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Abstract: Two correlations were developed to calculate the composition of binary ethanol-water
solutions from experimental temperature and density inputs. The first correlation is based on a
Redlich-Kister (R-K) expansion and computes mixture composition within an average accuracy of
±0.45 wt.%. The R-K model is a non-linear function of composition and therefore requires the use of
an iterative solving tool. A polynomial correlation was additionally developed which utilizes a direct
solving method, and computes ethanol composition over a range of 0–100 wt.% [283.15–313.15 K]
with an accuracy better than ±0.37 wt.%. The polynomial model is particularly advantageous as it
can be tailored to specific composition ranges for increased accuracy. Both correlations are intended
to provide a method for monitoring ethanol concentration within a chemical process in real time
without off-line sample analysis, allowing for precise in-situ system control and optimization.
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1. Introduction

The global ethanol market was valued at 85.64 billion dollars in 2016 and continues to experience
significant growth [1]. The increased ethanol demand is primarily attributed to its use as an oxygen
containing additive for transportation fuels, replacing methyl tert-butyl ether (MTBE) which was
banned by the EPA due to persistent impacts on the potable water supply [2]. Ethanol is blended with
gasoline at a 10% concentration, forming the E-10 product which accounts for 95% of current U.S. gas
production. Furthermore, the International Energy Agency estimates that by 2050 liquid biofuels will
comprise as much as 27% of global transportation fuels, indicating the expected increase in ethanol
demand [3]. In addition, ethanol is used in the medical, pharmaceutical, beverage, and consumer
products industries, further supporting the importance of this commodity chemical.

Accurate “real-time” monitoring of ethanol concentration within fermentation and chemical
systems is required for process and quality control. Unfortunately, few methods exist which are
capable of measuring ethanol concentration within a chemical process and most require off-line
sample analysis. Recently several groups have developed methods using advanced analytical
techniques to obtain on-line ethanol concentration measurements, including: gas chromatography [4,5],
high-performance liquid chromatography [6–9], infrared spectroscopy [10–12] and microfluidic
membranes [13]. While effective, these techniques require specialized equipment not traditionally
found in fermentation processes. Alternatively, we have developed a method for calculating
the composition of binary water (1) + ethanol (2) solutions using only experimental density and
temperature inputs. The technique is especially advantageous as these measurements can be

Fermentation 2018, 4, 72; doi:10.3390/fermentation4030072 www.mdpi.com/journal/fermentation

http://www.mdpi.com/journal/fermentation
http://www.mdpi.com
https://orcid.org/0000-0001-7733-7371
http://www.mdpi.com/2311-5637/4/3/72?type=check_update&version=1
http://dx.doi.org/10.3390/fermentation4030072
http://www.mdpi.com/journal/fermentation


Fermentation 2018, 4, 72 2 of 7

obtained using a Coriolis mass flow meter, which is a common instrument in most chemical and
fermentation processes.

In this work, we present two correlations to compute the concentration of ethanol in aqueous
solutions over a composition range of 0–100 wt.%. The first correlation was developed using
a Redlich-Kister (R-K) expansion which utilizes thermodynamic excess properties to account for
non-ideal mixing interactions between ethanol and water. While the R-K expansion permits the
calculation of mixture density from composition and temperature, inverting the equation to solve
for composition requires iteratively solving a non-linear function. Therefore, we have developed a
correlation which directly computes ethanol composition using a polynomial equation with density
and temperature dependent parameters. Both correlations, in combination with an on-line Coriolis
mass flow meter which can simultaneously measure both density and temperature, will allow for
in-situ calculation of ethanol concentration within fermentation and chemical processes.

2. Materials and Methods

2.1. Redlich-Kister Model

Water-ethanol mixture molar volumes (Vm) and excess molar volumes
(
VE) were computed

from published density data [14] using Equations (1) and (2) where (xi), (MWi), and (Vi) are the pure
component mole fractions, molecular weights, and molar volumes respectively.

Vm = x1 MW1+x2 MW2
ρ (1)

VE = Vm − (x1V1 + x2V2) (2)

The computed excess molar volume results were subsequently modeled by the second-order,
temperature-dependent, Redlich-Kister (R-K) polynomial expansion shown in Equation (3).

VE = x2(1− x2 )[A + B(1− 2x2) + C(1− 2x2)
2] (3)

The R-K expansion uses a total of six parameters including three temperature dependent terms as
shown in Equations (4)–(6).

A = a0 + a1T(K) (4)

B = b0 + b1T(K) (5)

C = c0 + c1T(K) (6)

The Redlich-Kister coefficients were regressed using more than 700 density-composition
measurements at temperatures between 283.15 K and 313.15 K at 5 K intervals [14]. The data
set contained 101 mixture density data points at each temperature and encompassed an ethanol
composition range of 0–100 wt.%, resulting in a robust parameter fit. The R-K model demonstrated
excellent parameter regression over the entire data set with an average absolute relative deviation
(AARD) between experimental and regressed densities of 0.09%.

The R-K expansion Equation (3) can be used to solve for ethanol composition at a given
experimental density and temperature (between 283.15 K and 313.15 K) in conjunction with Equation (7)
and the regressed R-K coefficients displayed in Table 1.

ρ =
x1MW1 + x2MW2

VE + (x1V1 + x2V2)
(7)

Equation (7) was derived by combining Equations (1) and (2) and is a non-linear function of
composition due to the incorporation of the R-K excess molar volume function shown in Equation (3).
Therefore, computing composition using Equation (7) requires an iterative solving method and
advanced computing power.
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Table 1. Optimized coefficients for the R-K model with temperature dependent terms shown in
Equations (4)–(6). i = 0 units of cm3·mol−1, i = 1 units of cm3·mol−1·K−1.

Parameter ai bi ci

i = 0 −9.054199 −4.930763 5.286817
i = 1 0.01572057 0.01241796 −0.01989784

2.2. Polynomial Model

A polynomial correlation was developed to directly compute the composition of ethanol-water
solutions from experimental density-temperature measurements, without the use of an iterative solving
tool. The optimized polynomial equation uses seven coefficients including a constant, two temperature
dependent terms, three density dependent terms, and one cross term which is a function of both
temperature and density. The polynomial model is shown in Equation (8) where (x2) is the mole
fraction of ethanol in the binary mixture, (ρ) is the mixture density in

(
g

cm3

)
and (T) is temperature

in Kelvin.
x2 = θ1 + θ2T + θ3ρ + θ4ρ2 + θ5ρ−1 + θ6Tρ + θ7T−1 (8)

The mole fraction composition results computed using Equation (8) can additionally be converted
to a mass basis (wt.%) using Equation (9) where (MWi) is molecular weight of each component (water
(i = 1) and ethanol (i = 2)).

wt.% ethanol =
x2MW2

(x2MW2 + (1− x2)MW1)
·100 (9)

An additional advantage of the polynomial correlation is that it can be focused on specific
composition ranges to improve the model’s accuracy (e.g., 0–25 wt.% ethanol). The polynomial
model coefficients (θi) were regressed over five ethanol-water composition ranges using the same
density-composition data set as was used for the R-K model [14]. Tables 2 and 3 display the polynomial
model coefficients and associated errors respectively.

Table 2. Optimized coefficients for the polynomial model shown in Equation (8).

Ethanol Composition
Range (wt.%) θ1 θ2 (K−1)

θ3
(cm3·g−1)

θ4
(cm6·g−2)

θ5
(g·cm−3)

θ6
(cm3·g−1·K−1) θ7 (K)

0–100 −96.32780 −0.02856512 98.96611 −37.81838 35.07342 0.02844898 36.74344
0–25 1722.515 −0.04283923 −1786.652 612.3505 −548.0476 0.04246920 −17.43558
25–50 −357.4251 −0.01758119 381.6007 −138.9431 114.0415 0.01808855 155.2817
50–75 −6.965499 −0.02773449 −5.967778 2.310737 8.993499 0.03055873 255.8742

75–100 16.57862 −0.03431656 −37.51686 15.19476 3.823482 0.03827332 272.0696

Table 3. Average absolute deviation and largest absolute deviation between ethanol compositions
calculated using the polynomial model and published literature data for several composition
ranges. † Calculations made by using a solving tool to calculate mixture composition using the
Redlich-Kister expansion.

Ethanol Composition Range
(wt.%)

Average Absolute Residual (wt.% Ethanol)(
∑|predicted−literature|

n

) Largest Residual (wt.% Ethanol)
(max|predicted− literature|)

0–100 0.3739 2.447
0–25 0.1684 0.6908

25–50 0.0307 0.2435
50–75 0.01747 0.05981

75–100 0.01777 0.08352
R-K 0–100 † 0.4516 2.682
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3. Results and Discussion

The Redlich-Kister and polynomial expansion models were evaluated by comparing calculated
ethanol-water mixture composition values to literature data reported in Perry’s Handbook [15]. Figure 1
displays a comparison of ethanol composition as a function of density at four temperatures between
283–313 K, where the symbols represent the literature data and the polynomial model results are
shown as trend lines. A similar comparison for the Redlich-Kister model is displayed in supplemental
information, Figure S1. As shown in Figure 1 and Figure S1, the polynomial expansion and R-K models
both accurately computed the composition of ethanol-water mixtures and demonstrated average
deviations of 0.37 wt.% and 0.45 wt.%, respectively.
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Figure 1. Global comparison of the polynomial model fit to literature density data between 0–100 wt.%
ethanol. Data points represent published data and trend lines represent model fit.

Importantly, while performing the regression analysis we identified two data points in Perry’s
Handbook which were incorrectly transcribed from the original source, the International Critical Tables
of Numerical Data, Physics Chemistry and Technology [14]. The density values at 25 ◦C (61 wt.% EtOH)
and 40 ◦C (68 wt.% EtOH) are listed in Perry’s Handbook as 0.88446 g/cm3 and 0.85407 g/cm3 but
should be 0.88466 g/cm3 and 0.85507 g/cm3, respectively. We determined that the aforementioned
errors moderately impacted the R-K model fit and other researchers using the Perry’s data set should
be aware of these two errors. The model coefficients and results generated in this report used the
correct density data points as reported in the original reference [14].

The accuracy of each model was further assessed by examining the difference between the
computed ethanol composition and the corresponding literature value, herein referred to as the
residual. Figure 2 displays the residual plot for the polynomial correlation over an ethanol composition
range of 0–100 wt.%. As shown in Figure 2, the largest deviations occur in the 0–20 wt.% ethanol
composition range with smaller, non-random, deviations observed between 20–100 wt.% ethanol.
Figure 3 displays the residual plot for the Redlich-Kister model where again, the largest deviations
were observed in the 0–20 wt.% ethanol composition range.
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Figure 3. Weight percent (wt.%) residuals for mixture composition calculated using the
Redlich-Kister model with coefficients regressed using temperature dependent density data between
0–100 wt.% ethanol.

Comparing Figures 2 and 3 indicates that the R-K model predicts the composition of ethanol-water
mixtures at the 0 wt.% and 100 wt.% ethanol endpoints with greater accuracy than the polynomial
correlation. This observation can be understood by examining the formulation of the R-K model shown
in Equation (3). The Redlich-Kister model computes mixture density as a function of excess molar
volume

(
VE) which is directly dependent on composition and is zero for pure components. Therefore,

ethanol-water compositions computed by the Redlich-Kister model approach the pure component
values at each endpoint where VE = 0, resulting in the improved accuracy compared to the polynomial
model which is not bound at the composition endpoints.

Alternatively, the polynomial correlation is particularly advantageous as it can be optimized for
computing mixture composition within specific concentration ranges, resulting in increased accuracy.
For example, Figure 4 displays the residual plot for the polynomial model with coefficients fit to data
between 50–75 wt.% ethanol. The maximum residuals over this range are much smaller (±0.06 wt.%)
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compared with the error when the model was trained over the entire 0–100 wt.% composition range
(±0.37 wt.%). Table 3 displays the average and maximum residuals for the polynomial model when
fit to data in five composition ranges including: 0–25 wt.%, 25–50 wt.%, 50–75 wt.%, 75–100 wt.%,
and 0–100 wt.%. The polynomial model can also be optimized by fitting the coefficients to data over
a given composition range of interest, providing increased model accuracy for applications where
specific ethanol-water mixture compositions are expected.
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Figure 4. Weight percent (wt.%) residuals for mixture composition calculated using the polynomial
expansion model with coefficients regressed using temperature dependent density data between
50–75 wt.% ethanol.

The residuals displayed in Table 3 demonstrate that the polynomial correlation can compute
precise ethanol compositions when modeled using accurate density and temperature inputs. Top of
the line Coriolis mass flowmeters measure density and temperature with reported accuracies
of ±0.0002 g/cm3 and ±1 K, respectively [16]. These experimental uncertainties result in a
computed ethanol composition error of ±0.25 wt.% when calculated using the polynomial correlation.
This sensitivity analysis indicates the importance of obtaining accurate experimental density and
temperature data when using the correlations presented herein. Furthermore, these correlations are
designed for use with binary (1) water + (2) ethanol solutions and the effect of impurities on mixture
density and the calculated composition must be carefully examined before applying the methods
presented to multicomponent mixtures.

4. Conclusions

The polynomial and Redlich-Kister based correlations developed in this work provide two
methods for computing the composition of ethanol-water mixtures for fermentation and chemical
processes using experimental temperature and density measurements. The Redlich-Kister model
computed ethanol composition with an average deviation of ±0.45 wt.% over the 0–100 wt.% ethanol
composition range and required the use of an iterative solving tool. The polynomial model was slightly
more accurate (±0.37 wt.% deviation) over this same composition range and permits direct calculation
of mixture composition. The polynomial model can also be optimized for specific composition ranges,
further increasing the model accuracy. In conclusion, both models presented herein provide methods
for accurately calculating on-line ethanol-water composition.
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