviour can be modelled with a ‘nested’ version of
the logistic model. The four-parameter logistic equation was first applied to Australian
lager fermentations [1] and has also been successfully employed to identify Premature
Yeast Flocculation (PYF) fermentations by the variation of fermentation parameters when
compared to controls [2]. This model forms part of the ASBC Yeast-14 assay [3]. Predictive
regression allows brewers to compare the effect of yeasts, malts and other process changes,
correlate other fermentation products (such as CO2) and predict final attenuation values.
Predictive regression can also provide further insights to fundamental aspects of fermenta-
tion including lag time and total fermentation time. While not perfect, this technique helps
brewers to better optimize their operations and detect aberrant behaviour. After nearly
two decades since the first analysis of the rate of density decline [1], it is appropriate to test
the suitability of logistic models to model change in the fermenting medium density. The
objective of this study was to comparatively assess the most commonly applied models and
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techniques on seven large fermentation datasets of varying size collected from brewing,
whiskey and laboratory sources.

A linear equation includes predictions that are “linearized” with respect to a single
parameter. This includes common equations for a straight line such as exponential curves,
and other linear transforms. Non-linear regression is required when there are multiple
parameters that describe different aspects of the model, and a transform in the primary
parameter does not induce a linear response in the dependent variable. Non-linear models
allow users to mathematically describe fermentation rates that increase at the beginning
and decline at the end. While more complex than a linear regression which consist of only
two adjustable parameters (the slope and intercept) the four-parameter logistic equation
describes the sigmoidal shape of the decline in density with respect to time as shown
in Equation (1). In the case of non-linear models, the best fits are normally selected by
systematic computer adjustment of the parameters of the equation to minimize the residual
sum of squares (RSS). A typical plot for this model with respect to time shown in Figure 1.
This equation is often termed logistic, or autocatalytic as it describes an exponential
increase in fermentation rate, followed by an inflection and a subsequent exponential
decrease in the rate of density decline. The application of this non-linear regression model
to predict fermentation behaviour allows a more accurate comparison of both industrial
and experimental fermentations and has been applied by various authors in the field, for
example [4,5].

Pt = Pe +
Pi − Pe

1 + e−B(t−M)
(1)

where Pt is the Apparent Extract (AE—expressed in oPlato at a time ‘t’), M is the inflection
point of the curve, or where the rate of extract decline is maximal, Pi is the upper asymptote,
Pe is the lower asymptote or AE as time approaches ∞, and B is a function of the slope at M
(B = doP/dt at M * e/(Pi − Pe) which describes the maximum rate (gradient).
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Subsequent to the use of this logistic model in brewing, a five-parameter model
first proposed by Richards in 1959 [6] was employed by MacIntosh and Speers to first
model the asymmetrical consumption of individual wort sugars [7,8]. This model is
known as a “generalised” logistic and can be also applied to consumption curves that
are asymmetrical around the inflection point. The additional parameter “s” introduced
in this model describes the asymmetric behaviour. When s = 1, this model reverts to the
four-parameter logistic. The equation for the model is shown in Equation (2) and Figure 2.

Pt = Pe +
Pi − Pe

(1 + s.e−B(t−M))
1
s

(2)

where Pt, Pe, Pi, B, and M are as described previously and s is an adjustable parameter which
permits fitting asymmetric attenuation curves such as those demonstrating a substantial
lag, or slow finishing attenuation.
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The third recently reported model [9] is another variant of the logistic model and
predicts the change in the density as the Apparent Degree of Fermentation (ADF). Tradi-
tionally, ADF is calculated from density measurements of the wort and beer density taken
at the beginning and end of the fermentation:

ADF =
OE − AE

OE
=

P0 − Pe

P0
(3)

where the Original Extract or ‘OE’ is the starting extract P0 and Pt is the final Apparent
Extract (AE), respectively. Normally the Apparent Extract is measured at the cessation of
fermentation but can refer to the density of the ferment at any time after the start of the
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fermentation. Similarly, ADF values can be calculated at any time through the fermentation
by use of the Apparent Extract at time t or Pt:

ADFt =
ADFe(

1 + e−B(t−M)
) (4)

where ADFt is the ADF at any time t or (P0 − Pt)/P0), ADFe is the asymptotic limit and
B and M are parameters as described in the logistic model (Equation (1)). Equation (3)
effectively takes the form of a three-parameter logistic function. This model relies on the
assumption that the final condition forms an asymptote parallel to the x axis. In the case
of ADF, the initial condition (equivalent to Pi in the four-parameter model) is assumed
to form this asymptote. The difficulty with the use of this method as reported is that the
Original Gravity or P0 must be fixed rather than be free to allow the best fit. Practically, P0
is set to the largest density value in the fermentation dataset. This procedure is analogous
to assuming or fixing an intercept in linear regression, limiting one’s ability to accurately
predict the change in the dependent variable ADFt.

To determine the best fit parameters of a given model to a dataset, optimization
software is used to minimize the residual sum of squares (i.e., RSS or error of the model)
by adjusting the variables in a systematic fashion. Whilst once an intensive computing
technique, various software packages ranging in complexity from Excel to R can now
easily determine the best fit of non-linear models to the data. An excellent discussion
of this technique is given by Motulsky and Ransnas [10]. When fitting attenuation data,
there remains the problem of determining which model best fits the data when the models
possess different parameters and shapes. A method developed by statistician Hirotugu
Akaike, and termed the “Akaike information criterion” is a common method for comparing
models within the field of statistics. This criterion uses various characteristics of the models
including parameterisation and transformations to assist with model selection. Calculation
of the Akaike information criterion (AICc, ‘c’ for corrected [11]) results in a value that can
be used to determine how well the data fits the model. Furthermore, use of the weighted
AIC (ω) allows the comparison of models by normalising the AIC scores, with the sum
of all assigned score equal to unity. Another method of determining the best model is the
F-test, which is appropriate for nested models (those that share parameters). This allows
the determination of whether there is statistical evidence of significant difference between
models. Through defining whether significant difference exists avoids the model becoming
overparameterised, thus, ‘overfitting’ the data to the model. As a result, the statistician
can use a combination of both the AIC and F-tests to determine which model best fits the
observed fermentation data. Using these metrics allows consideration of both the ability of
a chosen model to reduce RSS but also considers the parameterisation of the model, with
a view to accept the lowest number of parameters as possible. The determination of the
best fit model may not be obvious from simply plotting the observed data. Therefore, it is
important that the best model is established when analysing fermentations.

Finally, once an optimal model has been established, it becomes possible to construct
prediction bands to delineate the error in the nonlinear regression curves. Prediction bands
are useful tools in detecting aberrant fermentations, scheduling and prediction. While it is
relatively easy to predict the upper and lower bands when the error is constant with respect
to time (homoscedastic), examination of the error with time for real fermentation data often
reveals curves that are substantially heteroscedastic. This was first reported in 2003 for the
Australian Lager dataset and examination of other datasets also revealed heteroscedastic
behaviour. In this study, A method to generate prediction bands was hypothesised using
dataset 7 by first calculating the standard deviation at each time and calculating high and
low values using a correction for heteroscedasticity as follows:

X ± 3*SD*(1 + 1/n)0/.5 (5)
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where X is the mean, SD is the standard deviation and n is the number of datapoints at the
selected time. Once calculated, the logistic equation was fit to these high or low values to
form prediction bands above and below the fit curve.

To meet our objective of assessing models and techniques, we first collected data from
industrial brewing, whisky and laboratory sources. We then tested the hypothesis that the
four-parameter model was the ‘best’ model to predict the change in density with time by
fitting each curve and statistically comparing the results. After the datasets were effectively
modeled and compared, we assessed the suitability of Equation (5) to effectively bound
the datasets with prediction bands while considering heteroscedastic behaviour.

2. Materials and Methods

A number of datasets were collected from industrial and laboratory fermentations of
beer and Scotch whisky from 2003 to 2020 in Australia, Canada, Scotland and the United
States as shown in Table 1.

Table 1. Fermentations monitored.

Dataset# Product n * Trials Country

(Yeast)

1 Ale 643 40 Scotland
2 Ale 94 9 USA
3 Whisky 66 5 Scotland

(Ale)
4 Whisky 77 7 Scotland

(Ale)
5 Lager 228 19 Australia
6 Lager 90 7 Canada
7 Lager 2486 78 Canada

* Where ‘n’ denotes the total number of individual datapoints, and ‘Trials’ indicate the number of fermentations
of the same brand.

With the exception of the large laboratory-based Canadian dataset (dataset 7), the
fermentations were undertaken at industrial breweries of various sizes. Much of the details
of these fermentations are proprietary. However, dataset 1 was obtained from a commercial
Scottish ale brewery in 2014. These 40 ale fermentations were hopped at 30 IBU, oxygenated
wort and fermented with acid washed yeast [12] at 17 ◦C with an Original Extract of 10.0 ◦P.
It is noteworthy that dataset 1 was collected at a time when the brewery pitched the yeast
cell slurry by volume, not cell count, leading to substantial variation [12]. The second
dataset (US Pale Ale) was collected in 2010 and was fermented at 20 ◦C, with 13.1 ◦P wort,
hopped to ~40 IBU. The next two whisky datasets were pitched in 2019 at 17 ◦C with a
S. cerevisiae distillers’ yeast, free-rising to 33 ◦C during fermentation. As traditional, the
Scotch whisky mashes were un-boiled, un-hopped and underwent no oxygenation [13].
The Australian lager had an Original Extract of 14.1 ◦P and starting temperature of 10 ◦C
and was fermented in 2001 and subject of the original modelling study [1]. Dataset 7 was a
collection of various malted barley fermentations assessed using ASBC Yeast-14 [3].

Each of the three logistic models were fit to all fermentation in each dataset using both
prism and “R”. By using Prism software (Prism 8.4.3, GraphPad Software, San Diego, CA,
USA, www.graphpad.com) or other statistical software such as R (R-4.0.3, R Foundation for
Statistical Computing, Vienna, Austria), one can calculate the lowest ∆AICc to determine
the best fit model. The AICc for each model was determined and all models were compared
in order to make meaningful comparisons between each level of parameterisation. AICc
weights (ω) and p-values resulting from F-tests were computed in R, running the RStudio
GUI (V1.3.1093 RStudio Inc., Boston, MA, USA). This was then fed into a decision-making
algorithm which statistically determined the model of best fit [13].
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Finally, prediction bands were constructed on the largest of datasets to assess the
effectiveness of the proposed correction to incorporate heteroscedasticity into prediction
bands for the fermentation industries.

3. Results and Discussion

Each model was successfully fit to each dataset, and an example comparison of models
is shown in Figure 3, where the three-, four-, and five-parameter models are fit to dataset 5
(Australian Lager). The statistical fit of each model is given in Table 2; and by examination
of curve fits and residuals, all three models fit the data well. However, as discussed above,
one must fix an OG to calculate the ADFt values.

Table 2. Statistical evaluation of the curve fit of the Australian lager fermentation.

ADF-3-p-Logistic ** Best-Fit Values

ADFe 0.8371
B 0.06372
M 51.22

4-p-Logistic Best-fit values

Pe 2.055
Pi 14.73
B −0.05647
M 49.35

5-p-Logistic Best-fit values

Pe 2.328
Pi 15.45
s 0.2975
B −0.04111
M 53.36

** OE assumed to be 14.1 ◦P.

Using the best fit results from each dataset, the AICc and F-test were used to compare
each model. These statistics are shown in Table 3. No one model was determined to best
fit all the datasets. Both the three-parameter and four-parameter models were selected
as the optimal model twice, with the five-parameter being selected three times as the
best fitting model by the AICc and F-test criteria. There was evidence to suggest that
lager fermentations are not modelled well by the ADF function which was noted by the
very low AICc weights assigned to these models. This effect, however, may be offset by
the influence of the high number of observations. The five-parameter model provided a
substantial reduction in RSS when there is a much larger number of datapoints describing
the fermentation, which will benefit from the overfitting (i.e., an analysis that corresponds
too closely or exactly to a particular set of data) of these plots.

As mentioned above, all the fermentations could be fit with the three-, four- or five-
parameter models. The combined fits from the 78 trials in dataset 7 are shown in Figure 4,
where the five-parameter model (Equation (2)) was applied. While the initial and final
density within this dataset are very similar, there are differences in the rate of fermenta-
tion between batches resulting in a large amount of variability during periods of active
attenuation. This is typical of all batch fermentations and can be due to small changes in
yeast, sugars, temperature, etc. A model with variability that is dependent upon another
parameter (in this case time) is evidence of heteroscedasticity. This heteroscedasticity was
also found in other datasets (see for example Figure 3) and must be accounted for in the
construction of prediction bands. (which bound the area where one would expect 99% of
data points to lie). While difficult, realistic calculation of heteroscedastic prediction bands
can be made provided the dataset is large enough and contains enough density values at
set sampling times of low variability. Prediction bands were constructed for dataset 7 using
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Equation (5) where 2486 points were available. These bands are shown in Figure 4 which
includes the upper and lower 99% prediction bands for this dataset.
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Table 3. Computation of AICc weights (ω) and p-values resulting from F-tests of all seven fermentation types. The higher
parameterised model incurs a significant reduction in error when p < 0.05. Furthermore, the highest ω presents the model
which has the most favourable AICc score.

Fermentation Type n ω3P ω4P ω5P p-Value 3P vs. 4P p-Value 4P vs. 5P Model
Selected

1 Ale 643 0.042 0.514 0.444 0.01 0.01 4P
2 Ale 94 0.609 0.283 0.108 0.41 0.60 3P
3 Whisky 66 <<0.001 0.076 0.924 9.99 × 10−4 1.50 × 10−4 5P
4 Whisky 77 0.665 0.212 0.124 0.97 0.55 3P
5 Lager 228 3.25 × 10−3 0.137 0.859 2.18 × 10−3 5.48 × 10−4 5P
6 Lager 90 <0.001 0.667 0.332 2.20 × 10−5 8.47 × 10−5 4P
7 Lager 2486 <<0.001 <<0.001 0.999 3.52 × 10−34 1.61 × 10−42 5P

Each model presented during this study demonstrates both positive and negative
attributes. The three-parameter model, although often produces the most suitable model
(Table 3), requires the transformation of observed data to the form of ADF (Equation (3)).
This form, although valid, requires an exact measurement of the original extract (OE). As a
result, an uncertain OE value can lead to inconsistent or erroneous modelling, especially if
the OE is subject to error. Despite this potential area of inconsistency, the three-parameter
model is most useful when assumptions about the initial condition can be made. This
includes modelling the evolution of CO2 or weight loss during fermentation, both of which
will follow a similar logistic pattern. As at the beginning of fermentation this value must
equal zero (similarly with ADF), the initial state of the three-parameter model holds true
(time = 0, y = 0). When such a condition exists, higher parameterisation, may not involve
the addition of another asymptotic value (such as Pi) but instead may incorporate the
parameter, s (as is observed in Equation (2)), to account for asymmetry in the observed data.

The five-parameter model provides an asymmetric regression fit. This asymmetrical
fermentation profile was exhibited in both lager and whisky fermentations studied. The
five-parameter model will be preferentially chosen when the number of observations is
high. This is due to the reduction in RSS which must exist in order to support the extra
parameter. When s = 1, the model will take the form of the four-parameter regression. As a
result, when there is a lack of asymmetry in the model, convergence of this five-parameter
regression may not be achieved, causing the model to fail. In this case, the three- or four-
parameter model must be considered instead. To reemphasize, with the high number of
observations and slight asymmetry, the five-parameter model will be the best applicable
model. This is demonstrated by dataset 7 in Table 3.

The four-parameter model offered good all-round support of the modelling of density
decline during fermentation, but became inaccurate as the fermentation became asymmetric.
Model convergence was achieved most often using this system and no transformation of
the dataset was required prior to model fitting.
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4. Conclusions

Fermentation modelling provides a useful tool to monitor, track and predict fermen-
tation characteristics within a brewhouse. Model selection has previously indicated that
the logistic equation demonstrates good agreement with density decline during fermenta-
tion by yeast. Overall, the comparison of the three sigmodal-shaped models leads one to
conclude that no one model fits all the datasets best. There was often little difference in
the visual fit of the four- and five-parameter models as shown in Figure 3. However, for
datasets 3, 5 and 7, close examination of the model fits revealed that the five-parameter
model fit was in fact the best fit, when only comparing the reduction in residual sum of
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squares (RSS). This in turn caused a reduction in the AICc value despite the increase in
parameterisation of the model and resulted in a greater AICc weight (ω). Furthermore,
analysis of the nested F-test proved that there was significant reduction (p < 0.05) in er-
ror when moving from the four-parameter to the five-parameter model. This provided
compelling evidence to support the use of the five-parameter model for the fermentation
when asymmetry was observed. The five-parameter model tends to provide a better fit as
the number of data points increase as it provides increased flexibility. However, in very
symmetrical datasets, the three- or four-parameter models may prove superior.

As no one model fit all the data presented and no trends between fermentation type
or scale were evident, it was determined that the most effective model for a given system
must be determined through the use of empirical evidence. The use of AICc weights was
observed to provide a useful method for comparing a variety of models. Furthermore, the
nested F-test allowed the determination of whether moving to a higher parameterisation
resulted in a significant reduction in error. These tools can be incorporated and used to
determine the best model for a given system.

Finally, the prediction bands created incorporating heteroscedasticity successfully
bound the largest datasets while also providing good convergence at the beginning and
end of fermentation. This technique can be particularly useful for detecting aberrant
fermentations, setting tolerances and scheduling in industrial settings.
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