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Abstract: Thirteen Non-Conventional Yeasts (NCYs) have been investigated for their ability to
reduce activated C=C bonds of chalcones to obtain the corresponding dihydrochalcones. A possible
correlation between bioreducing capacity of the NCYs and the substrate structure was estimated.
Generally, whole-cells of the NCYs were able to hydrogenate the C=C double bond occurring
in (E)-1,3-diphenylprop-2-en-1-one, while worthy bioconversion yields were obtained when the
substrate exhibited the presence of a deactivating electron-withdrawing Cl substituent on the B-ring.
On the contrary, no conversion was generally found, with a few exceptions, in the presence of an
activating electron-donating substituent OH. The bioreduction aptitude of the NCYs was apparently
correlated to the logP value: Compounds characterized by a higher logP exhibited a superior aptitude
to be reduced by the NCYs than compounds with a lower logP value.

Keywords: Non-Conventional Yeasts; whole-cell biocatalysis; bioreduction; ene-reductase;
chalcones; dihydrochalcones

1. Introduction

The chemoselective bioreduction of α,β-unsaturated alkenes represents an important tool in
the synthesis of a lot of fine chemicals and pharmaceuticals [1–3]. Ene-reductases (ERs) belong to
the flavin-containing “Old Yellow Enzyme” family (OYE, EC 1.6.99.1), which includes a class of I
flavin-dependent oxidoreductases, which have been extensively studied for their ability to catalyze
the asymmetric reduction of electronically activated C=C bonds, possessing electron-withdrawing
substituents in the presence of cofactor-recycling systems for NAD(P)H [4–14]. Intracellular ER
homologues from bacteria, yeasts, filamentous fungi and higher plants have been isolated and
characterized since the 1990s [15–25].

Chalcones represent an interesting class of bioactive open-chain flavonoids, exhibiting
α,β-unsaturated carbonyl groups in their scaffolds. Some studies proved their important
antitubercular [26], antioxidant [27], antifungal [28] and anticancer [29] activities.
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Recently, whole-cells and enzymes catalyzing the C=C hydrogenation and C=O reduction
of representative chalcones have been studied for obtaining compounds possessing noteworthy
bioactivities. In particular, some dihydrochalcones (achieved via bioreduction of the C=C double
bond) have been found to express antioxidant, UV-protective and pro-health activities, which could
be interesting for pharmaceutical and cosmetic industries [25,30]. Moreover, their sweet taste make
them attractive for producing sweeteners [31,32]. In addition, the dihydrochalcone obtained from
bioreduction of (E)-1,3-diphenylprop-2-en-1-one has been isolated from the leaves of Leptoderris
fasciculata [33], a woody liana used in traditional medicine for the treatment of dropsy, edema,
pulmonary disorders and as a laxative [34].

Recent studies revealed that Non-Conventional Yeasts (NCYs) are able to express a number of
promising biotechnological properties [35–37], including the ability to express important ERs activities.
In this framework, due to the presence of cofactor-recycling systems for NAD(P)H at the level of
cell metabolism, biotransformation processes catalyzed by whole-cells of NCYs could be considered
as useful and cheaper alternatives in place of using purified enzymes for reducing α,β-unsaturated
alkenes including chalcones [38–42].

Aiming to identify new possible substrates for the NCYs expressing ERs activity, the present
paper reports a study on the ability of lyophilized cells of NCYs to bioreduce the activated C=C double
bonds of chalcones. A Structure–Activity Relationship (SAR) approach was used.

2. Materials and Methods

2.1. Chemicals and Culture Media

A set of chalcones were used as substrate for bioreduction by NCYs. A Structure–Activity
Relationship (SAR) approach was used by means of different substituents on the B-ring: 1a
= (E)-1,3-diphenylprop-2-en-1-one; 2a = (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one; 3a =

(E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one (4-hydroxychalcone); (Figure 1A). Besides, two
α,β-unsatured ketones, i.e., (3E)-4-phenylbut-3-en-2-one (4a) and (3E)-4-(4-chlorophenyl)but-3-en-2-one
(5a), were used for comparison (Figure 1B). They were from Sigma-Aldrich Co, USA.
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Figure 1. Chemical structures of substrates (from 1a to 5a: A, chalcones; B, α,β-unsatured ketones)
with different substituents (R) used for checking NCY ene-reductase activity.

The following microbiological culture media were used: YEPG: yeast extract 10 g L−1, peptone
10 g L−1, glucose 20 g L−1 and agar 15 g L−1; and Carvone Medium (CM) [39]: yeast extract 3 g L−1,
malt extract 3 g L−1, peptone 5 g L−1, glucose 10 g L−1 and pH 6.5. Ingredients of the culture media
were from Difco (Franklin Lakes, NJ, USA).

2.2. Yeast Strain

Thirteen NCY strains belonging to ascomycetous and basidiomycetous species (genera Candida,
Cyberlindnera, Goffeauzyma, Hanseniaspora, Kazachstania, Naganishia, Pichia, Scheffersomyces, Solicoccozyma
and Wickerhamomyces) were used. They were preliminarily selected from a few hundred of
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environmental strains isolated worldwide for their ability to catalyze the biotransformation of
α,β-unsaturated alkenes [39–41]. All strains are conserved at the Industrial Yeasts Collection DBVPG of
the University of Perugia, Italy. Salient information on strains are reported in Table 1 and are available
on the DBVPG website (www.dbvpg.unipg.it). NCY strains were maintained in frozen form (−80 ◦C),
while working cultures were routinely grown on YEPG agar slants at 20 or 25 ◦C, depending on their
psychrophilic or mesophilic aptitudes.

Table 1. Salient information on the Non-Conventional Yeast (NCY) strains used in the present study.

Species Origin Location

Candida freyschussii DBVPG 6208 Wood pulp Sweden
Cyberlindnera amylophila DBVPG 6346 Frass of Pinus taeda (loblolly pine) USA

Goffeauzyma gastrica DBVPG 4709 Sub-glacial debris of the
Sforzellina glacier Italy

Goffeauzyma gilvescens DBVPG 4712 Supra-glacial debris of the
Sforzellina glacier Italy

Hanseniaspora guilliermondii DBVPG 6790 Trachea of bee France
Kazachstania exigua DBVPG 6469 Soil South Africa

Kazachstania naganishii DBVPG 7133 Decaying leaves Japan
Kazachstania spencerorum DBVPG 6746 Soil South Africa

Kluyveromyces lactis DBVPG 6854 Rain forest drosophilids Brazil
Naganishia diffluens DBVPG 6237 Soil of vineyard Hungary

Pichia kluyveri DBVPG 5826 Soil close to plum tree Algeria
Scheffersomyces shehatae DBVPG 6850 Rain forest drosophilids Brazil

Wickerhamomyces canadensis DBVPG 6211 Ground wood pulp Sweden

2.3. Preparation of the Lyophilized NCYs Whole-Cells Biocatalyst

Lyophilized NCYs whole-cells were obtained as previously reported [40]. Briefly, aliquots (200 µL)
of 24 h cell suspensions, calibrated to A580 = 0.5 (approx. 106 cells mL−1), were used to inoculate 110 mL
of CM [39]. After incubation for 48 h at 20 ◦C, the NCYs’ biomass and supernatants were separately
harvested. Cells were washed 3 times by using 50 mM phosphate buffer (pH 6.5), centrifuged each
time for 15 min at 4000 rpm, snap frozen (−80 ◦C) and lyophilized for 48 h in a Lyophilizer Modulyo
(Edwards, Irvine, CA, USA).

2.4. Bio-Reduction Reactions

A total of 30 mg of lyophilized NCYs cells were resuspended in 25 mL sterile vials containing
4.5 mL of 50 mM phosphate buffer (pH 6.5). A total of 0.5 mL of 10% w/v glucose, acting as a
cofactor-recycling system, was also added. As a final point, chalcone was added at a final concentration
of 5 mM and the vials were incubated on an orbital shaker (120 rpm) at 20 or 25 ◦C (depending
on their psychrophilic or mesophilic status) for 120 h. In order to determine whether chalcone was
spontaneously reduced in the absence of the NCY cells, blank (cell-free) vials containing 50 mM
phosphate buffer + 50 mM glucose and each chalcone were analyzed at 120 h. After incubation, vials
were sealed and frozen (−30 ◦C) until GC–MS analysis.

2.5. GC–MS Analyses

Products obtained after bioconversion were detected via GC–MS after extraction with a solution
of octanol (as internal standard) in ethyl acetate 0.1% v/v (5 mL). GC–MS analyses were performed on a
Hewlett Packard (USA) G1800C Series II gas chromatograph–mass spectrometer equipped with a HP-5
column (25 m × 0.2 mm, 0.5 µm film thickness) coated with (5%)-diphenyl-(95%)-dimethylpolysiloxane
copolymer. Compounds derived from biotransformation of substrates were identified by comparing
their respective mass fragmentation patterns (EI, 70 eV) with the database library NIST05 (MS Library
Software Varian, USA). Temperature program: 1a, 4a and 5a: 120 ◦C, hold for 2 min, 10 ◦C/min

www.dbvpg.unipg.it
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to 250 ◦C, hold for 5 min, Detector 280 ◦C, Injector 270 ◦C; 2a: 100 ◦C, hold for 3 min, 15 ◦C/min
to 180 ◦C, hold for 3 min, 20 ◦C/min to 240 ◦C, hold for 5 min Detector 280 ◦C, Injector 270 ◦C;
3a: 120 ◦C, hold for 2 min, 15 ◦C/min to 270 ◦C, hold for 15 min, Detector 280 ◦C, Injector 270 ◦C.
Retention times (min): (E)-1,3-diphenylprop-2-en-1-one 1a (12.06), 1,3-diphenylpropan-1-one 1b (10.70);
(E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one 2a (15.74), 1-(4-chlorophenyl)-3-phenylpropan-1-one
2b (14.35); (E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one 3a (21.07), 1-(4-hydroxyphenyl)-
3-phenylpropan-1-one 3b (17.90); (3E)-4-phenylbut-3-en-2-one 4a (4.56), 4-phenylbutan-2-one 4b
(3.29); (3E)-4-(4-chlorophenyl)but-3-en-2-one 5a (6.87), 4-(4-chlorophenyl)butan-2-one 5b (5.60).

All the results were expressed as biotransformation yield, i.e., a % of the substrate converted to
a given derivative. The concentration of the substrate and product were measured by an internal
standard method. All the results represented the average of three independent experiments, and the
statistical significance of these average data was assessed via ANOVA.

2.6. LogP Calculation

The logP values of chalcones were calculated by the ACD/LogP v.14.06 program in the software
package for ACD/Labs 2016 2.2 (Advanced Chemistry Development).

3. Results and Discussion

Figure 1 reports the chemical structures of the substrates used for checking the NCYs’ ERs
activity. The first substrate, namely (E)-1,3-diphenylprop-2-en-1-one (1a, Figure 1A), was used as
model compound to screen the ability of the lyophilized cells of the NCYs to reduce the α,β C=C
double bond. The presence of the conjugate C=O double bond was also considered for assessing the
chemoselectivity of the reduction.

The reaction scheme of the bioreduction of chalcones (E)-1,3-diphenylprop-2-en-1-
one (1a), (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (2a), and (E)-1-(4-hydroxyphenyl)-3-
phenylprop-2-en-1-one (3a) into dihydrochalcones 1,3-diphenylpropan-1-one (1b), 1-(4-chlorophenyl)-
3-phenylpropan-1-one (2b) and 1-(4-hydroxyphenyl)-3-phenylpropan-1-one (3b), respectively,
catalyzed by the lyophilized cells of the NCYs is reported in Figure 2. The results of the screening,
in terms of conversion yields expressed as molar percentage, are reported in Table 2.
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Figure 2. Reaction scheme of the bioreduction of chalcones 1a, 2a and 3a into dihydrochalcones 1b, 2b
and 3b, respectively, by NCYs.

With few exceptions, whole-cells of NCYs were able to hydrogenate the C=C double bond occurring
in the (E)-1,3-diphenylprop-2-en-1-one 1a scaffold: in particular, nine strains, namely Cyberlindnera
amylophila DBVPG 6346, Goffeauzyma gastrica DBVPG 4709, Hanseniaspora guillermondii DBVPG 6790,
Kazachstania exigua DBVPG 6469, Kazachstania spencerorum DBVPG 6746, Kluyveromyces lactis DBVPG
6854, Naganishia diffluens DBVPG 6237, Scheffersomyces shehatae DBVPG 6850 and Wickerhamomyces
canadensis DBVPG 6211 exhibited bioconversion yields ≥ 94%, with an excellent repeatability and a
low standard deviation (Table 2). On the contrary, three strains (i.e., Candida freyschussii DBVPG 6208,
Goffeauzyma gilvescens DBVPG 4712 and Pichia kluyveri DBVPG 5826) showed lower bioconversion
yields (from 0.7 to 11.5%), but with low repeatability of the bioreduction process (Table 2).
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Table 2. Bioreduction yield of substrates 1a–5a to products 1b–5b by NCYs.(*)

DBVPG Accession
Numbers Species 1a Conversion mol%

(± SD)
2a Conversion mol%

(± SD)
3a Conversion mol%

(± SD)
4a Conversion mol%

(± SD)
5a Conversion mol%

(± SD)

6208 Candida freyschussii 2.9 ± 1.5 23.2 ± 13.5 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 0.5

6346 Cyberlindnera
amylophila 94.0 ± 2.8 88.3 ± 10.2 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4709 Goffeauzyma gastrica 100.0 ± 0.0 65.2 ± 56.5 0.0 ± 0.0 3.2 ± 0.6 2.7 ± 1.0
4712 Goffeauzyma gilvescens 11. 5 ± 5.6 78.0 ± 6.1 47.8 ± 11.0 7.4 ± 4.0 16.9 ± 1.4

6790 Hanseniaspora
guilliermondii 96.2 ± 1.6 76.4 ± 22.2 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 1.1

6469 Kazachstania exigua 96.3 ± 0.8 17.4 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
7133 Kazachstania naganishii 0.0 ± 0.0 83.5 ± 3.6 0.0 ± 0.0 3.2 ± 0.4 2.7 ± 1.2

6746 Kazachstania
spencerorum 95.2 ± 2.0 48.4 ± 4.3 100.0 ± 0.0 46.9 ± 7.4 4.7 ± 0.4

6854 Kluyveromyces lactis 100.0 ± 0.0 73.3 ± 24.3 100.0 ± 0.0 99.1 ± 0.8 0.0 ± 0.0
6237 Naganishia diffluens 99.1 ± 1.6 20.9 ± 20.9 0.0 ± 0.0 15.6 ± 8.3 21.2 ± 4.7
5826 Pichia kluyveri 0.7 ± 0.7 98.1 ± 3.4 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 0.5

6850 Scheffersomyces
shehatae 97.5 ± 4.3 51.6 ± 11.5 0.0 ± 0.0 13.5 ± 3.9 0.0 ± 0.0

6211 Wickerhamomyces
canadensis 100.0 ± 0.0 8.0 ± 11.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

(*) Chromatograms for biotransformations are available in the supplementary materials.
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One of the main drawbacks of using whole-cells as catalysts is sometimes their poor
chemoselectivity when C=C versus C=O bond reduction is catalyzed. It is worth noting that in
any case, the screened NCYs did not exhibit any reduction of the C=O bond (Figure 2). In a
previous study, we observed that many of the yeasts herein screened possess carbonyl reductase
activity (alcohol dehydrogenase, ADH), being able to reduce the carbonyl group of molecules such
as ketoisophorone [40]. The high chemoselectivity in the bioreduction of chalcones observed in the
present study is probably not due to the lack of ADH activity in the yeast strains, rather to the steric
hindrance given by the bulky phenyl substituents or to enzyme localization (not accessible to the
substrates). Anyway, the bioreduction of C=O bond in ketones bearing bulky substituents was found
in bacteria whole cells [43], as well as in other microorganism [44–47] such as algae, filamentous fungi,
yeasts and in plant tissues [48].

Considering these encouraging results, the ability of NCYs to bioreduce chalcones substituted with
both deactivating and activating groups on the B-ring ((E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one
2a and (E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one 3a, respectively) was also checked. The
results are reported in Table 2. Worthy bioconversion yields were obtained when the substrate exhibited
the presence of a deactivating electron-withdrawing Cl substituent on the B-ring (2a): all the NCYs
exhibited the ability to reduce C=C double bond of 2a with bioconversion yields ranging from 8% to
98% (Table 2). On the contrary, in the presence of the activating electron-donating substituent OH
(3a), no conversion was generally found, with the sole exception of Goffeauzyma gilvescens DBVPG
4712 (yield = 47.8%), and Cyberlindera amylophila DBVPG 6346, Kaz. spencerorum DBVPG 6746 and
K. lactis DBVPG 6854, which totally reduced the chalcone 3a (yield = 100%) (Table 1). Interestingly,
the last three NCYs also exhibited worthy bioconversion yields of 1a and 2a (falling into the range
from 94.0% to 100% and from 48.4% to 88.3%, respectively). On the contrary, Pichia kluyveri DBVPG
5826 showed a bioconversion yield of the chlorocalcone 2a ≥ 95%, but no or very low activity versus
1a and 3a. Taking into account the above few exceptions, the bioreduction aptitude of NCYs was
apparently correlated to the logP value, which is an indirect measure of the lipophilic degree of
a given compound: The substrates 1a and 2a, which were characterized by a higher logP (4.01
and 4.78, respectively), exhibited a superior aptitude to be reduced by NCYs than the chalcone 3a
(logP = 3.65). This trend could be justified by considering how the different molecules can go across
the yeast cell membrane. Due to the lyophilized nature of the whole cells of the NCYs herein used,
the passage of molecules, including 1a, 2a and 3a, across the cell membrane to reach the intracellular
ERs should be much simpler. In fact, some studies reported that dehydration–rehydration cycles
can determine a significant decrease of cell sizes together with a strong folding of membranes, thus
leading to an increased permeability in lyophilized cells [49,50]. In this framework, the hypothesis
postulated by some authors [51,52] that higher lipophilic molecules (characterized by a higher logP,
i.e., (E)-1,3-diphenylprop-2-en-1-one 1a and (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one 2a) could
more easily go across yeast plasma membranes by using the free diffusion mechanism (thus easily
reaching cytoplasm ERs) differently from the lesser lipophilic ones (characterized by a lower logP, i.e.,
(E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one 3a) could justify the superior aptitude of 1a and
2a to be bioreduced by ERs occurring at the cytoplasm level of the lyophilized cells of the NCYs. In
addition, the presence of an OH substituent on the B-ring of 3a (Figure 1) could affect its capability to
form hydrogen bonds with hydrophilic components occurring in the cell surface, thus reducing the
rate of passage across the membrane.

The degree of lipophilicity of a given molecule is just one of the parameters determining its
passage across the membrane and its interaction with enzymes. Thus, the α,β-unsaturated ketones
(3E)-4-phenylbut-3-en-2-one (4a) and (3E)-4-(4-chlorophenyl)but-3-en-2-one (5a) (Figure 1B), exhibiting
lower logP (2.17 and 2.70, respectively), but also lesser steric hindrance and substituents unable to
form hydrogen bonds, were studied for their ability to be bioreduced by NCYs (Figure 3). The results
are reported in Table 2. Overall, with the sole remarkable exception of K. lactis DBVPG 6854 on
substrate 4a (bioreduction yield = 99.1%), the aptitude of both substrates 4a and 5a to be bioreduced is
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significantly lower than those of the substrates 1a–3a. These results seem to confirm the importance of
the lipophilicity and that the steric hindrance is a less important factor in the determining the aptitude
to be bioreduced.
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