Supplementary material

ANOVA statistical analysis

1. Esterification of oleic acid (OA) with alcohols with different length of carbon chain (C)

One-Way ANOVA

Dependent variable: OA Conversion
Factor: C

Number of observations: 14
Number of levels: 7

A one-way analysis of variance (ANOVA) for OA Conversion was performed. It allows comparing the mean values of OA Conversion for the 7 different levels of carbon chain length (C). The F-test (Table 2) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 4).

Table 1 shows various statistics for OA Conversion for each of the 7 levels of C. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 1. Summary Statistics for OA Conversion

Carbon Long Chain	Count	Average	Standard deviation	Coeff. of variation
2	2	7,98186	1,33778	$16,7603 \%$
3	2	8,5601	0,865151	$10,1068 \%$
4	2	21,5003	1,87736	$8,73178 \%$
5	2	74,1546	1,44183	$1,94436 \%$
6	2	73,6466	3,93704	$5,34585 \%$
7	2	63,0872	1,27364	$2,01885 \%$
8	2	90,7678	0,232178	$0,255794 \%$
Total	14	48,5284	33,4397	$68,9077 \%$

Carbon Long Chain	Minimum	Maximum	Range	Stnd. skewness	Stnd. kurtosis
2	7,0359	8,92781	1,89191		
3	7,94835	9,17186	1,22351		
4	20,1728	22,8278	2,65499		
5	73,1351	75,1741	2,03906		
6	70,8627	76,4305	5,56781		
7	62,1866	63,9878	1,8012		
8	90,6036	90,9319	0,32835		$-1,45338$
Total	7,0359	90,9319	83,896	$-0,283904$	

The ANOVA table (Table 2) decomposes the variance of Conversion into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 668,702 , is a ratio of the between-group estimate to the within-group estimate. Since the P -value of the F-test is less than 0,05 , there is a statistically significant difference between the mean OA Conversion from one level of C to another at the 5% significance level.

Table 2. ANOVA Table for OA Conversion by C.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	14511,5	6	2418,58	668,70	0,0000
Within groups	25,3178	7	3,61683		
Total (Corr.)	14536,8	13			

Table 3 shows the mean OA Conversion for each level of C. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 3 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 3. List of Means for OA Conversion by C with 95,0 percent LSD intervals

			Stnd. error		
Carbon Long Chain	Count	Mean	(pooled s)	Lower limit	Upper limit
2	2	7,98186	1,34477	5,73333	10,2304
3	2	8,5601	1,34477	6,31158	10,8086
4	2	21,5003	1,34477	19,2518	23,7489
5	2	74,1546	1,34477	71,9061	76,4031
6	2	73,6466	1,34477	71,3981	75,8951
7	2	63,0872	1,34477	60,8387	65,3357
8	2	90,7678	1,34477	88,5192	93,0163
Total	14	48,5284			

Table 4 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for AO conversion as a function of C are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 4 shows that there are no significant differences when performing esterification with ethanol or propanol. The same happens when carrying out the reaction with 1-pentanol or 1-hexanol. Table 5 shows the estimated difference between each pair of means. An asterisk has been placed next to 19 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 4. Multiple Range Tests for OA Conversion by C. Method: 95,0 percent LSD

Level	Count	Mean	Homogeneous Groups
2	2	7,98186	x
3	2	8,5601	x
4	2	21,5003	x
7	2	63,0872	x
6	2	73,6466	x
5	2	74,1546	x
8	2	90,7678	x

Table 5. Estimated difference between each pair of means

Contrast	Sig.	Difference	+/- Limits
$2-3$		$-0,578246$	4,49705
$2-4$	*	$-13,5185$	4,49705
$2-5$	*	$-66,1727$	4,49705
$2-6$	*	$-65,6647$	4,49705
$2-7$	$*$	$-55,1054$	4,49705

$2-8$	${ }^{*}$	$-82,7859$	4,49705
$3-4$	${ }^{*}$	$-12,9402$	4,49705
$3-5$	${ }^{*}$	$-65,5945$	4,49705
$3-6$	${ }^{*}$	$-65,0865$	4,49705
$3-7$	${ }^{*}$	$-54,5271$	4,49705
$3-8$	$-82,2077$	4,49705	
$4-5$	${ }^{*}$	$-52,6542$	4,49705
$4-6$	${ }^{*}$	$-52,1462$	4,49705
$4-7$	${ }^{*}$	$-41,5869$	4,49705
$4-8$	${ }^{-69,2674}$	4,49705	
$5-6$		0,508002	4,49705
$5-7$	${ }^{*}$	11,0674	4,49705
$5-8$	${ }^{*}$	$-16,6132$	4,49705
$6-7$	${ }^{*}$	10,5594	4,49705
$6-8$	${ }^{*}$	$-17,1212$	4,49705
$7-8$	${ }^{*}$	$-27,6806$	4,49705

* denotes a statistically significant difference.

Figures 1 and 2 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 1. Scatter plot by level code.

Figure 2. Means and 95.0\% LSD intervals.

2. Esterification of oleic acid (OA) and 1-octanol as a function of temperature

One-Way ANOVA

Dependent variable: OA Conversion
Factor: Temperature

Number of observations: 10
Number of levels: 5

A one-way analysis of variance (ANOVA) for OA Conversion was performed. It allows comparing the mean values of OA Conversion for the 5 different levels of Temperature. The Ftest (Table 2) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table $9)$.

Table 1 shows various statistics for OA Conversion for each of the 5 levels of Temperature. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 6. Summary Statistics for OA Conversion.

Temperature	Count	Average	Standard deviation	Coeff. of variation	Minimum
20	2	43,7186	2,38758	$5,46124 \%$	42,0303
30	2	90,7678	0,232178	$0,255794 \%$	90,6036
40	2	89,4373	1,49617	$1,67288 \%$	88,3793
50	2	50,6416	1,34671	$2,6593 \%$	49,6893
60	2	12,3939	0,698231	$5,63369 \%$	11,9001
Total	10	57,3918	31,2813	$54,5049 \%$	11,9001

Temperature	Maximum	Range	Stnd. skewness	Stnd. kurtosis
20	45,4069	3,37655		
30	90,9319	0,32835		
40	90,4952	2,11591		
50	51,5938	1,90454		
60	12,8876	0,987448		$-0,904183$
Total	90,9319	79,0318	$-0,280557$	

The ANOVA table (Table 7) decomposes the variance of Conversion into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 1068,13 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean OA Conversion from one level of Temperature to another at the 5% significance level.

Table 7. ANOVA Table for OA Conversion by Temperature.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	8796,41	4	2199,1	1068,13	0,0000
Within groups	10,2941	5	2,05883		
Total (Corr.)	8806,7	9			

Table 8 shows the mean OA Conversion for each level of Temperature. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at
each level. Table 3 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time

Table 8. List of Means for OA Conversion by Temperature with 95,0 percent LSD intervals.

			Stnd. error		
Temperature	Count	Mean	(pooled s)	Lower limit	Upper limit
20	2	43,7186	1,0146	41,8744	45,5628
30	2	90,7678	1,0146	88,9235	92,612
40	2	89,4373	1,0146	87,5931	91,2815
50	2	50,6416	1,0146	48,7974	52,4858
60	2	12,3939	1,0146	10,5496	14,2381
Total	10	57,3918			

Table 9 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for AO conversion are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 9 shows that all values of the means are statistically different except for those obtained for 30 and $40^{\circ} \mathrm{C}$, which correspond to the optimum of the biocatalyst activity and the conversion values as a function of temperature are similar. Table 10 shows the estimated difference between each pair of means. An asterisk has been placed next to 9 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 9. Multiple Range Tests for OA Conversion by Temperature. Method: 95,0 percent LSD

Temperature	Count	Mean	Homogeneous Groups
60	2	12,3939	X
20	2	43,7186	x
50	2	50,6416	x
40	2	89,4373	X
30	2	90,7678	x

Table 10. Estimated difference between each pair of means

Contrast	Sig.	Difference	$+/$ - Limits
$20-30$	${ }^{*}$	$-47,0491$	3,68844
$20-40$	${ }^{*}$	$-45,7187$	3,68844
$20-50$	$*$	$-6,92296$	3,68844
$20-60$	${ }^{*}$	31,3248	3,68844
$30-40$		1,33049	3,68844
$30-50$	${ }^{*}$	40,1262	3,68844
$30-60$	${ }^{*}$	78,3739	3,68844
$40-50$	*	38,7957	3,68844
$40-60$	${ }^{*}$	77,0434	3,68844
$50-60$	$*$	38,2477	3,68844

* denotes a statistically significant difference.

Figures 3 and 4 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 3. Scatter plot by level code.

Figure 4. Means and 95.0\% LSD intervals.

3. Esterification of oleic acid (OA) and 1-octanol with different biocatalyst loading

One-Way ANOVA
Dependent variable: OA Conversion
Factor: Biocatalyst loading
Number of observations: 16
Number of levels: 8

A one-way analysis of variance (ANOVA) for OA Conversion was performed. It allows comparing the mean values of OA Conversion for the 8 different levels of Biocatalyst loading. The F-test (Table 12) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 14).

Table 11 shows various statistics for OA Conversion for each of the 8 levels of Biocatalyst loading. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 11. Summary Statistics for OA Conversion

Biocatalyst loading	Count	Average	Standard deviation	Coeff. of variation
0	2	0,0346905	0,0213553	$61,5595 \%$
2,5	2	25,0311	2,13923	$8,54629 \%$
5	2	54,2837	1,58699	$2,92351 \%$
7,5	2	78,788	1,719	$2,18181 \%$
10	2	90,7678	0,232178	$0,255794 \%$
12,5	2	92,0838	0,378165	$0,410675 \%$
15	2	93,4605	0,257493	$0,27551 \%$
17,5	2	93,4516	0,4643	$0,496835 \%$
Total	16	65,9876	34,9045	$52,8955 \%$

Biocatalyst loading	Minimum	Maximum	Range	Stnd. skewness	Stnd. kurtosis
0	0,01959	0,049791	0,0302009		
2,5	23,5184	26,5438	3,02533		
5	53,1615	55,4058	2,24434		
7,5	77,5725	80,0035	2,43104		
10	90,6036	90,9319	0,32835		
12,5	91,8164	92,3512	0,534806		
15	93,2785	93,6426	0,36415		$-0,420928$
17,5	93,1233	93,7799	0,656619		
Total	0,01959	93,7799	93,7603	$-1,64371$	

The ANOVA table (Table 12) decomposes the variance of Conversion into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 1982,46 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean OA Conversion from one level of biocatalyst loading to another at the 5% significance level.

Table 12. ANOVA Table for OA Conversion by Biocatalyst loading.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	18264,3	7	2609,19	1982,46	0,0000
Within groups	10,5291	8	1,31613		
Total (Corr.)	18274,8	15			

Table 13 shows the mean OA Conversion for each level of Biocatalyst loading. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 13 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 13. List of Means for OA Conversion by Biocatalyst loading with 95,0 percent LSD intervals

			Stnd. error		
Level	Count	Mean	(pooled s)	Lower limit	Upper limit
0	2	0,0346905	0,811213	$-1,28807$	1,35745
2,5	2	25,0311	0,811213	23,7083	26,3539
5	2	54,2837	0,811213	52,9609	55,6064
7,5	2	78,788	0,811213	77,4653	80,1108
10	2	90,7678	0,811213	89,445	92,0905
12,5	2	92,0838	0,811213	90,761	93,4065
15	2	93,4605	0,811213	92,1378	94,7833
17,5	2	93,4516	0,811213	92,1289	94,7744
Total	16	65,9876			

Table 14 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for AO conversion as a function of C are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 14 shows statistically significant differences in the AO conversion using less than 10% biocatalyst. A higher dose of biocatalyst does not generate significant changes in the conversion. Table 15 shows the estimated difference between each pair of means. An asterisk has been placed next to 24 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 14. Multiple Range Tests for OA Conversion by Biocatalyst loading. Method: 95,0 percent LSD

Level	Count	Mean	Homogeneous Groups
0	2	0,0346905	X
2,5	2	25,0311	X
5	2	54,2837	X
7,5	2	78,788	X
10	2	90,7678	X
12,5	2	92,0838	XX
17,5	2	93,4516	X
15	2	93,4605	X

Table 15. Estimated difference between each pair of means

Contrast	Sig.	Difference	+ +/- Limits
$0-2,5$	${ }^{*}$	$-24,9964$	2,64552
$0-5$	${ }^{*}$	$-54,249$	2,64552
$0-7,5$	${ }^{*}$	$-78,7533$	2,64552
$0-10$	${ }^{*}$	$-90,7331$	2,64552
$0-12,5$	${ }^{*}$	$-92,0491$	2,64552
$0-15$	${ }^{*}$	$-93,4258$	2,64552
$0-17,5$	${ }^{*}$	$-93,4169$	2,64552

$2,5-5$	${ }^{*}$	$-29,2526$	2,64552
$2,5-7,5$	${ }^{*}$	$-53,7569$	2,64552
$2,5-10$	${ }^{*}$	$-65,7367$	2,64552
$2,5-12,5$	${ }^{*}$	$-67,0527$	2,64552
$2,5-15$	${ }^{*}$	$-68,4294$	2,64552
$2,5-17,5$	${ }^{*}$	$-68,4205$	2,64552
$5-7,5$	${ }^{*}$	$-24,5043$	2,64552
$5-10$	${ }^{*}$	$-36,4841$	2,64552
$5-12,5$	${ }^{*}$	$-37,8001$	2,64552
$5-15$	${ }^{*}$	$-39,1769$	2,64552
$5-17,5$	${ }^{*}$	$-11,9798$	2,64552
$7,5-10$	${ }^{*}$	$-13,2958$	2,64552
$7,5-12,5$	$-14,6725$	2,64552	
$7,5-15$	${ }^{*},-14,64536$	2,64552	
$7,5-17,5$		$-1,31601$	2,64552
$10-12,5$	${ }^{*}$	$-2,69277$	2,64552
$10-15$		$-2,68386$	2,64552
$10-17,5$		$-1,37675$	2,64552
$12,5-15$		$-1,36785$	2,64552
$12,5-17,5$		0,00890497	2,64552
$15-17,5$			

* denotes a statistically significant difference.

Figures 5 and 6 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 5. Scatter plot by level code.

Figure 6. Means and 95.0\% LSD intervals.

4. Esterification of oleic acid (OA) and 1-octanol with different acid/octanol molar ratios

One-Way ANOVA

Dependent variable: OA Conversion
Factor: Biocatalyst loading

Number of observations: 8
Number of levels: 4

A one-way analysis of variance (ANOVA) for OA Conversion was performed. It allows comparing the mean values of OA Conversion for the 4 different levels of acid/octanol molar ratio. The F-test (Table 17) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 19).

Table 16 shows various statistics for OA Conversion for each of the 4 levels of acid/octanol molar ratio. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 16. Summary Statistics for OA Conversion

Molar Ratio	Count	Average	Standard deviation	Coeff. of variation	Minimum
1	2	78,1935	0,0653245	$0,0835421 \%$	78,1473
2	2	90,7678	0,232178	$0,255794 \%$	90,6036
3	2	61,8067	0,631788	$1,0222 \%$	61,36
4	2	56,1895	4,72353	$8,40643 \%$	52,8495
Total	8	71,7394	14,6928	$20,4808 \%$	52,8495

Molar Ratio	Maximum	Range	Stnd. skewness	Stnd. kurtosis
1	78,2397	0,0923827		
2	90,9319	0,32835		
3	62,2535	0,893483		
4	59,5296	6,68008		$-0,981159$
Total	90,9319	38,0825	0,262669	

The ANOVA table (Table 17) decomposes the variance of Conversion into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 87,16 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean OA Conversion from one level of molar ratio to another at the 5% significance level.

Table 17. ANOVA Table for OA Conversion by molar ratio.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	1488,38	3	496,127	87,16	0,0004
Within groups	22,7691	4	5,69227		
Total (Corr.)	1511,15	7			

Table 18 shows the mean OA Conversion for each level of molar ratio. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 18 also displays an interval around each mean. The intervals currently displayed
are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 18. List of Means for OA Conversion by Biocatalyst loading with 95,0 percent LSD intervals

			Stnd. error		
Molar Ratio	Count	Mean	(pooled s)	Lower limit	Upper limit
1	2	78,1935	1,68705	74,8814	81,5056
2	2	90,7678	1,68705	87,4557	94,0799
3	2	61,8067	1,68705	58,4946	65,1188
4	2	56,1895	1,68705	52,8774	59,5016
Total	8	71,7394			

Table 19 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for AO conversion as a function of C are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 19 shows means with significant differences for molar ratios 1:1, 1:2 and, 1:3. However, when carrying out the reaction with molar ratios 1:3 and 1:4 there is no significant conversion difference. Table 20 shows the estimated difference between each pair of means. An asterisk has been placed next to 5 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 19. Multiple Range Tests for OA Conversion by acid/octanol molar ratio. Method: 95,0 percent LSD

Molar Ratio	Count	Mean	Homogeneous Groups
4	2	56,1895	X
3	2	61,8067	X
1	2	78,1935	X
2	2	90,7678	X

Table 20. Estimated difference between each pair of means

Contrast	Sig.	Difference	$+/$ Limits
$1-2$	${ }^{*}$	$-12,5743$	6,6242
$1-3$	$*$	16,3868	6,6242
$1-4$	$*$	22,004	6,6242
$2-3$	$*$	28,9611	6,6242
$2-4$	$*$	34,5782	6,6242
$3-4$		5,6172	6,6242

* denotes a statistically significant difference.

Figures 7 and 8 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 7. Scatter plot by level code.

Figure 8. Means and 95.0\% LSD intervals.

5. Esterification of oleic acid (OA) and 1-octanol as a function of time

One-Way ANOVA

Dependent variable: OA Conversion
Factor: Time

Number of observations: 12
Number of levels: 6

A one-way analysis of variance (ANOVA) for OA Conversion was performed. It allows comparing the mean values of OA Conversion for the 6 different levels of time. The F-test (Table 22) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 24).

Table 21 shows various statistics for OA Conversion for each of the 6 levels of time. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 21. Summary Statistics for OA Conversion

Time	Count	Average	Standard deviation	Coeff. of variation	Minimum
0	2	0,0346905	0,0213553	$61,5595 \%$	0,01959
1	2	28,9785	2,97967	$10,2823 \%$	26,8716
2	2	46,1726	2,19907	$4,7627 \%$	44,6177
3	2	67,1937	1,08709	$1,61784 \%$	66,425
4	2	88,5539	0,632079	$0,713779 \%$	88,1069
5	2	90,7678	0,232178	$0,255794 \%$	90,6036
Total	12	53,6169	33,9151	$63,2546 \%$	0,01959

Time	Maximum	Range	Stnd. skewness	Stnd. kurtosis
0	0,049791	0,0302009		
1	31,0855	4,21389		
2	47,7276	3,10995		
3	67,9624	1,53738		
4	89,0008	0,893894		
5	90,9319	0,32835		$-0,820246$
Total	90,9319	90,9123	$-0,578337$	

The ANOVA table (Table 22) decomposes the variance of Conversion into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 987,93 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean OA Conversion from one level of time to another at the 5% significance level.

Table 22. ANOVA Table for OA Conversion by Time.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	12637,3	5	2527,45	987,93	0,0000
Within groups	15,35	6	2,55833		
Total (Corr.)	12652,6	11			

Table 23 shows the mean OA Conversion for each level of time. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each
level. Table 23 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 23. List of Means for OA Conversion by Time with 95,0 percent LSD intervals

			Stnd. error		
Molar Ratio	Count	Mean	(pooled s)	Lower limit	Upper limit
1	2	78,1935	1,68705	74,8814	81,5056
2	2	90,7678	1,68705	87,4557	94,0799
3	2	61,8067	1,68705	58,4946	65,1188
4	2	56,1895	1,68705	52,8774	59,5016
Total	8	71,7394			

Table 24 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for AO conversion as a function of C are statistically different. The X 's located in the same column indicate that there are no statistically significant difference between the means. Table 25 shows that for all time values the conversion of oleic acid is significantly different, except for time 4 and 5 , where the maximum conversion occurs and the system seems to reach equilibrium. Table 25 shows the estimated difference between each pair of means. An asterisk has been placed next to 14 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 24. Multiple Range Tests for OA Conversion by Time. Method: 95,0 percent LSD

Time	Count	Mean	Homogeneous Groups
0	2	0,0346905	x
1	2	28,9785	x
2	2	46,1726	x
3	2	67,1937	x
4	2	88,5539	x
5	2	90,7678	x

Table 25. Estimated difference between each pair of means

Contrast	Sig.	Difference	$+/$ - Limits
$0-1$	$*$	$-28,9439$	3,91379
$0-2$	$*$	$-46,1379$	3,91379
$0-3$	$*$	$-67,159$	3,91379
$0-4$	$*$	$-88,5192$	3,91379
$0-5$	$*$	$-90,7331$	3,91379
$1-2$	$*$	$-17,1941$	3,91379
$1-3$	$*$	$-38,2152$	3,91379
$1-4$	$*$	$-59,5754$	3,91379
$1-5$	$*$	$-61,7892$	3,91379
$2-3$	$*$	$-21,0211$	3,91379
$2-4$	$*$	$-42,3813$	3,91379
$2-5$	$*$	$-44,5951$	3,91379
$3-4$	$*$	$-21,3602$	3,91379
$3-5$	$*$	$-23,574$	3,91379
$4-5$		$-2,21387$	3,91379

* denotes a statistically significant difference.

Figures 9 and 10 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 9. Scatter plot by level code.

Figure 10. Means and 95.0\% LSD intervals.

6. Yield to free fatty acids (FFA) in the hydrolysis of soybean oil with different oil/water molar ratios.

One-Way ANOVA

Dependent variable: Yield to free fatty acids
Factor: oil/water molar ratio

Number of observations: 8
Number of levels: 4

A one-way analysis of variance (ANOVA) for Yield to free fatty acids was performed. It allows comparing the mean values of Yield to FFA for the 4 different levels of molar ratio. The F-test (Table 27) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 29).

Table 26 shows various statistics for Yield to FFA for each of the 4 levels of molar ratio. The oneway analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 26. Summary Statistics for Yield to free fatty acids

oil/ water molar ratio	Count	Average	Standard deviation	Coeff. of variation
3	2	60,9168	0,950519	$1,56036 \%$
6	2	65,3876	0,54213	$0,829103 \%$
9	2	68,4205	0,00321573	$0,00469995 \%$
12	2	68,0688	1,69538	$2,49069 \%$
Total	8	65,6984	3,29609	$5,017 \%$

oil/ water molar ratio	Minimum	Maximum	Range	Stnd. skewness	Stnd. kurtosis
3	60,2447	61,5889	1,34424		
6	65,0043	65,7709	0,766688		
9	68,4182	68,4227	0,00454773		
12	66,8699	69,2676	2,39764		
Total	60,2447	69,2676	9,02292	$-0,887733$	$-0,40716$

The ANOVA table (Table 27) decomposes the variance of Yield to FFA into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 23,57 , is a ratio of the between-group estimate to the within-group estimate. Since the P -value of the F-test is less than 0,05 , there is a statistically significant difference between the mean Yield from one level of molar ratio to another at the 5% significance level.

Table 27. ANOVA Table for Yield to free fatty acids by molar ratio.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	71,9777	3	23,9926	23,57	0,0053
Within groups	4,07173	4	1,01793		
Total (Corr.)	76,0494	7			

Table 28 shows the mean Yield to FFA for each level of molar ratio. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 28 also displays an interval around each mean. The intervals currently displayed
are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 28. List of Means for Yield to free fatty acids by oil/water molar ratio with 95,0 percent LSD intervals

			Stnd. error		
Level	Count	Mean	$($ pooled s)	Lower limit	Upper limit
3	2	60,9168	0,713419	59,5162	62,3174
6	2	65,3876	0,713419	63,987	66,7882
9	2	68,4205	0,713419	67,0199	69,8211
12	2	68,0688	0,713419	66,6681	69,4694
Total	8	65,6984			

Table 29 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for Yield as a function of the oil/water molar ratio are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 30 shows the estimated difference between each pair of means. An asterisk has been placed next to 4 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 29. Multiple Range Tests for OA Conversion by Time. Method: 95,0 percent LSD

Level	Count	Mean	Homogeneous Groups
3	2	60,9168	x
6	2	65,3876	x
12	2	68,0688	xx
9	2	68,4205	x

Table 30. Estimated difference between each pair of means

Contrast	Sig.	Difference	+ +- Limits
$3-6$	$*$	$-4,47083$	2,80124
$3-9$	$*$	$-7,5037$	2,80124
$3-12$	$*$	$-7,15199$	2,80124
$6-9$	$*$	$-3,03286$	2,80124
$6-12$		$-2,68116$	2,80124
$9-12$		0,351708	2,80124
denotes a statistically significant difference.			

Figures 11 and 12 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 11. Scatter plot by level code.

Figure 12. Means and 95.0\% LSD intervals.

7. Yield to free fatty acids (FFA) in the hydrolysis of soybean oil as a function of temperature

One-Way ANOVA

Dependent variable: Yield to free fatty acids
Factor: oil/water molar ratio

Number of observations: 10
Number of levels: 5

A one-way analysis of variance (ANOVA) for Yield to free fatty acids was performed. It allows comparing the mean values of Yield to FFA for the 5 different levels of temperature. The F-test (Table 32) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 34).

Table 31 shows various statistics for Yield to FFA for each of the 5 levels of temperature. The oneway analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 31. Summary Statistics for Yield to free fatty acids

Temperature	Count	Average	Standard deviation	Coeff. of variation	Minimum
20	2	59,913	3,02048	$5,04145 \%$	57,7772
30	2	68,0688	1,69538	$2,49069 \%$	66,8699
40	2	55,5478	1,824	$3,28365 \%$	54,258
50	2	50,9186	1,39798	$2,74552 \%$	49,9301
60	2	15,5916	2,09294	$13,4236 \%$	14,1116
Total	10	50,0079	19,1551	$38,3042 \%$	14,1116

Temperature	Maximum	Range	Stnd. skewness	Stnd. kurtosis
20	62,0488	4,27161		
30	69,2676	2,39764		
40	56,8375	2,57952		
50	51,9071	1,97704		
60	17,0715	2,95987		0,424939
Total	69,2676	55,1559	$-1,7202$	

The ANOVA table (Table 32) decomposes the variance of Yield to FFA into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 189,33 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean Yield from one level of temperature to another at the 5% significance level.

Table 32. ANOVA Table for Yield to free fatty acids by temperature.

Source	Sum of Squares	$D f$	Mean Square	F-Ratio	P-Value
Between groups	3280,62	4	820,154	189,33	0,0000
Within groups	21,6594	5	4,33187		
Total (Corr.)	3302,28	9			

Table 33 shows the mean Yield to FFA for each level of temperature. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed
by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 33 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 33. List of Means for Yield to free fatty acids by temperature with 95,0 percent LSD intervals

			Stnd. error		
Temperature	Count	Mean	(pooled s)	Lower limit	Upper limit
20	2	59,913	1,47171	57,2379	62,5881
30	2	68,0688	1,47171	65,3937	70,7439
40	2	55,5478	1,47171	52,8727	58,2229
50	2	50,9186	1,47171	48,2435	53,5937
60	2	15,5916	1,47171	12,9165	18,2667
Total	10	50,0079			

Table 34 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for Yield as a function of the temperature are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 35 shows the estimated difference between each pair of means. An asterisk has been placed next to 8 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 34. Multiple Range Tests for OA Conversion by temperature. Method: 95,0 percent LSD

Temperature	Count	Mean	Homogeneous Groups
60	2	15,5916	X
50	2	50,9186	x
40	2	55,5478	xX
20	2	59,913	X
30	2	68,0688	X

Table 30. Estimated difference between each pair of means

Contrast	Sig.	Difference	+ +- Limits
$20-30$	$*$	$-8,15578$	5,35021
$20-40$		4,36522	5,35021
$20-50$	$*$	8,99435	5,35021
$20-60$	$*$	44,3214	5,35021
$30-40$	$*$	12,521	5,35021
$30-50$	$*$	17,1501	5,35021
$30-60$	$*$	52,4772	5,35021
$40-50$		4,62913	5,35021
$40-60$	$*$	39,9562	5,35021
$50-60$	$*$	35,3271	5,35021

* denotes a statistically significant difference.

Figures 13 and 14 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 11. Scatter plot by level code.

Figure 12. Means and 95.0\% LSD intervals.

8. Yield to free fatty acids (FFA) in the hydrolysis of soybean oil with different biocatalyst loading
 One-Way ANOVA

Dependent variable: Yield to free fatty acids
Factor: biocatalyst loading

Number of observations: 14
Number of levels: 7

A one-way analysis of variance (ANOVA) for Yield to free fatty acids was performed. It allows comparing the mean values of Yield to FFA for the 7 different levels of biocatalyst loading. The F-test (Table 37) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 39).

Table 36 shows various statistics for Yield to FFA for each of the 7 levels of biocatalyst loading. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 36. Summary Statistics for Yield to free fatty acids

Biocatalyst loading	Count	Average	Standard deviation	Coeff. of variation
0	2	0	0	$\%$
3	2	29,9375	1,49521	$4,99444 \%$
5	2	45,7392	0,846101	$1,84984 \%$
7,5	2	58,6558	0,791416	$1,34926 \%$
10	2	68,0688	1,69538	$2,49069 \%$
12,5	2	68,3433	0,269936	$0,394971 \%$
15	2	69,6113	0,429285	$0,616689 \%$
Total	14	48,6223	24,9097	$51,2311 \%$

Biocatalyst loading	Minimum	Maximum	Range	Stnd. skewness	Stnd. kurtosis
0	0	0	0		
3	28,8803	30,9948	2,11455		
5	45,1409	46,3375	1,19657		
7,5	58,0962	59,2154	1,11923		
10	66,8699	69,2676	2,39764		
12,5	68,1524	68,5341	0,381747		0,0843484
15	69,3077	69,9148	0,607101		
Total	0	69,9148	69,9148	$-1,70609$	

The ANOVA table (Table 37) decomposes the variance of Yield to FFA into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 1401,47 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean Yield from one level of biocatalyst loading to another at the 5% significance level.

Table 37. ANOVA Table for Yield to free fatty acids by temperature.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	8059,7	6	1343,28	1401,47	0,0000
Within groups	6,70937	7	0,958481		
Total (Corr.)	8066,41	13			

Table 38 shows the mean Yield to FFA for each level of temperature. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. Table 38 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 38. List of Means for Yield to free fatty acids by biocatalyst loading with 95,0 percent LSD intervals

			Stnd. error		
Level	Count	Mean	$($ pooled s)	Lower limit	Upper limit
0	2	0	0,692272	$-1,15751$	1,15751
3	2	29,9375	0,692272	28,78	31,0951
5	2	45,7392	0,692272	44,5817	46,8967
7,5	2	58,6558	0,692272	57,4983	59,8133
10	2	68,0688	0,692272	66,9113	69,2263
12,5	2	68,3433	0,692272	67,1857	69,5008
15	2	69,6113	0,692272	68,4538	70,7688
Total	14	48,6223			

Table 39 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for Yield as a function of the biocatalyst loading are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 40 shows the estimated difference between each pair of means. An asterisk has been placed next to 18 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 39. Multiple Range Tests for OA Conversion by biocatalyst loading. Method: 95,0 percent
LSD

Level	Count	Mean	Homogeneous Groups
0	2	0	X
3	2	29,9375	x
5	2	45,7392	x
7,5	2	58,6558	x
10	2	68,0688	x
12,5	2	68,3433	x
15	2	69,6113	X

Table 40. Estimated difference between each pair of means

Contrast	Sig.	Difference	+/- Limits
$0-3$	${ }^{*}$	$-29,9375$	2,31502
$0-5$	$*$	$-45,7392$	2,31502
$0-7,5$	${ }^{*}$	$-58,6558$	2,31502
$0-10$	${ }^{*}$	$-68,0688$	2,31502
$0-12,5$	${ }^{*}$	$-68,3433$	2,31502
$0-15$	${ }^{*}$	$-69,6113$	2,31502
$3-5$	${ }^{*}$	$-15,8017$	2,31502
$3-7,5$	${ }^{*}$	$-28,7182$	2,31502
$3-10$	${ }^{*}$	$-38,1312$	2,31502
$3-12,5$	${ }^{*}$	$-38,4057$	2,31502
$3-15$	${ }^{*}$	$-39,6737$	2,31502
$5-7,5$	$*$	$-12,9166$	2,31502
$5-10$	$*$	$-22,3296$	2,31502

$5-12,5$	${ }^{*}$	$-22,6041$	2,31502
$5-15$	${ }^{*}$	$-23,8721$	2,31502
$7,5-10$	${ }^{*}$	$-9,41298$	2,31502
$7,5-12,5$	${ }^{*}$	$-9,68748$	2,31502
$7,5-15$	${ }^{*}$	$-10,9555$	2,31502
$10-12,5$		$-0,274497$	2,31502
$10-15$		$-1,54251$	2,31502
$12,5-15$		$-1,26801$	2,31502

* denotes a statistically significant difference.

Figures 15 and 16 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 15. Scatter plot by level code.

Figure 16. Means and 95.0\% LSD intervals.

9. Yield to free fatty acids (FFA) in the hydrolysis of soybean as a function of time

One-Way ANOVA

Dependent variable: Yield to free fatty acids
Factor: time

Number of observations: 12
Number of levels: 6

A one-way analysis of variance (ANOVA) for Yield to free fatty acids was performed. It allows comparing the mean values of Yield to FFA for the 6 different levels of time. The F-test (Table 42) analyses whether there are any significant differences amongst the means. The Multiple Range Tests indicates which means are significantly different from which others (Table 44).

Table 41 shows various statistics for Yield to FFA for each of the 6 levels of time. The one-way analysis of variance is primarily intended to compare the means of the different levels, listed here under the Average column.

Table 41. Summary Statistics for Yield to free fatty acids

Time	Count	Average	Standard deviation	Coeff. of variation	Minimum	Maximum
0	2	0	0	$\%$	0	0
1	2	31,6389	0,260736	$0,824101 \%$	31,4545	31,8233
2	2	41,474	1,24259	$2,99606 \%$	40,5954	42,3527
3	2	48,195	0,236718	$0,491167 \%$	48,0276	48,3624
4	2	54,3748	0,0941068	$0,173071 \%$	54,3082	54,4413
5	2	68,0688	1,69538	$2,49069 \%$	66,8699	69,2676
Total	12	40,6252	22,2941	$54,8776 \%$	0	69,2676

Time	Range	Stnd. skewness	Stnd. kurtosis
0	0		
1	0,368737		
2	1,75728		
3	0,33477		
4	0,133087		
5	2,39764		0,163775
Total	69,2676	$-1,22386$	

The ANOVA table (Table 42) decomposes the variance of Yield to FFA into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 1440,34 , is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05 , there is a statistically significant difference between the mean Yield from one level of time to another at the 5\% significance level.

Table 42. ANOVA Table for Yield to free fatty acids by temperature.

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	5462,77	5	1092,55	1440,34	0,0000
Within groups	4,55123	6	0,758538		
Total (Corr.)	5467,32	11			

Table 43 shows the mean Yield to FFA for each level of time. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each
level. Table 43 also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap $95,0 \%$ of the time.

Table 43. List of Means for Yield to free fatty acids by biocatalyst loading with 95,0 percent LSD intervals

			Stnd. error		
Time	Count	Mean	(pooled s)	Lower limit	Upper limit
0	2	0	0,615848	$-1,06556$	1,06556
1	2	31,6389	0,615848	30,5733	32,7045
2	2	41,474	0,615848	40,4085	42,5396
3	2	48,195	0,615848	47,1295	49,2606
4	2	54,3748	0,615848	53,3092	55,4404
5	2	68,0688	0,615848	67,0032	69,1343
Total	12	40,6252			

Table 44 applies a multiple comparison procedure to determine which means are significantly different from which others. The X's located in different columns indicate that the means for Yield as a function of the time are statistically different. The X's located in the same column indicate that there are no statistically significant difference between the means. Table 45 shows the estimated difference between each pair of means. An asterisk has been placed next to 15 pairs, indicating that these pairs show statistically significant differences at the $95,0 \%$ confidence level. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure.

Table 44. Multiple Range Tests for OA Conversion by biocatalyst loading. Method: 95,0 percent LSD

Time	Count	Mean	Homogeneous Groups
0	2	0	X
1	2	31,6389	x
2	2	41,474	X
3	2	48,195	X
4	2	54,3748	X
5	2	68,0688	x

Table 45. Estimated difference between each pair of means

Contrast	Sig.	Difference	+ -- Limits
$0-1$	${ }^{*}$	$-31,6389$	2,13112
$0-2$	${ }^{*}$	$-41,474$	2,13112
$0-3$	${ }^{*}$	$-48,195$	2,13112
$0-4$	${ }^{*}$	$-54,3748$	2,13112
$0-5$	${ }^{*}$	$-68,0688$	2,13112
$1-2$	$*$	$-9,83511$	2,13112
$1-3$	$*$	$-16,5561$	2,13112
$1-4$	$*$	$-22,7359$	2,13112
$1-5$	${ }^{*}$	$-36,4299$	2,13112
$2-3$	${ }^{*}$	$-6,721$	2,13112
$2-4$	${ }^{*}$	$-12,9008$	2,13112
$2-5$	${ }^{*}$	$-26,5947$	2,13112
$3-4$	${ }^{*}$	$-6,17978$	2,13112
$3-5$	${ }^{*}$	$-19,8737$	2,13112
$4-5$	${ }^{*}$	$-13,694$	2,13112

* denotes a statistically significant difference.

Figures 17 and 18 present the measured values and the means with the 95% LSD intervals, respectively.

Figure 13. Scatter plot by level code.

Figure 12. Means and 95.0\% LSD intervals.

