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Abstract: In this study, the wild-type Rhodotorula mucilaginosa GDMCC 2.30 and its high carotenoid-
producing mutant JH-R23, which was screened from the space mutation breeding treated wild type,
were used as materials. Through whole-genome sequencing and resequencing analysis, the carotenoid
metabolic pathway and mechanism of high carotenoid production in the mutant were explored.
The R. mucilaginosa GDMCC 2.30 genome comprised 18 scaffolds and one circular mitochondrial
genome with a total size of 20.31 Mb, a GC content of 60.52%, and encoding 7128 genes. The
mitochondrial genome comprised 40,152 bp with a GC content of 40.59%. Based on functional
annotations in the GO, KEGG, and other protein databases, nine candidate genes associated with
carotenoid metabolic pathways, and candidate genes of the CrtS and CrtR homologous gene families
were identified. The carotenoid metabolic pathway was inferred to start from sugar metabolism to the
mevalonate pathway, as is common to most fungi, and the final product of the mevalonate pathway,
geranylgeranyl diphosphate, is a precursor for various carotenoids, including β-carotene, lycopene,
astaxanthin, and torularhodin, formed through the activity of crucial enzymes encoded by genes such
as CrtI, CrtYB, CrtS, and CrtR. Resequencing analysis of the mutant JH-R23 detected mutations in the
exons of four genes, including those encoding Gal83, 3-oxoacyl-reductase, p24 proteins, and GTPase.
These mutations are interpreted to have an important impact on carotenoid synthesis by JH-R23.

Keywords: Rhodotorula mucilaginosa; completed genome; carotenoid metabolic pathway;
mutation mechanism

1. Introduction

Carotenoids are fat-soluble pigments present in higher plants; fungi; algae; and bacte-
ria [1]. These compounds are favored by the food (including health food) and cosmetics
industries for their diverse physiological functions; such as antioxidant and antitumor ac-
tivity and immunity enhancement [2,3]. The estimated global market value for carotenoids
is projected to expand to USD 2 billion by 2026 with an annual growth rate of 4.2% [4]. Com-
pared with chemical synthesis and biological extraction; fermentation is currently the main
method used for commercial carotenoid production. To further improve the production
efficiency of carotenoids; research on strains producing high carotenoid yields and their
metabolic engineering has become an important focus for the industrial fermentation pro-
duction of carotenoids Rhodotorula mucilaginosa is a red yeast rich in carotenoids and lipids
and originates from seawater; sediments; glaciers; and other environments. Food waste;
agricultural waste; and other substances can be used as culture media for the species for
high density fermentation production of carotenoids and lipids [5–7]. Although wild-type
red yeast strains are highly adaptable; carotenoid production is relatively low. Therefore;
isolation of red yeast mutants producing high carotenoid yields and optimization of prod-
uct metabolism regulation based on the clarity of the mutation mechanism are urgently
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required for enhanced industrial production [8]. Cutzu et al. applied ultraviolet mutage-
nesis to Rhodotorula glutinis and isolated a mutant with its β-carotene yield increased by
2.8-fold compared with that of the parental strain [9]. Nasrabadi et al. combined multiple
physicochemical mutagenesis methods to obtain the mutant Rhodotorula acheniorum MRN
and increased its carotenoid yield by 6.45-fold through culture medium optimization [10].
Zheng et al. used atmospheric and room temperature plasma mutagenesis and screened
the mutant Rhodotorula toruloides M18; which showed a 14.68-fold increase in torularhodin
production over that of the wild type [11]. In previous work; our research group loaded
R. mucilaginosa GDMCC 2.30 onto the “New Generation Manned Spacecraft Test Ship” to
obtain the mutant JH-R23 and increased its carotenoid production by 2.46-fold through
optimization of the fermentation process [12]. However; little information is available on
the mechanism of high carotenoid production in red yeast mutants; and only a few genome
sketches assembled from Illumina sequencing data are available [13], still lacking high
quality genomic studies; which largely hinders improvement of the product yield and scale
of carotenoid production through metabolic regulation and optimization. In this study;
we sequenced the complete genome of strain GDMCC 2.30 using PacBio and Illumina
sequencing technologies and analyzed the carotenoid metabolic pathway by combining the
present genomic information and previous research. The mutant JH-R23 was resequenced
and its mutations were analyzed by comparative genomics to establish a theoretical basis
for research on metabolic engineering for carotenoid production in R. mucilaginosa.

2. Materials and Methods
2.1. Strain Culture and Genomic DNA Extraction

The wild-type R. mucilaginosa GDMCC 2.30 was purchased from the Guangdong
Microbial Culture Collection Center. The strain was cultured in 20 mL potato dextrose
broth medium (20% [w/v] potato, 2% [w/v] glucose, and pH 7.0) at 28 ◦C and 200 rpm until
the logarithmic phase (OD600 = 1.0). Cells were harvested by centrifugation at 13,400× g
for 1 min and immediately flash frozen in liquid nitrogen for further extraction of genomic
DNA and total RNA. Genomic DNA was extracted using the cetyltrimethylammonium
bromide method [14]. Genomic DNA quality and integrity were assessed by agarose gel
electrophoresis and comparison with appropriate size standards, while DNA yield and pu-
rity were measured using a NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and TM-380 fluorometer (Turner BioSystems, Inc., Sunnyvale, CA,
USA). High quality DNA (OD260/280 = 1.8–2.0, >1 µg) was used for the study.

2.2. Genome Sequencing and Transcriptome Sequencing

The genomes of the wild-type GDMCC 2.30 and the mutant JH-R23 were sequenced
by Shanghai Winnerbio Technology Co., Ltd. (Shanghai, China) using PacBio Sequel II
platforms and Illumina NovaSeq 6000. For PacBio sequencing, fragments shorter than
500 bp were removed from the SMRTbell library before long-read sequencing. For Illumina
sequencing, genomic DNA was fragmented using the E220 Focused-ultrasonicator (Covaris,
Shelton Connecticut, MA, USA), and the library was prepared by end repair, A-tailing,
adapter ligation, purification, and PCR amplification, followed by paired-end sequencing
(2 × 150 bp).

Total RNA was extracted from each strain using the TRIzol reagent kit (Sangon Biotech,
Shanghai, China) following the manufacturer’s protocol. Transcriptome sequencing li-
braries were constructed using the NEBNext Ultra Directional RNA Library Prep Kit
(New England Biolabs, Ipswich, MA, USA), and sequenced on an Illumina NovaSeq 6000
by Shanghai Winnerbio Technology Co., Ltd. (Shanghai, China). All genomic sequenc-
ing data and transcriptome sequencing data are available in the NCBI database under
BioProject PRJNA1034680.
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2.3. Genome Assembly and Prediction

The Illumina reads were further processed for quality control and filtered using fastp
(v0.23.2) [15]. The k-mer count (k-mer = 19) was calculated using Jellyfish (v2.2.10) [16].
GenomeScope (v2.0) and Smudgeplot (v0.2.5) [17] were used to estimate the genome size,
ploidy, repeat content, and heterozygosity. The PacBio data were corrected, trimmed, and
assembled using Flye (v2.9.1) [18] and the genome sequence was polished using NextPolish
(v1.4.0) [19]. The completeness of the assembly was evaluated using BUSCO (v5.4.5) [20]
with the basidiomycota_odb10 database. Telomeric repeats (TTAGGG/CCCTAA) in the
assembled genome were searched using Perl scripts.

The R. mucilaginosa GDMCC 2.30 genome was annotated using the pipeline shown in
Figure 1 [20].
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Figure 1. Schematic illustration of the pipeline for the genome annotation of R. mucilaginosa
GDMCC 2.30 with the supplements of transcriptome sequences. The orange lines indicate the
import of transcripts in MAKER3 for the further prediction of gene models. The IGV-GSAman
software correction schematic in Figure S1.

First, RNA clean reads were processed for quality control and filtering using fastp
(v0.23.2) [15]. A reference genome index was built with HISAT2 (v2.2.1) [21] using default
parameters, and clean reads were mapped to the R. mucilaginosa GDMCC 2.30 genome.
The mapped reads were sorted and indexed using SAMtools (v1.16.1) [22]. The unmasked
genome and mapped reads were entered into BRAKER2 (v2.1.6) [23] for ab initio prediction
with default settings. After intron identification, preliminary training datasets for gene
model prediction were generated using GeneMark-ET (v4.46) and AUGUSTUS (v3.4.0).

Transcripts were then assembled and merged by genome-guided assembly using
StringTie (v2.2.1) [24] and HISAT2 (v2.2.1) [21] with default settings for the above mapped
reads. The resulting transcriptome database was used to predict gene models with Trans-
Decoder (v5.5.0) [25]. In parallel, the transcriptome database, R. mucilaginosa GDMCC 2.30
genome sequences, previously identified R. mucilaginosa GDMCC 2.30 repetitive sequences,
and all available fungal homologous protein sequences in the genus Rhodotorula were
used to generate an initial gene model prediction with the SNAP model implemented
in MAKER3 (v3.01.03) [26]. This initial prediction, the transcriptome database, and pre-
liminary training datasets from BRAKER2 (v2.1.6) were then incorporated into MAKER3
(v3.01.03) for the final gene model prediction.
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After obtaining initial gene models, PASA was utilized to update and refine them.
Additionally, gene structure annotation information was manually reviewed and corrected
using IGV-GSAman (v0.7.14) (https://gitee.com/CJchen/IGV-sRNA, accessed on 13 Febru-
ary 2023). This allowed us to obtain the final gene model prediction. The genome annotation
was submitted to the NCBI database under BioProject PRJNA1034680.

Repeats were identified by RepeatModeler (v2.0.3) [27] and RepeatMasker (v4.1.2) [28].
Barrnap (v0.9) (https://github.com/tseemann/barrnap, accessed on 14 May 2023) was
used to predict rRNA genes, tRNAscan-SE (v2.0.11) [29] was used to predict tRNA genes,
and snRNAs were identified by searching the Rfam database using CMsearch (v1.1.4) [30].
Functional annotation of genes in the genome (E-value ≤ 1 × 10−5) by searching against
the Nr, SwissProt, KOG, and GO databases was performed using DIAMOND (v0.9.24) [31].
KEGG orthologs were assigned using KofamScan (v1.3.0) [32]. The mitochondrial genome
was functionally annotated using GeSeq [33] online followed by manual curation and was
visualized using Chloroplot [34].

2.4. Comparative Genomics and Genetic Variation Analysis

The Rhodotorula mucilaginosa JH-R23 genome and 13 representative red yeast genomes
were used for a comparative genomic analysis, comprising Rhodotorula babjevae CBS 7808,
Rhodotorula diobovata UCD-FST 08-225, Rhodotorula glutinis ZHK, Rhodotorula graminis WP1,
Rhodotorula kratochvilovae YM25235, Rhodotorula mucilaginosa JY1105, Rhodotorula paludi-
gena TL35-5, Rhodotorula sphaerocarpa GDMCC 60679, Rhodotorula taiwanensis MD1149,
Rhodotorula toruloides NP11, Sporidiobolus pararoseus NGR, Sporidiobolus roseus SR19, and
Phaffia rhodozyma CBS 6938 (Table S1). OrthoFinder (v2.5.4) [35] was used to identify and
cluster gene families. Next, 1646 single-copy orthologs were globally aligned using MUS-
CLE (v5.1) [36] and subjected to phylogenetic analysis using the maximum likelihood
method implemented in RAxML (v8.2.12) [37] with “-# 1000 -m PROTGAMMAAUTO”.
Divergence times were estimated by MCMCTree (v4.9) [38] using fourfold degenerate
sites of single-copy gene families with the parameter settings clock = 3 and model = 0.
Expanded and contracted gene families were identified by CAFÉ5 [39]. Carotenoid gene
clusters were identified by antiSMASH (v6.0.0) [40] using the ClusterBlast algorithm and
visualized using the ChiPlot online Web Page (https://www.chiplot.online/, accessed on
18 May 2023). Candidate gene domains were predicted using CDD [41] and MEME [42] on-
line. Phylogenetic trees were constructed and visualized using ChiPlot. Single-nucleotide
polymorphisms (SNPs) and insertions/deletions (InDels) were identified using GATK4.0
and were annotated using Annovar [43].

2.5. Space Breeding Mutation

For pre-flight preparation, R. mucilaginosa GDMCC 2.30 cells were cultured in tubes
containing potato dextrose agar (HuanKai, Guangzhou, China) at 28 ◦C for 48 h. These
tubes were shipped from Shenzhou Biotechnology Co. (Inner Mongolia, China) to the
“New Generation Manned Spacecraft Test Ship”, which flew for 67 h in space under special
conditions of microgravity (10−6–10−3 g), vacuum (101.325 kPa), temperature (17–23 ◦C),
and cosmic ionizing radiation (0.146 Gy/y); the tubes were returned to the laboratory after
the successful landing of the return capsule.

After the space mission, the mutants were gently scraped from the potato dextrose
agar tubes, resuspended in 10 mL of sterile water and diluted to 10−5, 10−6, and 10−7 with
sterile water, and plated on potato dextrose agar at 28 ◦C for 48 h to screen for the high-
est carotenoid-producing strain. The strain with the highest carotenoid production was
screened on potato dextrose agar plates and named JH-R23. The wild-type and mutant
strains were inoculated into 20 mL of potato dextrose broth medium at 28 ◦C and 200 rpm
for 144 h, respectively. Carotenoid production and dry cell weight were determined every
24 h to compare their carotenoid differences. Meanwhile, they were plated on potato
dextrose agar plates and incubated at 28 ◦C for 120 h to be stored for preservation.

https://gitee.com/CJchen/IGV-sRNA
https://github.com/tseemann/barrnap
https://www.chiplot.online/
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The internal transcribed spacer (ITS) gene region of rDNA was amplified by poly-
merase chain reaction (PCR) using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4
(5′-TCCTCCGCTTATTGATATGC-3′) primers purchased from Sangon Biotech (Shanghai,
China) [44]. The PCR products were analyzed by electrophoresis before being sent to San-
gon Biotech (Shanghai, China) for sequencing. The obtained ITS sequences were available
in the NCBI GenBank database under OR976268-OR976269, and then blasted against the
NCBI database for identification.

2.6. Carotenoid Yield and Biomass Determination

Extraction of carotenoid was performed as described by Tian et al. [45] with some
modifications as follows. After fermentation, cells were disrupted using the DMSO cell
wall breaking method. Fermentation broth (5 mL) was centrifuged at 7576× g for 5 min to
obtain wet cells, which were washed twice with triple distilled water, resuspended once in
5 mL of 99% anhydrous ethanol, and centrifuged at 7576× g for 5 min. The supernatant was
discarded, 2 mL DMSO was added to resuspend the cells, the cell suspension was incubated
in a 65 ◦C water bath for 1.5 h, then 6 mL acetone was added and shaken for 10 min until the
cells were colorless. After centrifugation at 7576× g for 5 min, the supernatant was collected
to measure the absorbance at 480 nm. Total carotenoid yield was calculated according to
previous studies [46]. Carotenoid yield was calculated using the following formula:

Carotenoid yield per unit cell dry weight (µg/g) = A480 × D × V/(0.16 × W),

where D is the dilution factor, V is the volume of organic solvent used for extraction (mL),
W is the dry weight of cells used for extraction (g), and 0.16 is the extinction coefficient of
the organic solvent.

For biomass determination [47], 5 mL fermentation broth was centrifuged at 7576× g
for 5 min. The supernatant was discarded, the wet cells were washed twice with 5 mL
triple distilled water, and then centrifuged to obtain the wet cells. The wet cells were dried
to constant weight in a 105 ◦C oven and the dry weight was measured as the biomass.

2.7. Statistical Analysis

The data are presented as the mean ± SD of at least three independent experiments.
All data were statistically analyzed using SPSS software (v26.0). Significant differences
were assessed using two-sided t-tests (p < 0.05).

3. Results and Discussion
3.1. Rhodotorula mucilaginosa GDMCC 2.30 Genome Sequencing, Assembly, and Evaluation

To assemble a high quality genome of R. mucilaginosa GDMCC 2.30, PacBio Sequel
II and Illumina NovaSeq 6000 were used to sequence the complete genome. The results
showed that a total of 6.94 Gb Illumina short reads and 6.42 Gb PacBio long reads were ob-
tained, approximately 300× high quality subreads covered the 21.27 Mb genome (Table S2).
Based on a k-mer analysis, the genome heterozygosity was 0.0141%, suggesting that the
strain was a homozygous diploid (Figure S2). The genome contained 18 scaffolds and a
circular mitochondrial genome with a total size of 20.31 Mb and a GC content of 60.52%.
The circular mitochondrial genome comprised 40,152 bp with a GC content of 40.59%
(Figure 2). A total of 1714 BUSCO genes were identified (97.1%) and telomere sequences
existed at both ends of most scaffolds (Table S3), indicating the genome data were of high
quality. Given the high-depth sequencing, novel sequencing technologies, and suitable
assembly methods, the assembly for wild-type GDMCC 2.30 was more complete, accurate,
and near chromosome level compared with assemblies reported for other conspecific strains
(Table 1). This laid a sound foundation for functional genomic and mutation analysis of
this strain.
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Table 1. Published genomic data for Rhodotorula mucilaginosa (as of November 2023).

Reference This Study [48] [49] [50] [51] [52] [53]

Statistical
terms

R. mucilaginosa
GDMCC 2.30

R. mucilaginosa
RIT389

R. mucilaginosa
JGTA-S1

R. mucilaginosa
CYJ03

R. mucilaginosa
C2.5t1

R. mucilaginosa
KR

R. mucilaginosa
rhodo3571

Genome size
(Mbp) 20,314,606 19,664,434 20,108,097 19,037,214 19,981,819 20,066,154 19,947,800

Coverage 300X 70X 150X 66X 70X 89X 70X

GC content (%) 60.52 60.28 60.50 60.49 60.50 60.60 60.55

N50 1,363,337 194,287 685,765 420,192 45,031 134,619 49,539

No. Scaffolds 18 250 46 88 1034 359 789

Protein-coding
genes 7128 7065 5922 6301 6413 7059 NA a

Sequencing
platform

PacBio Sequel
II, Illumina

NovaSeq 6000
Illumina MiSeq

Illumina
MiSeq, Oxford

Nanopore
MinlON Mk1b

PacBio Sequel,
Illumina MiSeq

Illumina
HiScanSQ

Illumina HiSeq
2000

Illumina
NextSeq 550

BUSCO (%) 97.10 89.70 NA a NA a NA a 93.4 NA a

Mitochondrion
number 1 1 0 0 0 0 0

a NA, not available.
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GC content, sequencing depth, and collinearity, respectively. (B) mitochondrial genome; Genes 
within the circle are transcribed clockwise, while those outside are transcribed counter-clockwise. 
Genes are color-coded based on their functional groups. The inner circle’s orange represents the GC 
content, while the maroon represents the AT content. 

Figure 2. (A) Circular maps of the Rhodotorula mucilaginosa GDMCC 2.30 nuclear genome; Tracks
from the outermost to innermost circles represent chromosome information, gene expression level,
GC content, sequencing depth, and collinearity, respectively. (B) mitochondrial genome; Genes within
the circle are transcribed clockwise, while those outside are transcribed counter-clockwise. Genes are
color-coded based on their functional groups. The inner circle’s orange represents the GC content,
while the maroon represents the AT content.

3.2. Rhodotorula mucilaginosa GDMCC 2.30 Gene Annotation and Carotenoid Biosynthesis
Pathway Prediction

A Repeats accounted for 1.71% of the R. mucilaginosa GDMCC 2.30 genome, including
LTR transposons, which accounted for 1.03%. The MAKER annotation pipeline predicted
7128 protein-coding genes, 118 tRNAs, 23 rRNAs, and 7 snRNAs. Integrated annotations
from the Nr, SwissProt, KOG, GO, and KEGG databases revealed 7015 genes (98.41%)
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with predictable functions (Figure S3, Table S4), with an average gene sequence length of
1717.9 bp and an average protein sequence length of 571.7 aa; the average number of exons
per gene was 6.39 with an average length of 268.8 bp, and the average number of introns
per gene was 5.39 with an average length of 89 bp. The mitochondrial genome contained
23 tRNA genes, 3 rRNA genes, and 25 protein-coding genes (Figure 2B). Compared with the
reported R. mucilaginosa RIT389 (NC_036340.1) mitochondrial genome [48], the GC content
and genome size were basically consistent, with sequence similarity of 99% (Figure S4).

Given that annotations of the R. mucilaginosa GDMCC 2.30 genome included six candi-
date genes associated with the mevalonate pathway and five carotenoid biosynthesis candi-
date genes in total (Table S5), it was inferred that, with acetyl coenzyme A (acetyl-CoA) as
the initial substrate, geranylgeranyl diphosphate (GGPP) could be synthesized through the
synergistic activities of multiple crucial enzymes to provide precursors for the biosynthesis
of C40 carotenoids [54]. In addition, the genome contained numerous genes and gene
clusters encoding carotenoid biosynthetic enzymes, such as lycopene cyclase/phytoene
synthase (CrtYB), carotenoid oxygenase (CCD1), phytoene desaturase (CrtI), and geranyl-
geranyl pyrophosphate synthase (CrtE) (Figure 3A). These enzymes collaboratively catalyze
the conversion of GGPP into various carotenoids, including lycopene, β-carotene, and
torulene [55,56].

Fermentation 2024, 10, x FOR PEER REVIEW 7 of 14 
 

 

3.2. Rhodotorula Mucilaginosa GDMCC 2.30 Gene Annotation and Carotenoid Biosynthesis 
Pathway Prediction 

A Repeats accounted for 1.71% of the R. mucilaginosa GDMCC 2.30 genome, including 
LTR transposons, which accounted for 1.03%. The MAKER annotation pipeline predicted 
7128 protein-coding genes, 118 tRNAs, 23 rRNAs, and 7 snRNAs. Integrated annotations 
from the Nr, SwissProt, KOG, GO, and KEGG databases revealed 7015 genes (98.41%) 
with predictable functions (Figure S3, Table S4), with an average gene sequence length of 
1717.9 bp and an average protein sequence length of 571.7 aa; the average number of exons 
per gene was 6.39 with an average length of 268.8 bp, and the average number of introns 
per gene was 5.39 with an average length of 89 bp. The mitochondrial genome contained 
23 tRNA genes, 3 rRNA genes, and 25 protein-coding genes (Figure 2B). Compared with 
the reported R. mucilaginosa RIT389 (NC_036340.1) mitochondrial genome [48], the GC content 
and genome size were basically consistent, with sequence similarity of 99% (Figure S4). 

Given that annotations of the R. mucilaginosa GDMCC 2.30 genome included six can-
didate genes associated with the mevalonate pathway and five carotenoid biosynthesis 
candidate genes in total (Table S5), it was inferred that, with acetyl coenzyme A (acetyl-
CoA) as the initial substrate, geranylgeranyl diphosphate (GGPP) could be synthesized 
through the synergistic activities of multiple crucial enzymes to provide precursors for 
the biosynthesis of C40 carotenoids [54]. In addition, the genome contained numerous 
genes and gene clusters encoding carotenoid biosynthetic enzymes, such as lycopene 
cyclase/phytoene synthase (CrtYB), carotenoid oxygenase (CCD1), phytoene desaturase 
(CrtI), and geranylgeranyl pyrophosphate synthase (CrtE) (Figure 3A). These enzymes 
collaboratively catalyze the conversion of GGPP into various carotenoids, including lyco-
pene, β-carotene, and torulene [55,56]. 

 
Figure 3. Analysis of the carotenoid metabolic pathway in Rhodotorula mucilaginosa GDMCC 2.30. 
(A) Comparison of carotenoid biosynthetic gene clusters among 13 red yeast species. Homologous 
genes are indicated by the same color; (B) Putative carotenoid metabolic pathway map. All protein-
coding genes are annotated from the KEGG database. The full gene names are listed in Table S5. 

Currently, the metabolic process of astaxanthin and torularhodin synthesis in 
Rhodotorula yeasts remains controversial. Previous studies indicate that, in P. rhodozyma, 
CrtS and CrtR collaboratively catalyze the ketolation and hydroxylation of β-carotene into 
astaxanthin [57–59]. By constructing phylogenetic trees for the Ascomycota CrtS 
(OG00000414) and the CrtR (OG00004469) gene families to predict their domain structures 
(Figure S5), we observed that both gene families had similar domain compositions and 

Figure 3. Analysis of the carotenoid metabolic pathway in Rhodotorula mucilaginosa GDMCC 2.30.
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Currently, the metabolic process of astaxanthin and torularhodin synthesis in Rhodotorula
yeasts remains controversial. Previous studies indicate that, in P. rhodozyma, CrtS and CrtR
collaboratively catalyze the ketolation and hydroxylation of β-carotene into astaxanthin [57–59].
By constructing phylogenetic trees for the Ascomycota CrtS (OG00000414) and the CrtR
(OG00004469) gene families to predict their domain structures (Figure S5), we observed
that both gene families had similar domain compositions and motif constitutions (Table S6).
Motif_7a showed species specificity, whereas motif_7b showed copy number specificity.
The CYP_FUM15-like structural domain is highly conserved in the CrtS gene family, while
the CYPOR and Flavodoxin_1 structural domains are conserved in the CrtR gene family.
Therefore, although R. mucilaginosa is phylogenetically distant from P. rhodozyma, analysis
of the amino acid sequence similarity and domain structure suggested a strong similarity
in adaptive evolution. It is inferred that the enzymes encoded by these gene families in
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R. mucilaginosa have similar ketolation or hydroxylation functions as those in P. rhodozyma
and participate in the synthesis of carotenoids such as astaxanthin and torularhodin. How-
ever, the exact synthesis pathways for these carotenoids in R. mucilaginosa GDMCC 2.30
require further verification by performing heterologous expression experiments. In sum-
mary, based on the present genomic information and previous research, the carotenoid
biosynthetic pathway in R. mucilaginosa GDMCC 2.30 was resolved from a KEGG pathway
analysis (Figure 3B), which lays the foundation for future understanding of carotenoid biosyn-
thesis, as well as providing new insights into the study of carotenoid metabolic pathways.

3.3. Analysis of the Mechanism of High Carotenoid Production in the Mutant JH-R23

Through space mutation breeding treatment of R. mucilaginosa GDMCC 2.30, we
diluted the yeast cells and plated them on potato dextrose agar plates to screen for a
high carotenoid-producing mutant strain. Pigment intensity analysis was performed on
46 colonies grown on potato dextrose agar plates (Figure 4A, left) and we obtained a deep
red mutant strain, JH-R23, which was molecularly identified, fermentation verified, and
strain conserved (Figure 4A, right). A 617 bp fragment of the rDNA-ITS gene was amplified
and sequenced. The sequence obtained was compared with sequences in the NCBI database
and showed 100% similarity to the R. mucilaginosa strain (OR976269.1), confirming the
homology of the isolated strain. Before 24 h of cultivation, the carotenoid production
of JH-R23 and wild-type strains was similar, with no significant difference. However,
after 48 h of cultivation, the carotenoid production per 24 h of the JH-R23 strain was
1.98, 1.94, 2.01, 2.39, and 2.46 times higher than that of the wild-type strain, respectively,
and reached a peak after 144 h of cultivation. The carotenoid production of the wild-type
strain was 151.39 µg/g and that of the JH-R23 mutant strain was 372.84 µg/g (Figure 4B).
Mutagenesis has been used to enhance carotenoid production in R. mucilaginosa to varying
degrees. However, current research has mainly focused on UV mutagenesis. Issa et al.
mutagenized R. mucilaginosa A734 using UV light at 254 nm, resulting in a 1.12-fold increase
in total carotenoids [60]. However, the observed increase was much lower than that of
JH-R23 in this study (2.46-fold), and this is the first time that such a significant increase in
carotenoids has been reported for R. mucilaginosa by space mutagenesis.

Genome resequencing analysis of the genetic variation in JH-R23 detected 38 SNPs
and 58 InDels (Table S7). The majority of mutations were located in intergenic regions, but
mutations were detected in the exons of four genes encoding Gal83, 3-oxoacyl-reductase,
p24 family protein, and GTPase.

The Gal83 protein is the β subunit of the Snf1 protein kinase complex, forming a
trimer complex with the α subunit of Snf1 and γ subunit of Snf4 [61]. As an important
intracellular energy sensor, this complex is activated under glucose starvation and partic-
ipates in relieving the inhibition of glucose catabolism products. For example, the Snf1
protein kinase complex promotes expression of the hexose transporter genes HXT2 and
HXT4 and phosphorylates the Mig1 transcriptional repressor to relieve the inhibition of
Gal gene transcription regulated by galactose induction [62,63]. The insertion of a cytosine
nucleotide in the Gal83 coding sequence of JH-R23 caused a frameshift mutation, short-
ening the protein length from 851 to 540 amino acids (Figure 4C), resulting in the loss
of glycogen-binding capability. However, Gal83 contains a highly conserved glycogen-
binding domain that is homologous to that of AMPK family proteins. The mutation that
eliminated Gal83–glycogen binding would also affect the activity of the Snf1 protein kinase
complex, thus weakening the feedback inhibition effect of glucose catabolism products.
This would lead to sustained expression of high-affinity transport proteins, thereby en-
hancing the co-consumption capabilities of glucose and xylose to provide substrates and
energy for carotenoid synthesis [64]. In addition, this mutation may influence the con-
formation of adjacent domains or interactions with unknown signaling molecules, and
thus the specific mechanism requires further study [64]. As shown by Wang et al. [54],
transcriptome comparison between a Gal83 knockout strain and the wild type revealed
upregulation in the acetyl-CoA and CoA biosynthesis pathways, but downregulation in
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the sugar lipid metabolism and ether lipid metabolism pathways. This finding highlighted
the regulatory role of Snf1 in carbon source utilization, sporulation, trap formation, ox-
idative stress response, and other metabolic activities, providing substrates and energy
for the downstream synthesis of metabolic products [65]. In addition, 3-oxoacyl-reductase
plays an important role in the primary stage of lipid synthesis and multiple synonymous
mutations may reduce the expression of lipid synthetic enzymes by changing the codon
usage preference, thereby reducing the competition for carotenoid precursors. Mutation
of GTPase can increase the sensitivity of a strain to osmotic pressure and oxidative stress,
stimulating elevated carotenoid production for antioxidation [66]. In summary, the Gal83
mutation may be the major reason for the change in carotenoid yield in the JH-R23 mutant,
but the mutations in the genes encoding 3-oxoacyl-reductase and GTPase also may increase
carotenoid yield to some extent.
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Comparative analysis of 13 red yeast genomes revealed 4084 orthologous gene fami-
lies and 1646 single-copy orthologous gene families (Table S8). Based on the gene family
analysis, a phylogenetic tree for 14 red yeast species was constructed (Figure 5). A GO
enrichment analysis indicated that JH-R23-specific gene families were mainly enriched
in purine nucleotide biosynthesis and metabolism, cytoplasmic ribosomes, pantothenate
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biosynthesis and metabolism, and amide biosynthesis and metabolism (Table S9). Pan-
tothenate is a precursor of CoA, which can promote the synthesis of acetyl-CoA and stimu-
late energy metabolism, thereby increasing the supply of carotenoid precursors and energy,
and enabling the potential capability for high carotenoid production in JH-R23 [67,68].
Comparative evolutionary analysis showed that 88 gene families were significantly ex-
panded, and 69 gene families were significantly contracted in JH-R23 (p < 0.05; Figure 5).
Furthermore, GO and KEGG enrichment analyses indicated that these gene families were
associated with ABC transporters, ribosomes, and other pathways (Table S10). These
findings suggested that the mutant JH-R23 exhibited higher metabolic activity, unique
pantothenate synthesis, and stronger transmembrane transport capabilities, thus enabling
the high carotenoid production.
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In summary, an exon mutation disrupted the glycogen-binding domain of Gal83,
which would affect the activity of the Snf1 protein kinase complex and weaken its feedback
inhibition of glucose. This would lead to sustained expression of high-affinity transport
proteins, thereby increasing sugar consumption to provide substrates and energy for
carotenoid synthesis.

4. Conclusions

In this study, we generated a near chromosome-level genome assembly of R. mucilagi-
nosa GDMCC 2.30 using PacBio Sequel II and Illumina NovaSeq 6000 sequencing data. This
genome contained 18 scaffolds and a circular mitochondrial genome with a total size of
20.31 Mb and a GC content of 60.52%. The mitochondrial genome comprised 40,152 bp
with a GC content of 40.59%. A total of 1714 BUSCO genes (97.1%) were identified, and
most scaffold ends contained telomere sequences, indicating the data quality was high, and
enabling further analysis of the biological evolution and functional genomics of the strain.
Through in-depth analysis and sorting of carotenoid-related gene clusters and families, the
carotenoid biosynthesis pathway in the strain was inferred to start from sugar metabolism
to mevalonate metabolism, and the final product of mevalonate metabolism (GGPP) is a
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precursor for various carotenoids formed through the activity of crucial enzymes encoded
by genes such as CrtI, CrtYB, CrtS, and CrtR. The mutant JH-R23, screened after loading
GDMCC 2.30 on the “New Generation Manned Spacecraft Test Ship”, was resequenced
and comparative genomic analysis showed that an exon mutation disrupted the glycogen-
binding domain of Gal83, thereby affecting the activity of the Snf1 protein kinase complex
and weakening the feedback inhibition of glucose catabolism. These changes would lead
to sustained expression of high-affinity transport proteins, thereby enhancing sugar con-
sumption to provide substrates and energy for carotenoid synthesis. Multiple synonymous
mutations of 3-oxoacyl-reductase and GTPase were additional important factors that would
contribute to the increase in carotenoid production, establishing the genetic foundation for
elevated carotenoid production.
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