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Abstract: The development of digital tools based on artificial intelligence can produce affordable and
accurate methodologies to assess quality traits and sensory analysis of beers. These new and emerging
technologies can also assess new products in a near real-time fashion through virtual simulations
before the brewing process. This research was based on the development of specific digital tools
(four models) to assess quality traits and sensory profiles of beers produced using sonication and
traditional brewing techniques. Results showed that models developed using supervised machine
learning (ML) regression algorithms based on near-infrared spectroscopy (NIR) were highly accurate
in the estimation of physicochemical parameters (Model 1; R = 0.94; b = 0.91). Outputs from Model
1 were then used as inputs to obtain estimations of the intensity of sensory descriptors (Model 2;
R = 0.99; b = 0.98), liking of sensory attributes (Model 3; R = 0.97; b = 0.99), and the classification
of fermentation treatments using supervised classification ML algorithms (Model 4; 96% accuracy).
These new digital tools can aid craft brewing companies for product development at lower costs and
maintain specific quality traits and sensory profiles, creating original styles of beers to get positioned
in the market.
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1. Introduction

The craft beer industry is growing around the world, which has been driven by the increased
requirements of higher quality of beers by consumers [1–3]. However, there is minimal reliance on
scientific tests, such as physicochemical or sensory analysis of beers produces, making the process
dependent on the brewer’s experience and trial and error, especially in craft breweries. Some of the
larger brewing companies rely more on the familiarity of products and styles, which are maintained
with sensory and physicochemical analyses commonly made in-house and using traditional methods,
which are time-consuming and expensive [4–7].

Some important quality traits of beers related to the visual attributes, such as foamability and
bubble size, have been shown in previous research to be one of the first unconscious assessments
from consumers [3,8–12], which are also important parameters to aid in the release of flavor, aromas,
and the avoidance of oxidation of beer that can produce off-flavors [3,13–15]. These specific traits
can be achieved through the selection of materials for the brewing process and the fermentation type
chosen to achieve a specific style [14,16]. However, it has been recently demonstrated that foamability,
foam stability, bubble size, and beer organoleptic perception by consumers can be modified in beers
through a sonication process (audible frequencies) applied either in the fermentation or carbonation
part of the brewing process [17]. Similar effects have been observed in the application of sonication of
carbonated water [18].
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The objective effects of different brewing techniques on the final beers are difficult to assess since
they require either sending samples to specialized laboratories, having those laboratories or small
versions of them, with specialized or trained personnel in-house, outsourcing sensory analysis services,
or again having a small and uncontrolled version of sensory analysis in-house. These practices require
considerable investments of time and money that, in many situations, can only be afforded by medium
to large brewing companies [6,7,19].

Artificial intelligence, robotics, and machine learning (ML) have been applied recently in the
brewing industry to obtain digital tools that can be affordable, cost-effective, and requiring do-it-yourself
(DIY) instrumentation with highly accurate results. One of these advances for the physicochemical
assessment of beers is using the RoboBEER pourer (The University of Melbourne, Parkville, VIC,
Australia), which is coupled with computer vision and non-invasive sensors to assess the gas release
of beers (electronic nose) [6,16]. Outputs from this robot have been modeled using machine learning
to assess the sensory properties of beers [4], consumers’ acceptability [9], proteins [19], aromas [6],
and the type of fermentation (top, bottom, or spontaneous [16]).

Near-infrared (NIR) spectroscopy offers a chemical fingerprinting of beers that can be modeled
to obtain other important parameters, such as consumer appreciation in terms of quality, liking,
and purchase intent, that can be applied without the requirement of a sensory panel. Some authors
have used NIR to assess the quality parameters of beer based on real extract, alcohol concentration,
and prediction of acetic acid using artificial neural networks (ANNs; [20]). Grassi et al. [21] used
Fourier-transformation NIR in the fermentation stage to predict Brix, biomass, and pH using ML
based on locally weighted regression (LWR). Furthermore, Gonzalez Viejo et al. [22] used NIR coupled
with ANN to predict Brix, alcohol content, maximum volume of foam, and pH. On the other hand,
Giovenzana et al. [23] used visible/NIR spectroscopy to predict soluble solids and pH as quality
parameters of beer during the fermentation stage.

This paper describes the development of digital tools based on artificial intelligence to
obtain physicochemical characteristics, sensory appreciation (intensities) from a trained panel,
liking/acceptability, and classification of beer samples according to sonication treatments (control,
sonication during fermentation, and sonication during carbonation) based on NIR spectroscopy.
The models obtained from this work can be easily applied from craft to medium and larger brewing
companies for beer testing, product development, simulations of quality appreciation, and specific
traits of beers before the brewing process.

2. Materials and Methods

2.1. Sample Preparation

Triplicates of two bottles obtained from three batches of three different treatments (N = 54) of
English-style India Pale Ale beers (IPA, Berlin IPA, BrewBaker, Berlin, Germany) were used for the
study. All samples were prepared using the PicoBrew S machine (PicoBrew, Seattle, WA, USA).
The treatments applied were the (i) control, (ii) sonication applied during the fermentation, and (iii)
sonication applied during the natural in-bottle carbonation (Table 1). The sonication treatments
consisted of the application of audible sounds at five different frequencies (20, 30, 45, 55, and 75 Hz
at −4 dB) for 5 min (1 min for each frequency) using two sub-woofers Response CW2199 (Jaycar
Electronics, Sydney, NSW, USA), a DigiTech AA0479 amplifier (DigiTech, Sandy, UT, USA), and an
Audio Function Generator application (Thomas Gruber) for iPhone (Apple Inc., Cupertino, CA, USA;
Figure 1), as described by Gonzalez Viejo et al. [17,18]. dB uses a logarithmic scale in the master
volume; therefore, a negative value as the one used for this study (−4 dB) means that there are some
soundwaves physically present, but they may not be audible.
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Table 1. Beer sample treatments used for the study and their labels.

Treatment Label Net Content

Control C 330 mL
Sonication in fermentation SF 330 mL
Sonication in carbonation SC 330 mL
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Figure 1. Diagram depicting the treatments developed for the study, where the control was developed 
with the regular brewing methods, the treatment with sonication during fermentation (SF) consisted 
of the application of audible sounds to the brewing keg, and the sonication during carbonation (SC) 
consisted of the application of audible sounds during the in-bottle natural carbonation stage. 

2.2. Physicochemical Measurements 

2.2.1. Physical Measurements—RoboBEER 

Each bottle/replicate from each batch and treatment was analyzed for physical parameters 
related to foam and bubbles, as well as alcohol gas release and carbon dioxide (CO2) release using the 
RoboBEER robotic pourer (The University of Melbourne, Parkville, Vic, Australia) [16]. A 5-min video 
of the beer pouring was recorded and analyzed using computer vision algorithms developed in 
Matlab® R2020a (Mathworks, Inc., Natick, MA, USA), as described by Gonzalez Viejo et al. [16]. The 
parameters and abbreviations obtained from this analysis are shown in Table 2. 

Table 2. Parameters analyzed using the robotic pourer RoboBEER. 
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Lifetime of foam LTF 
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Carbon dioxide CO2 
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Near-infrared (NIR) absorbance values within the 1596 – 2396 nm range were measured using a 
microPHAZIR™ RX Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). As described by 
Gonzalez Viejo et al. [22], Whatman® filter paper (quality grade 3; diameter: 7 cm; Whatman plc. 
Maidstone, UK) was soaked in the beer samples (N = 54) at room temperature (20–23 °C) and 
measured with the device with the white background on top to avoid the interference of any signal 
noise from the environment. Additionally, the means of triplicate readings of the dry filter paper 

Figure 1. Diagram depicting the treatments developed for the study, where the control was developed
with the regular brewing methods, the treatment with sonication during fermentation (SF) consisted
of the application of audible sounds to the brewing keg, and the sonication during carbonation (SC)
consisted of the application of audible sounds during the in-bottle natural carbonation stage.

2.2. Physicochemical Measurements

2.2.1. Physical Measurements—RoboBEER

Each bottle/replicate from each batch and treatment was analyzed for physical parameters related
to foam and bubbles, as well as alcohol gas release and carbon dioxide (CO2) release using the
RoboBEER robotic pourer (The University of Melbourne, Parkville, VIC, Australia) [16]. A 5-min
video of the beer pouring was recorded and analyzed using computer vision algorithms developed
in Matlab® R2020a (Mathworks, Inc., Natick, MA, USA), as described by Gonzalez Viejo et al. [16].
The parameters and abbreviations obtained from this analysis are shown in Table 2.

Table 2. Parameters analyzed using the robotic pourer RoboBEER.

Parameter Label

Maximum volume of foam MaxVol
Lifetime of foam LTF

Total lifetime of foam TLTF
Foam drainage FDrain

Small bubbles in the foam SmBubb
Medium bubbles in the foam MedBubb

Large bubbles in the foam LgBubb
Alcohol gas release Alcohol gas release

Carbon dioxide CO2

2.2.2. Near-Infrared Spectroscopy

Near-infrared (NIR) absorbance values within the 1596–2396 nm range were measured using
a microPHAZIR™ RX Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). As described by
Gonzalez Viejo et al. [22], Whatman® filter paper (quality grade 3; diameter: 7 cm; Whatman plc.
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Maidstone, UK) was soaked in the beer samples (N = 54) at room temperature (20–23 ◦C) and measured
with the device with the white background on top to avoid the interference of any signal noise from
the environment. Additionally, the means of triplicate readings of the dry filter paper were subtracted
from the soaked filters to remove the cellulose overtones and to obtain only the beer-related reflectance
results. To enhance peaks and for plotting purposes, the Savitzky–Golay first derivative was obtained
as a signal transformation method using The Unscrambler X ver. 10.3 (CAMO Software, Oslo, Norway).

2.2.3. Chemical Measurements

A pH meter (QM-1670, DigiTech, Sandy, UT, USA) was used to measure 50 mL of each replicate of
each treatment at ambient temperature (~23 ◦C). The pH meter was previously calibrated with a buffer
solution at pH 7.0. Furthermore, 60-mL samples were used to measure alcohol in the liquid using an
alcohol meter Alcolyzer Wine M (accuracy: <0.1% vv−1; Anton Paar GmbH, Graz, Austria) in the wine
extension mode. On the other hand, 150-mL samples were used to measure viscosity with a Brookfield
viscometer DV-II+ (AMETEK Brookfield, Middleborough, MA, USA) and an RV02 spindle (50 rpm for
20 s; [17]).

2.3. Sensory Evaluation

2.3.1. Descriptive Sensory Session

A sensory session with 10 trained participants from The University of Melbourne (UoM; Ethics ID:
1545786.2) was conducted. All participants were regular beer consumers and trained according to the
quantitative descriptive analysis (QDA®) method. The session was conducted in the sensory laboratory
in a focus group-type room located in the Faculty of Veterinary and Agricultural Sciences of the UoM.
Participants evaluated the triplicates (three batches) of each treatment, and these were served in 1-oz
clear plastic cups at 4 ◦C. Samples were labeled with 3-digit random codes, and panelists were provided
with water and water crackers to cleanse the palate. The assessment of visual attributes consisted of
watching 20-s videos of the pouring of the samples using the RoboBEER to ensure all participants
evaluated the samples under the same conditions. The BioSensory Application (App; The University
of Melbourne, Parkville, VIC, Australia; [24]) was used to display the videos and questionnaire, which
consisted of evaluating the intensity of sensory attributes in a 15-cm non-structured scale (Table 3; [17]).

Table 3. Sensory attributes evaluated in the descriptive test and respective abbreviations used.

Parameter Label

Foam stability FStability
Foam height FHeight

Foam texture (bubble size in the foam) FTexture
Color Intensity CIntensity

Clarity Clarity
Aroma Hops AHops
Aroma Spices ASpices
Aroma Floral AFloral
Aroma Fruity AFruity

Aroma Burnt Sugar ABurntSugar
Aroma Yeast AYeast
Aroma Nuts ANuts

Aroma Grains AGrains
Mouthfeel-Viscosity MViscosity

Mouthfeel-Astringency MAstringency
Mouthfeel-Warming MWarming

Mouthfeel-Carbonation MCarbonation
Taste Bitter TBitter
Taste Sweet TSweet
Taste Sour TSour

Flavor Hops FHops
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2.3.2. Consumer sensory session

A sensory session was conducted with 30 regular beer consumers recruited via email from the
staff and students from the UoM (ethics ID: 1545786.2). This session was carried out in individual
booths with uniform white light-emitting diode (LED) lights at room temperature (~23 ◦C). Like the
descriptive sensory test, the BioSensory app was used to display the questionnaire (Table 4) and videos
of the beer pouring for the visual assessment. Samples were labeled with three-digit random codes
and served in 1-oz clear plastic cups at 4 ◦C; participants were provided with water crackers and water
to cleanse their palate between samples.

Table 4. Sensory attributes evaluated in the descriptive test.

Parameter Label

Foam stability LFStability
Foam height LFHeight
Foam texture LFTexture

Aroma Aroma
Carbonation LMCarbonation
Taste Bitter LTBitter
Taste Sweet LTSweet
Taste Sour LTSour

Flavor Flavor
Overall liking LOverall

Perceived Quality Quality

2.4. Statistical Analysis and Machine Learning Modeling

Two correlation matrices were developed using Matlab® R2020a to show significant (p < 0.05)
correlations between (i) the physicochemical parameters and the intensity of sensory attributes from
the descriptive test, and (ii) the physicochemical parameters and the liking of sensory attributes from
the consumer test.

Three ML regression models were developed using ANNs with a customized code written in
Matlab® R2020a. This code was able to test 17 different supervised training algorithms to find the
best model based on performance and the highest accuracy based on the correlation coefficient (R).
Model 1 was developed using the NIR absorbance values (1596–2396 nm) as inputs to predict 12
physicochemical parameters (Table 2, plus pH, alcohol content, and viscosity). Model 2 and Model 3
were constructed using the outputs from Model 1 (physicochemical parameters) as inputs to predict
the intensity of 21 sensory descriptors (Model 2; Table 3) and the liking of 11 sensory attributes
(Model 3; Table 4). The three models (Figure 2) were developed using the Levenberg Marquardt
training algorithm with random data division (training: 70% samples; validation: 15% samples; testing:
15% samples). Performance was assessed using the means squared error (MSE) algorithm. Outliers
from the overall models were evaluated based on the 95% confidence bounds.

Model 4 was based on pattern recognition and developed using a code written in Matlab® R2020a,
which was able to test 17 different supervised training algorithms to find the best model performance
(data not shown). The Levenberg Marquardt training algorithm resulted the highest performance and
accuracy. This model was constructed using the outputs from Model 1 (physicochemical parameters)
as inputs to classify the samples into the treatments (control, SF, and SC; Figure 2). A random data
division was used with 70% of the samples for training, 15% for validation, and 15% for testing.
Performance was assessed using the means squared error (MSE) algorithm.
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sigmoid function in the hidden layer and Softmax transfer function in the output layer. Abbreviations: 
W: weights, and b = bias, inputs, outputs/targets abbreviations are found in Tables 2, 3, and 4. 
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major peak was 1927 nm, but there are other overtones present at 2270 nm and > 2300 nm. Figure 3b 
shows the curves using the first derivative of the NIR absorbance values, and enhanced peaks at 1759 
nm, 1886 nm, 2074 nm, and > 2250 nm can be observed.  

Figure 2. Diagram showing the artificial neural network (ANN) two-layer feedforward models. Models
1–3 consist of ANN regression with the tan-sigmoid function in the hidden layer and linear transfer
function in the output layer. Model 4 consists of ANN pattern recognition with the tan-sigmoid function
in the hidden layer and Softmax transfer function in the output layer. Abbreviations: W: weights,
and b = bias, inputs, outputs/targets abbreviations are found in Tables 2–4.

3. Results

Figure 3a shows the NIR curves with the raw absorbance values; it can be observed that the major
peak was 1927 nm, but there are other overtones present at 2270 nm and > 2300 nm. Figure 3b shows
the curves using the first derivative of the NIR absorbance values, and enhanced peaks at 1759 nm,
1886 nm, 2074 nm, and >2250 nm can be observed.

Figure 4a shows the significant correlations between the physicochemical parameters and the
intensity of sensory descriptors assessed with the trained panel. It was found that MaxVol was
positively correlated with FHeight (r = 0.80), TLTF, and LTF had a positive correlation with FStability
(r = 0.74 and r = 0.77, respectively) and FHeight (r = 0.91 and r = 0.94, respectively). Furthermore,
FDrain was positively correlated with AGrain (r = 0.75), while LgBubb had a negative correlation
with alcohol gas release (r = −0.82). On the other hand, CO2 had a positive correlation with FTexture
(r = 0.77) and MAstringency (r = 0.73). There was a positive correlation between alcohol content and
MCarbonation (r = 0.72), MAstringency (r = 0.77), MViscosity (r = 0.87), ASpices (r = 0.75), and AHops
(r = 0.86).

Figure 4b shows the significant correlations between the physicochemical parameters and the
liking of sensory attributes from the consumer test. It can be observed that MaxVol, TLTF, and LTF had
a positive correlation with flavor (r = 0.72, r = 0.71, and r = 0.79, respectively); additionally, TLTF and
LTF had a positive correlation with LTBitter (r = 0.80, and r = 0.84, respectively). Likewise, LTF was
positively correlated with LTSweet (r = 0.80) and overall liking (r = 0.74). Alcohol content had a
positive correlation with LFTexture (r = 0.77), while viscosity was negatively correlated with overall
liking (r = −0.76) and quality (r = −0.77).
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Figure 4. Matrices showing the correlations between the physicochemical parameters and (a) the
intensity of sensory descriptors assessed with the trained panel and (b) the liking of sensory attributes
from the consumers test.

Table 5 shows the statistical data from the four ANN models constructed. It can be observed
that Model 1 had a high overall accuracy (R = 0.94) to predict the 12 physicochemical parameters
(Figure 5a). Furthermore, this model had 4.9% (32 out of 648) of outliers based on the 95% confidence
bounds. On the other hand, Model 2 had a very high overall correlation coefficient (R = 0.99) to predict
the intensity of 21 sensory descriptors (Figure 5b), with 5.0% (57 out of 1134) of outliers calculated
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from the 95% confidence bounds. Similarly, Model 3 was highly accurate (R = 0.97) at predicting the
liking of 11 sensory attributes (Figure 5c) and had 5.1% (30 out of 594) of outliers based on the 95%
confidence bounds. The three models had a slope (b) close to the unity (b ~ 1). They did not present
signs of under- or overfitting as the training performance was lower than the other stages, and the
validation and testing performance were the same. All models presented similar results after several
retraining attempts.

Model 4 presented a high overall accuracy (96%) to classify samples into the treatments (control,
SF, and SC). Figure 5d shows the overall receiver operating characteristics (ROC) curve, which depicts
the true positive (sensitivity) and false-positive (specificity) rates for each treatment. This model
did not present signs of overfitting as the training performance was lower than the validation and
testing, and the latter were close to each other. These models also presented similar results after several
retraining attempts.
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Figure 5. Overall regression of (a) Model 1 to predict the physicochemical parameters using near-infrared
absorbance values as inputs, (b) Model 2 to predict the intensity of sensory descriptors using the
physicochemical parameters as inputs, and (c) Model 3 to predict the liking of sensory attributes using
the physicochemical parameters as inputs; while (d) shows the receiver operating characteristics (ROC)
curve from Model 4 to classify samples into the three treatments (control, sonication in fermentation,
and sonication in carbonation).

Table 5. Results from the artificial neural network regression (Models 1–3) and classification (Model 4)
models. Performance was calculated based on the mean squared error (MSE).

Model Stage Observations
(Samples × Targets)

Correlation Coefficient
(R) Slope Performance

(MSE)

Model 1

Training 454 0.98 0.95 0.01
Validation 97 0.88 0.82 0.10

Testing 97 0.83 0.84 0.10
Overall 648 0.94 0.91 -
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Table 5. Cont.

Model Stage Observations
(Samples × Targets)

Correlation Coefficient
(R) Slope Performance

(MSE)

Model 2

Training 794 0.99 0.99 0.04
Validation 170 0.96 0.94 0.30

Testing 170 0.97 0.97 0.30
Overall 1134 0.99 0.98 -

Model 3

Training 416 0.99 0.97 0.02
Validation 89 0.94 0.99 0.20

Testing 89 0.92 1.10 0.20
Overall 594 0.97 0.99 -

Model Stage Samples Accuracy Error Performance
(MSE)

Model 4

Training 38 100% 0.0% <0.01
Validation 8 90.9% 9.1% 0.05

Testing 8 90.9% 9.1% 0.02
Overall 54 96.3% 3.7% -

4. Discussion

The NIR curve developed with raw absorbance values (Figure 3a) is consistent with that reported
by McClure and Stanfield for beers [25]. According to Wilson et al. [26], the peak at 1927 nm corresponds
to an overtone of protein-bound water, while other authors have identified water at 1932 [25] and
1940 nm [27], which are also within the range of the major peak observed in the curve for the three beer
treatments. Ethanol, which is one of the main components in beer, has been identified at 2270 nm [22,25],
which was observed in both the raw and first derivative curves. Overtones found at 1740–1760 nm
correspond to thiol (S-H; [28]); this is an aromatic compound present in small concentrations in hops
and, therefore, in beer [29]. Starch has been identified at 1886 nm; this may be present in beer due to
possible residues from the malt that may not have been fully converted into sugars [14]. Overtones
at 2074 nm correspond to amines [30], which are present in beer, especially as biogenic amines [14].
On the other hand, peaks > 2250 nm correspond to overtones of proteins and carbohydrates [27],
which are of high importance for beer quality, as these are responsible for foam formation and
stability [4,14,16,17,22].

The correlations found between MaxVol and FHeight and between TLTF, LFT, and FStability
indicate that the panelists were well-trained and are in accordance with the relationships found by
Gonzalez Viejo et al. [16] using commercial beer samples and a QDA® trained panel. The negative
correlation between LgBubb and alcohol gas release may be due to the breakage of large bubbles,
which aids in the release of the gas that conforms them. On the other hand, CO2 is the main factor
responsible for bubble formation due to its high solubility in H2O [3,13]; this effect agrees with the
positive correlation found between CO2 and FTexture, which refers to the bubble size within the
foam. The positive correlation between the foaming parameters and Flavor liking, LTBitter, LTSweet,
and overall liking is in accordance with the findings from Gonzalez Viejo et al. [9] in which it was found
that the visual parameters have a great influence on consumers’ acceptability when tasting beers.

The sonication treatments applied in both the fermentation and the carbonation stages were
shown to improve the beers’ foam and bubble-related parameters without affecting the flavor and
aromas, as mentioned by Gonzalez Viejo et al. [17]. The regression ML models presented in this paper
may be used in the brewing industry for the rapid assessment of beer in either craft or large companies.
This is due to the use of the physicochemical parameters as inputs to predict the sensory attributes
from the descriptive and acceptability tests. These physicochemical parameters may be obtained either
from Model 1 when the company has an NIR spectrometer or by evaluating each parameter using the
techniques mentioned in the materials and methods. Model 4 may be used by breweries that would
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implement sonication as part of the production process to improve the foam and bubble quality of the
beer samples and to identify which samples/batches had been treated and at which stage of the process
(carbonation or fermentation).

5. Conclusions

The NIR readings are a chemical fingerprint of beer samples, which gives specific signal data related
to several compounds that are present on beers in the form of overtones. These data were used as inputs
to model specific and important physicochemical characteristics of beers (Model 1). The advantages
of using the predicted physicochemical outputs from Model 1 to construct the subsequent models
presented in this work are (i) it helps to better understand the effects of specific physicochemical
parameters involved and respective levels, avoiding the “black box” effect that NIR readings will
present if they are used as inputs for subsequent models; (ii) physicochemical parameters can be
measured using laboratory techniques and low-cost RoboBEER without requiring NIR instruments that
can be cost-prohibitive for the particular NIR range used in this research; (iii) specific physicochemical
parameters can be changed in a “simulation mode” to obtain real-time results from subsequent models
related to changes in the sensory liking and type of fermentation treatment used; and (iv) Model 4
serves as a control process to recognize specific fermentations and sonication treatments of beer as a
validation process in breweries.

Author Contributions: Conceptualization, C.G.V., and S.F.; Data curation, C.G.V., and S.F.; Formal analysis,
C.G.V., and S.F.; Investigation, C.G.V., and S.F.; Methodology, C.G.V., and S.F.; Project administration, C.G.V., and
S.F.; Software, C.G.V., and S.F.; Validation, C.G.V., and S.F.; Visualization, C.G.V., and S.F.; Writing—original draft,
C.G.V., and S.F.; Writing—review and editing, C.G.V. and S.F.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Euromonitor-International. Beer in Australia; Euromonitor International: London, UK, 2016.
2. Euromonitor-International. Statistics—Alcoholic Drinks; Euromonitor-International: London, UK, 2018.
3. Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Bubbles, Foam Formation, Stability and

Consumer Perception of Carbonated Drinks: A Review of Current, New and Emerging Technologies for
Rapid Assessment and Control. Foods 2019, 8, 596. [CrossRef] [PubMed]

4. Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of Beer Quality Based on a
Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci.
2018, 83, 1381–1388. [CrossRef]

5. Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence
to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [CrossRef]

6. Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost
e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators
B Chem. 2020, 308, 127688. [CrossRef]

7. Lees, M.; Rogers, P.; Campbell, D.; Pecar, M.; Sudarmana, D. Intelligent Systems for the Brewery based on
Real-Time Measurement of Biological Parameters. In Proceedings of the 9th Australian Barley Technical
Symposium, Melbourne, Austrilia, 12–16 September 1999; pp. 2–8.

8. Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F. Robotics and computer vision techniques
combined with non-invasive consumer biometrics to assess quality traits from beer foamability using
machine learning: A potential for artificial intelligence applications. Food Control 2018. [CrossRef]

9. Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models
to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model
Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [CrossRef]

10. Bamforth, C. Perceptions of beer foam. J. Inst. Brew. 2000, 106, 229–238. [CrossRef]
11. Donadini, G.; Fumi, M.D.; de Faveri, M.D. How Foam Appearance Influences the Italian Consumer’s Beer

Perception and Preference. J. Inst. Brew. 2011, 117, 523–533. [CrossRef]

http://dx.doi.org/10.3390/foods8120596
http://www.ncbi.nlm.nih.gov/pubmed/31756920
http://dx.doi.org/10.1111/1750-3841.14114
http://dx.doi.org/10.3390/beverages5040062
http://dx.doi.org/10.1016/j.snb.2020.127688
http://dx.doi.org/10.1016/j.foodcont.2018.04.037
http://dx.doi.org/10.3390/beverages5020033
http://dx.doi.org/10.1002/j.2050-0416.2000.tb00062.x
http://dx.doi.org/10.1002/j.2050-0416.2011.tb00500.x


Fermentation 2020, 6, 73 12 of 12

12. Dale, C.; West, C.; Eade, J.; Rito-Palomares, M.; Lyddiatt, A. Studies on the physical and compositional
changes in collapsing beer foam. Chem. Eng. J. 1999, 72, 83–89. [CrossRef]

13. Campbell, G.M.; Mougeot, E. Creation and characterisation of aerated food products. Trends Food Sci. Technol.
1999, 10, 283–296. [CrossRef]

14. Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective; Academic press: Cambridge, MA, USA, 2011.
15. Pozo-Bayón, M.Á.; Santos, M.; Martín-Álvarez, P.J.; Reineccius, G. Influence of carbonation on aroma release

from liquid systems using an artificial throat and a proton transfer reaction–mass spectrometric technique
(PTR–MS). Flavour Fragr. J. 2009, 24, 226–233. [CrossRef]

16. Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic
pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using
computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [CrossRef]

17. Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Lee, M.; Hu, Y.; Chakraborty, S.; Dunshea, F. The Effect of
Soundwaves on Foamability Properties and Sensory of Beers with a Machine Learning Modeling Approach.
Beverages 2018, 4, 53. [CrossRef]

18. Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. The Effect of Sonication on Bubble Size and Sensory
Perception of Carbonated Water to Improve Quality and Consumer Acceptability. Beverages 2019, 5, 58.
[CrossRef]

19. Gonzalez Viejo, C.; Caboche, C.H.; Kerr, E.D.; Pegg, C.L.; Schulz, B.L.; Howell, K.; Fuentes, S. Development
of a rapid method to assess beer foamability and quality based on relative protein content using RoboBEER
and machine learning modeling. Beverages 2020, 6, 28. [CrossRef]

20. Zhang, Y.; Jia, S.; Zhang, W. Predicting acetic acid content in the final beer using neural networks and support
vector machine. J. Inst. Brew. 2012, 118, 361–367. [CrossRef]

21. Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process
parameters by FT-NIR and multivariate data analysis. Food Chem. 2014, 155, 279–286. [CrossRef]

22. Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of beer quality based on
foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and
machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [CrossRef]

23. Giovenzana, V.; Beghi, R.; Guidetti, R. Rapid evaluation of craft beer quality during fermentation process by
vis/NIR spectroscopy. J. Food Eng. 2014, 142, 80–86. [CrossRef]

24. Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.; Dunshea, F. Development of a biosensory computer application
to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [CrossRef]

25. McClure, W.F.; Stanfield, D.L. Near-Infrared Spectroscopy of Biomaterials. Handb. Vib. Spectrosc. 2002.
[CrossRef]

26. Wilson, B.C.; Tuchin, V.V.; Tanev, S. Advances in Biophotonics; IOS Press: Amsterdam, The Netherlands, 2005;
Volume 369.

27. Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC press: Boca Raton, FL, USA, 2007.
28. Araka, P.P.; Okparanma, R.N.; Ayotamuno, J.M.; Nawar, S.; Mouazen, A.M. Variability of visible and

near-infrared (vis-NIR) diffuse spectral reflectance of cement-based solidified/stabilized pre-treated oil-based
drill cuttings. J. Civ. Eng. Constr. Technol. 2019, 10, 60–70.

29. Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their
Cultivation, Composition and Usage; Fachverlag Hans Carl: Nuremberg, Germany, 2015.

30. Wang, S. Infrared Spectroscopy for Food Quality Analysis and Control.; Academic press: Cambridge, MA,
USA, 2010.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1385-8947(98)00141-7
http://dx.doi.org/10.1016/S0924-2244(00)00008-X
http://dx.doi.org/10.1002/ffj.1934
http://dx.doi.org/10.1016/j.foodres.2016.08.045
http://dx.doi.org/10.3390/beverages4030053
http://dx.doi.org/10.3390/beverages5030058
http://dx.doi.org/10.3390/beverages6020028
http://dx.doi.org/10.1002/jib.50
http://dx.doi.org/10.1016/j.foodchem.2014.01.060
http://dx.doi.org/10.1002/jsfa.8506
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.017
http://dx.doi.org/10.3390/s18092958
http://dx.doi.org/10.1002/0470027320.s0107
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Physicochemical Measurements 
	Physical Measurements—RoboBEER 
	Near-Infrared Spectroscopy 
	Chemical Measurements 

	Sensory Evaluation 
	Descriptive Sensory Session 
	Consumer sensory session 

	Statistical Analysis and Machine Learning Modeling 

	Results 
	Discussion 
	Conclusions 
	References

