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Abstract: This study is focused on using multi-criteria decision making (MCDM) for selecting
specific growth rate models of batch cultivation by the Saccharomyces cerevisiae. Ten specific
growth rate models—Monod, Mink, Tessier, Moser, Aiba, Andrews, Haldane, Luong, Edward,
and Han-Levenspiel—were investigated in order to explain the cell growth kinetics by the dependence
on glucose. By using the preference ranking organization method (PROMETHEE) II, it was found
that the Andrews model was the highest of rank and was the most appropriate one for modelling.

Keywords: PROMETHEE II method; preference functions; specific growth rate models;
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1. Introduction

Biotechnological processes are one of the fastest-developed strategic fields of science and practice,
and have had a great advance in recent years. Due to their multidisciplinary nature and enormous
capabilities, they have been applied by microbiologists, biochemists, molecular biologists, bioengineers,
chemical engineers, food and pharmaceutical chemists, mathematicians, and a whole range of
other scientists. These processes are known to be with complicated structure of organization and
interdependent characteristics, which determine their non-linearity and non-stationary properties.
Therefore, the mathematical modelling design, optimization, and high-quality control of the underlying
processes are very complex, rather time consuming, and costly tasks. The modelling of a bioprocess is
a very important process through which the radical principles of microbial synthesis can be discovered.
The dynamics of a biotechnological process can be described by using a balance equation on how to
apply the radical parameters of a process: Cell density, substrate concentration, profitable product,
oxygen concentrations, temperature, pH, and time [1].

Ethanol is the most important organic compound, which has a wide application in different
industries: Food, perfumery-cosmetic, chemical, millwright, etc. In recent years, enormous attention
has been paid to ethanol production for fuel. Ethanol production from renewable resources can
improve energy security, reduce accumulation of carbon dioxide, and decrease urban air pollution.
When blended with gasoline, “neat” ethanol reduces the release of smog-forming compounds. Thus,
ethanol from lignocelluloses materials holds great promise as a new industry in the world, and has the
potential for making a significant contribution to the solution of major energy, as well as environmental
problems. Although ethanol production by fermentation of sugar has been studied for many years,
there are several bottlenecks for the economical production of ethanol for fuel. One of them is ethanol
inhibition, which is considered the principal factor restricting the fermentation rate, as well as the
concentration of ethanol achieved during the production process [2].
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Multi-criteria decision making (MCDM) is a branch of operation research models and a well-known
field of decision making. There are four quite distinct families of methods: (i) The outranking; (ii) the
value and utility theory-based methods; (iii) the multiple objective programming; and (iv) a group
of decision and negotiation theory-based methods. The main objective of MCDM is to select the
alternative that has the highest score according to the set of evaluation criteria [3].

There are several different methods, of which the most important are analytic hierarchy processes
(AHP) [4], elimination and choice expressing reality (ELECTRE) [5], multi-attribute utility theory
(MAUT) [6], preference ranking organization method (PROMETHEE) methods [7–9], etc.

Successful application of the PROMETHEE methods to various fields is evident, and as such,
these methods have found their place in banking, investments, medicine, chemistry, tourism [10], etc.

In our papers [11–16], two mixing systems were studied: Impulse and vibromixing systems in
batch cultivation of Saccharomyces cerevisiae yeast. Six models were investigated for the following
specific growth rate: Monod, Aiba, Andrews, Haldane, Luong, and Edward. The results obtained
showed that all models were adequate and they could be used for the modelling of different mixing
systems. However, Luong had the best statistical indicators for modelling impulse mixing, and the
Haldane model was the best for vibromixing. Therefore, they were used as a model for the process of
the two mixing systems.

In order to determine the initial conditions and the maximal rotation speed and amplitude,
multiple objective optimization and fuzzy decision making were performed for the two mixing systems.
This optimization showed that the useful productiveness of the process had increased and the residual
glucose concentration had decreased at the end of the process. Optimization and results showed
that impulse mixing systems had better productivity and better glucose assimilation. In addition,
this system was easier for realization. The combined algorithm did not allow the receiving of feedback
and did not guarantee robustness to process disturbances. Therefore, a nonlinear model with a
predictive control for robustness to process disturbances was developed. The advanced control
algorithm and the nonlinear predictive control algorithm ensured maximum production at the end
of the process, and provided feedback on the disturbance as well as the robustness of the process
disturbances [16].

The aim of this study is to review ten models for forming biomass from glucose for ethanol
production, and based on the results offer a model for the specific growth rate of cultivations of
Saccharomyces cerevisiae yeast.

2. Materials and Methods

2.1. Process Specific

The batch cultivation of Saccharomices cerevisiae yeast was performed in the Institute of Technical
Chemistry, University of Hannover, Germany.

Saccharomyces cerevisiae yeast were grown in a synthetic Schatzmanil medium with the following
composition [17]:

(NH4)2SO4 4.50 g/L
(NH4)2HPO4 1.90 g/L
MgSO4 7 H2O 0.34 g/L
CaCl2 2 H20 0.42 g/L
FeCl3 6 H20 1.50 × 10−2 g/L
ZnSO4 7 H20 0.90 × 10−2 g/L
MnSO4 2 H20 1.05 × 10−2 g/L
CuSO4 5 H20 0.24 × 10−2 g/L.

Prior to cultivation, the medium was autoclaved at 121 ◦C for 20 min and the following items
were added to the autoclaved medium by sterile filtration [17]:

Glucose (3% of the medium);
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Vitamin solution (0.1% of the medium) which consisted of:

Myo-inositol 6.00 × 10−2 g/L
Ca-pantothenate 3.00 × 10−2 g/L
Thiamine HCl 0.60 × 10−2 g/L
Pyridoxol HCl 0.15 × 10−2 g/L
Biotin 0.30 ×10−4 g/L

The batch cultivations were performed in a Biostat B reactor system (Braun Biotech International,
34212 Melsungen, Germany). For receiving data, we used the RISP system (Real Time Integration
Software Platform) which was developed at the Institute for Technical Chemistry.

The cultivation parameters were:

Temperature T = 30 ◦C
pH 5.4
Gassing flow rate Q = 275 L/L/h air
Stirrer speed at start N = 800 rpm
Working volume 1.5 L
Glucose 0.5 g/L
Time of cultivation t = 12 h.

The concentration of carbon dioxide and oxygen in the exhaust gas was measured on-line using
an EGAS 2 system (Hartmann & Braun, Frankfurt on Main, Germany). The appropriate electrodes
were used to determine the pH and the dissolved oxygen concentration in the culture medium
(Mettler-Toledo, Switzerland).

In order to stop metabolic activity of the cells, off-line samples were withdrawn immediately into
ice vessels and were spun down immediately. The biomass concentration was determined by dry
weight analysis. The ethanol concentration was analyzed in a gas chromatograph (Shimadzu GC-14B,
Shimadzu Deutschland GmbH, Keniastraße 38, 47269 Duisburg, Germany). Glucose was analyzed
using an YSI Analysator (model 2700 Select Yellow Springs Instruments Co., Inc., Ohio 45387, USA)
The optical density was determined by absorbance measurements at 590 nm.

Flow-injection analysis was combined with intelligent data-processing, such as the
knowledge-based systems, and the Kalman filters. The oxygen consumption was detected by
an oxygen electrode [17,18].

2.2. Kinetic Model of the Batch Processes

The mathematical model of the fed-batch process was based on the mass balance equations by
perfect mixing in a bioreactor [16]. The batch process was obtained at a flow rate F = 0, g/L/h:

dX
dt

= µ(S) X, (1)

dS
dt

= −
1

YS/X
µ(S) X, (2)

dE
dt

=
1

YS/E
µ(S) X, (3)

where X = cell concentration, g/L; S = substrate (glucose) concentration, g/L; E = ethanol concentration,
g/L; t = time, h; YS/X and YS/E = yield coefficients, g/g.

The initial conditions and the kinetics constants were: X(0) = 0.27 g/L; S(0) = 31.30 g/L;
E(0) = 0.47 g/L.

2.3. Growth Rate Models

The rank of the models for the specific growth rate from glucose µ(S) is unknown, so the
study investigated ten unstructured models (Table 1): M1 = Monod, M2 = Mink, M3 = Tessier,
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M4 = Moser, M5 = Aiba, M6 = Andrews, M7 = Haldane, M8 = Luong, M9 = Edward, and M10 =

Han-Levenspiel [19–24].

Table 1. Growth rate models dependent on substrate.

Model Equation Model Equation

M1 µ(S) = µm S
KS+S M6 µ(S) = µm S

(KS+S)(1+S/KSI)

M2 µ(S) = µm S2

KS+S2 M7 µ(S) = µm S
KS+S+S2/KSI

M3
µ(S) =

µm (1− exp(−S/KSI))
M8 µ(S) = µm S

KS+S (1− S/Sm)
n

M4 µ(S) = µm Sα

KS+Sα , α > 0 M9 µ(S) = µm S
KS+S+(1+S/K) (S2/KSI)

M5 µ(S) = µm S
KS+S exp

(
−

S
KSI

)
M10 µ(S) = µm S (1−S/Sm)

n

S+KS (1−S/Sm)
m

In Table 1: µm = maximum growth rate, h−1; KS = Monod saturation constants for cell growth on
glucose, g/L; α = Moser constant; KSI = inhibition constants for cell growth on glucose, g/L; K = constant
in Edward model, g/L; Sm = critical inhibitor concentrations above which the reactions stop, g/L; m, n =

constants in the Luong and the Han-Levenspiel models.

2.4. Criteria for Evaluation of the Model Parameters

The mathematical estimation of the model parameters was based on the minimization of some
quantities that can be calculated and the estimation of a function of parameters. The least-squares error
was commonly applied as a criterion to inspect how close the computed profiles of the state variables
come to the experimental observations [25,26]:

min
x

J =
N∑

j=1


[
Xe(t j) −Xm(t j)

]2

X2
emax

+

[
Se(t j) − Sm(t j)

]2

S2
emax

+

[
Ee(t j) − Em(t j)

]2

E2
emax

, (4)

where J = criteria for minimization; x = vector of estimated parameters in specific growth rate
models, x = [µm, KS, KSI, . . . , YS/X, YS/E]

T; N = number of experiment, N = 12; Xe(t j), Se(t j), Ee(t j) =

experimental data; Xm(t j), Sm(t j), Em(t j) = simulation data; and tj = time partition.

2.5. Criteria for Using the PROMETHEE II Method

• C1 = J criteria of minimization (4), and the following statistical criteria:
• C2 – statistics λ. The criterion C2 was compared to the tabular Fisher coefficient (FλT) with a degree

of freedom (M, N − 2). In this way, it was checked whether it met the condition: C2 > FλT(M, N − 2),
where M = 3;

• Relative error for kinetics variables X, S, and E: C3 = SX
L ; C4 = SS

L; C5 = SE
L ;

• Fisher coefficient (criteria C6, C7, and C8) for the kinetics variables X, S, and E: C6 = FX; C7 = FS;
C8 = FE. Similarly, the obtained values of C3, C4, and C5 were compared with the tabular Fischer
coefficient, but for degrees of freedom FT (N − 2, M);

• Experimental correlation coefficient R2 for kinetics variables X, S, and E: C9 = R2
X; C10 = R2

S;
and C11 = R2

E. The obtained values of C9, C10, and C11 were compared to the tabular correlation
coefficient with a degree of freedom R2

T(N − 2). Complete formulas of statistical criteria are
presented in [27].

The criteria C1–C8 had to be minimized and C9–C11 had to be maximized. The alternatives in the
PROMETHEE II method were the specific growth models from M1 to M10.
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2.6. Principles of the PROMETHEE II Method

The basic principle of PROMETHEE II is based on a pair-wise comparison of alternatives along
each recognized criterion. Alternatives were evaluated according to different criteria, which had to be
maximized or minimized. The implementation of the PROMETHEE II required two additional types
of information [7–9].

2.6.1. The Weight

Determination of the weight is an important step in most multi-criteria methods. PROMETHEE II
assumes that the decision-maker is able to weigh the criteria appropriately, at least when the number
of criteria is not too large [28].

2.6.2. The Preference Function

For each criterion, the preference function translates the difference between the evaluations
obtained by two alternatives into a preference degree, ranging from zero to one. In order to facilitate
the selection of a specific preference function, Brans and Vincke [7] propose six basic types: Type I =

Usual criterion; Type II = U-shape criterion; Type III = V-shape criterion; Type IV = Level criterion;
Type V = V-shape with indifference criterion; and Type VI = Gaussian criterion.

These six types are particularly easy to define. For each criterion, the value of an indifference
threshold (q), the value of a strict preference threshold (p), and the value of an intermediate value
between p and q (s) have to be determined [7–9]. In each case, these parameters have a clear significance
for the decision-maker.

The decision-making process through the PROMETHEE II method consisted of five steps that are
listed hereafter [7–9,29]:

Step 1. Determination of Deviations Based on Pair-Wise Comparisons

d j(a, b) = g j(a) − g j(b), (5)

where dj(a, b) denoted the difference between the evaluation of each a and b of each criterion.

Step 2. Application of the Preference Function

The preference functions used to compute these preference degrees were defined such as:

P j(a, b) = F j[d j(a, b)] ∀a, b ∈ A (6)

For criteria to be minimised, the preference function should be reversed, or alternatively given by:

P j(a, b) = F j[−d j(a, b)] ∀a, b ∈ A, (7)

where Pj(a, b) denoted the preference of alternative a with regard to alternative b on each criterion, as a
function of dj(a, b).

Step 3. Calculation of an Overall or Global Index

∀a, b ∈ A, π(a, b) =
∑

k
j=1P j(a, b)w j, (8)

where π(a, b) of a over b (from 0 to 1) was defined as the weighted sum P(a, b) for each criterion, and wj
was the weight associated with j-th criterion.

Step 4. Calculation of the Outranking Flow (The PROMETHEE I Partial Ranking)

ϕ+(a) =
1

n− 1

∑
x∈A

π(a, x), ϕ−(a) =
1

n− 1

∑
x∈A

π(x, a) (9)
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where ϕ+(a) and ϕ−(a) denoted the positive outranking flow and negative outranking flow of each
alternative, respectively.

Step 5. Calculation of the Net Outranking Flow / The PROMETHEE II Complete Ranking

ϕ(a) = ϕ+(a) −ϕ−(a) (10)

where ϕ(a) denoted the net outranking flow for each alternative.
The procedure was started by determination of the deviations based on pair-wise comparisons.

It was followed by using a relevant preference function for each criterion in Step 2, calculating the global
preference index in Step 3, and calculating positive and negative outranking flows for each alternative
and partial ranking in Step 4. The procedure ended with the calculation of the net outranking flow for
each alternative and a complete ranking.

2.6.3. The Software Packages

In our work we used the new PROMETHEE-GAIA software, called Visual PROMETHEE by
PROMETHEE-GAIA.net, developed under the guidance of B. Mareschal of VPSolutions [30].

3. Results and Discussion

3.1. Results from Modelling

An algorithm and a program for computing the value of the minimization criterion (4), and the
optimal values of the parameters estimated in the models (1)–(3) and M1–M10, were developed.
The same program also calculated the criteria Cj. The program was developed on Compaq Visual
FORTRAN 90. For solving the nonlinear problem (4), we used BCPOL with double precision from
IMSL Library of COMPAQ Visual FORTAN 90 [31].

The search bound of the parameters in the models were: µm ∈ [0.1, 1.0], h−1; KS ∈ [0.1, 30.0], g/L;
KSI ∈ [10.0, 700.0], g/L; K ∈ [50.0, 100.0], g/L; Sm ∈ [50.0, 150.0], g/L; n & m ∈ [0.5, 2.0]; α ∈ [0.9, 2.0]; and
YS/X & YS/E ∈ [0.1, 1.0], g/g.

The optimal estimated parameters in the models (1)–(3) and M1–M10 are shown in Table 2.

Table 2. Optimal estimated parameters in the models for Saccharomyces cerevisiae.

Model µm KS KSI K Sm n m α YS/X YS/E

M1 0.350 6.026 – – – – – – 0.173 0.507
M2 0.294 25.448 – – – – – – 0.175 0.506
M3 0.292 – 6.907 – – – – – 0.174 0.506
M4 0.312 10.184 – – – – – 1.422 0.174 0.507
M5 0.852 20.000 50.000 – – – – – 0.172 0.505
M6 0.410 7.919 249.365 – – – – – 0.173 0.507
M7 0.392 7.490 287.081 – – – – – 0.173 0.507
M8 0.771 20.000 – – 107.239 1.500 – – 0.174 0.506
M9 0.376 6.982 671.647 81.473 – – – – 0.173 0.507
M10 0.691 19.452 – – 69.423 1.027 0.988 – 0.174 0.506

The matrices of the alternatives (A) for the model of Saccharomyces cerevisiae (1)–(3) and for the
different specific growth rate models (M1–M10) are shown in Table 3.

Now, let us see the matrix of Alternative (A):

• The criteria C1 changed in the interval C1 ∈ [0.527, 0.646] × 10−3;
• The criteria C2 changed in the interval C2 ∈ [135.863, 186.356]
• The relative errors (criteria C3, C4, C5) for every kinetic variable were changed in the interval C3,4,5

∈ [0.622, 30.456] × 10−2;
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• The Fisher coefficients (criteria C6, C7, C8) were changed in the interval C6, 7, 8 ∈ [1.000, 1.028];
• The correlation coefficient (C9–C11) was changed in the interval C9, 10, 11 ∈ [0.998, 1.000].

Тhe information in Table 2 shows that the yield coefficients YS/X and YS/E are almost even for all
of the investigated models. There are small differences in the fourth sign.

Table 3. Matrix of alternative (A).

Model C1 × 10−3 C2 C3 × 10−2 C4 × 10−2 C5 × 10−2 C6 C7 C8 C9 C10 C11

M1 0.646 186.356 0.886 2.439 25.365 1.001 1.002 1.028 1.000 1.000 0.998
M2 0.618 137.607 1.456 30.465 24.037 1.001 1.005 1.023 1.000 1.000 0.998
M3 0.559 135.863 0.859 11.191 24.331 1.001 1.001 1.025 1.000 1.000 0.998
M4 0.583 136.275 0.767 15.136 24.667 1.000 1.001 1.026 1.000 1.000 0.998
M5 0.580 137.627 2.750 7.020 22.437 1.005 1.013 1.017 1.000 1.000 0.998
M6 0.566 136.928 0.790 8.501 24.328 1.001 1.002 1.025 1.000 1.000 0.998
M7 0.603 151.831 0.622 5.076 24.886 1.001 1.002 1.026 1.000 1.000 0.998
M8 0.527 136.028 1.938 15.997 23.037 1.003 1.002 1.021 1.000 1.000 0.998
M9 0.614 158.768 0.717 4.715 25.012 1.000 1.001 1.027 1.000 1.000 0.998
M10 0.529 138.508 2.505 20.325 22.429 1.003 1.000 1.020 1.000 1.000 0.999

The tabular theoretical values of C2 and C6–C11 were given from statistical tables [32]. The Fisher
coefficient for C2 was Fλ

T(3, 10) = 3.71. For criteria C6–C8, tabular Fisher coefficients were FT(10, 3) =

8.79, and for correlation coefficients C9–C11, the tabular value was R2
T(10) = 0.576. The C2 > FλT = 3.71.

The Fisher criteria were (C6, C7, C8) < FT, and the experimental correlation coefficients were (C9, C10,
C11) > R2

T.
The results showed that all specific growth rate models were adequate regarding the terms of the

criteria for validating (C2, C6–C11).
The experimental and simulated results of the model (1)–(3) and the ten models for a specific

growth rate of Saccharomyces cerevisiae are shown in Figure 1.
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Figure 1. Simulation and experimental results for ten specific growth rates: (a) Biomass concentration;
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Figure 1 shows different specific growth rate models and presents a very good match between
experimental and simulated data for all the kinetic variables.

From the above (Table 3 and Figure 1), it follows that each model can be used to model a specific
growth rate. By applying the PROMETHEE II method, we will select the most appropriate one.

3.2. Application of PROMETHEE II Method

3.2.1. Selection of the Weight

The criteria C1 are the most important. That is why we chose more weight for them (in %), or
w1 � 28%. The criteria of C2–C5 are important statistical variables. They show the statistic λ, and the
relative error between experimental and simulated results. Their weight should therefore be higher
than that of criteria C6–C11. For them, we chose six times the weight, or wj � 14%, j = 2, . . . , 5.

From the results obtained, it could be seen that the criteria C6, C7, and C8 had approximately
equal values and were very close to their minimum. The same applied for the criteria C9, C10, and C11.
They were also close to their maximum. For all of them, we chose smaller weights, wj � 3%, j = 6, ..., 11.
The sum of all weights fulfilled the condition: Σwj � 100%, j = 1, . . . ,11.

3.2.2. Selection of the Preference Function

Choosing a preference function is a very important task. The criteria of C1–C5 are important
statistical variables. As their value is close to zero, the best part of the results simulated by the
models was selected for the experimental data. Very suitable for them was Type VI: Gaussian criterion
(Figure 2).
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The C6, C7, and C8 criteria were close to their minimum, and the preferred function of Type III:
V-shape criterion was the most appropriate for them (Figure 3).
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Type V: V-shape with indifference criterion (Figure 4).



Fermentation 2019, 5, 61 9 of 13

Fermentation 2019, 5, x FOR PEER REVIEW 9 of 14 

 

The C6, C7, and C8 criteria were close to their minimum, and the preferred function of Type III: 
V-shape criterion was the most appropriate for them (Figure 3). 









>
≤≤
≤

=

jj

jjjj

j

j

p)b,a(d1
p)b,a(d0p/)b,a(d
0)b,a(d0

)b,a(P  

1 

pj dj(a,b) 

Pj(a,b) 

-pj  

Figure 3. V-shape criterion for C6 to C8. 

The criteria C9, C10, and C11 were close to their maximum. For them, the preferred function was 
Type V: V-shape with indifference criterion (Figure 4). 













>

≤<
−

−
≤

=

jj

jjj
jj

jj

jj

j

pb)(a,       d1

pb)(a,dq
qp

qb)(a,d
qb)(a,         d0

)b,a(P  

dj(a,b) 

Pj(a,b) 

1 

pj qj  

Figure 4. V-shape with indifference criterion for C9–C11. 

3.2.3. The Software Packages 

We used PROMETHEE Academic Edition software [32] to solve the multi criteria 
decision-making problem. 

Table 4 shows the preference function types and their parameters. 

Table 4. Type of preference functions and their parameters. 

Criteria Min 
Max 

Type of 
criteria Parameters Criteria Min 

Max 
Type of 
criteria Parameters 

C1 

min VI 

σ1 = 0.125 
C6, C7, and C8 min III 

p6 = 0.003 
C2 σ2 = 16.607 p7 = 0.008 
C3 σ3 = 0.790 p8 = 0.007 
C4 σ4 = 8.496 

C9, C10, and C11 max V qj = 5 × 10−5; pj = 1 × 10−3, j = 9, …11 
C5 σ5 = 1.044 

The results for different growth rate models when a PROMETHEE II method was applied are 
shown in Table 5. 

Table 5. PROMETHEE flow table. 

Rank Model φ φ + φ - 
1 M6 0.0996 0.1622 0.0626 
2 M3 0.0821 0.1547 0.0726 
3 M8 0.0402 0.1933 0.1531 
4 M5 0.0303 0.2237 0.1934 
5 M4 0.0284 0.1381 0.1097 
6 M7 0.0256 0.1505 0.1249 
7 M10 −0.0066 0.2087 0.2153 
8 M9 −0.0135 0.1521 0.1656 

Figure 4. V-shape with indifference criterion for C9–C11.

3.2.3. The Software Packages

We used PROMETHEE Academic Edition software [32] to solve the multi criteria
decision-making problem.

Table 4 shows the preference function types and their parameters.

Table 4. Type of preference functions and their parameters.

Criteria Min
Max

Type of
Criteria Parameters Criteria Min

Max
Type of
Criteria Parameters

C1

min VI

σ1 = 0.125
C6, C7, and C8 min III

p6 = 0.003
C2 σ2 = 16.607 p7 = 0.008
C3 σ3 = 0.790 p8 = 0.007

C4 σ4 = 8.496 C9, C10, and C11 max V qj = 5 × 10−5; pj = 1 × 10−3, j = 9, . . . 11
C5 σ5 = 1.044

The results for different growth rate models when a PROMETHEE II method was applied are
shown in Table 5.

Table 5. PROMETHEE flow table.

Rank Model ϕ ϕ+ ϕ−

1 M6 0.0996 0.1622 0.0626
2 M3 0.0821 0.1547 0.0726
3 M8 0.0402 0.1933 0.1531
4 M5 0.0303 0.2237 0.1934
5 M4 0.0284 0.1381 0.1097
6 M7 0.0256 0.1505 0.1249
7 M10 −0.0066 0.2087 0.2153
8 M9 −0.0135 0.1521 0.1656
9 M2 −0.1336 0.1078 0.2414

10 M1 −0.1523 0.1346 0.2869

The total pre-order for the specific growth rate models is shown in Figure 5.
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The results obtained (Table 5, Figure 5, and Figure 6) showed that the Andrews model (M6) was
the highest ranked one. The mathematical model of the batch process of Saccharomices cerevisiae with
the Andrews model is shown below:

dX
dt

=
µm S

(KS + S)(1 + S/KSI)
X, (11)

dS
dt

= −
1

YS/X

µm S
(KS + S)(1 + S/KSI)

X, (12)

dE
dt

=
1

YS/E

µm S
(KS + S)(1 + S/KSI)

X. (13)
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Figure 6. PROMETHEE network.

This model would be used to model the process. The parameters of models (10)–(12) were as
follows: µm = 0.410 h−1; KS = 7.919, g/L; KSI = 249.365, g/L; YS/X = 0.173, g/g; YS/E = 0.507, g/g.

The PROMETHEE network is shown in Figure 6.
Figure 7 shows the experimental and simulated results achieved through (11)–(13) models, where

XE and SE were the experimental data for biomass and glucose concentration.



Fermentation 2019, 5, 61 11 of 13

Fermentation 2019, 5, x FOR PEER REVIEW 10 of 14 

 

9 M2 −0.1336 0.1078 0.2414 
10 M1 −0.1523 0.1346 0.2869 

The total pre-order for the specific growth rate models is shown in Figure 5. 

 
M6 

M3 

M8 

M5 

M4 

M7 

M10 

M9 

M2 

M1 

 

Figure 5. Total PROMETHEE II relation for models. 

The results obtained (Table 5, Figure 5, and Figure 6) showed that the Andrews model (M6) was 
the highest ranked one. The mathematical model of the batch process of Saccharomices cerevisiae with 
the Andrews model is shown below: 

X
KSSK

S
dt
dX

SIS

m

)/1)(( ++
=

μ , (11) 

X
KSSK

S
Ydt

dS
SIS

m

XS )/1)((
1

/ ++
−=

μ , (12) 

X
KSSK

S
Ydt

dE
SIS

m

ES )/1)((
1

/ ++
=

μ . (13) 

This model would be used to model the process. The parameters of models (10)–(12) were as 
follows: µm = 0.410 h-1; KS = 7.919, g/L; KSI = 249.365, g/L; YS/X = 0.173, g/g; YS/E = 0.507, g/g. 

The PROMETHEE network is shown in Figure 6. 
Figure 7 shows the experimental and simulated results achieved through (11)–(13) models, 

where XE and SE were the experimental data for biomass and glucose concentration. 

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6  XE - Experimental data
 Andrews model

Time, h

B
io

m
as

s 
co

nc
en

tra
tio

n,
 g

/l

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32

 SE - Experimental data
 Andrews model

G
lucose concentration, g/l

 
(a) 

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

E
th

an
ol

 c
on

ce
nt

ra
tio

n,
 g

/l

Time, h

 Experimental data
 Andrews model

 
(b) 

Figure 7. Experimental and simulation data with Andrews model: (a) Biomass and glucose 
concentration; (b) Ethanol concentration. 

The results presented in Figure 7 show that the Andrews model described the experimental 
data very well. This is especially true for the simulation of the biomass and glucose concentration. In 
regard to ethanol, there were very few differences. 

Figure 7. Experimental and simulation data with Andrews model: (a) Biomass and glucose
concentration; (b) Ethanol concentration.

The results presented in Figure 7 show that the Andrews model described the experimental data
very well. This is especially true for the simulation of the biomass and glucose concentration. In regard
to ethanol, there were very few differences.

Figure 8 shows the residuals for all the ten specific growth rate models.
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Figure 8 shows that residuals achieved through the Andrews model were medium in comparison
to all other models. Therefore, it was a kind of compromise option to the rest and, last but not least,
it had very good indicators.

4. Conclusions

The study presents different mathematical models of specific growth rate of a batch process of
Saccharomyces cerevisiae yeast cultivation for ethanol production. Ten models were investigated for
the specific growth rates: Monod, Mink, Tessier, Moser, Aiba, Andrews, Haldane, Luong, Edward,
and Han-Levenspiel. The statistical results (the criteria of evaluation of the parameters in the models)
and the statistical criteria (statistics λ, Fisher, and correlation coefficient) showed that all the investigated
models were adequate.

Using the PROMETHEE II method showed that the most suitable model for specific growth rate
dependent on glucose was the Andrews model, which would be used for modelling of the process.

The specification of the coefficients in this model will be done in another paper, where the
identification will be done simultaneously for fed-batch cultivation. This model will then be used for
modelling, optimization, and optimal control of batch and fed-batch processes for ethanol production,
with the purpose of increasing the productivity of the ethanol.
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