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Abstract: Pharmaceuticals have emerged as a new class of ecological pollutants and have majorly
contributed to harmful effects on the environment and human health. The presence of these pharma-
ceuticals in wastewater treatment plants, ground, and seawater has been reported widely. Organic
dyes and other organic contaminants which are being considered as emerging contaminants are
now in the race among the top organic pollutants that need effective treatment. Removal of these
contaminants via green adsorbents has become an essential requirement towards a green and cleaner
environment. Herein, we report the efficacy of the novel greener porous graphene obtained via the
near-green synthesis method as an adsorbent material for treating seven organic pollutants: Methyl
orange, Methyl red, Rhodamine-B, Ciprofloxacin, Atenolol, Ibuprofen, and Carbamazepine. Batch
tests were conducted to investigate the effect of adsorption time and varying adsorbent dosages.
The obtained greener porous graphene showed fast kinetics, which was determined to be guided by
pseudo second-order kinetics and the maximum pollutant removal efficiency (>80%) was seen at a
high adsorbent dosage (2 mL injected from a 5 g/L solution). Furthermore, the nonlinear adsorption
modeling confirmed that the greener porous graphene followed the Langmuir model for the dye
rhodamine-B sorption and the Freundlich model for all the other six contaminants. This greener
porous graphene can be considered an effective adsorbent for the removal of organic pollutants
in wastewater.

Keywords: greener porous graphene; near-green synthesis; emerging contaminants; organic dyes;
Akaike information criterion; adsorption; water treatment

1. Introduction

Two major industries, i.e., medical and textile, have created a socio-economic milestone
in human history [1,2]. Textile industries dispose of their effluents at a rapid rate, and their
residue in water sources has caused great concern for human as well as aquatic life [3].
The WHO declared that 4000 children die almost every day due to waterborne diseases
originating from inefficient water and wastewater treatment [4].

Of these industrial effluent pollutants, organic dyes are carcinogenic to human health
and are prominent noxious contaminants for the environment [5]. Organic dyes account
for 15% of the world’s total dye production, which is disposed of as waste from fabrics and
textile industries [6]. Organic dyes such as Methyl orange (MeO), Methyl red (MeR), and
rhodamine-B (RD) are frequently used dyes in the fabric dyeing process. MeO is a water-
soluble azo dye with considerable mutating properties. The presence of this dye inside
the human body can cause serious diseases, such as intestinal cancer [7]. Deterioration
in kidneys, liver, lungs, or even nervous systems are all resultant effects of the presence
of dyes in the body. MeR is an anionic azo dye that irritates the eye, skin, and gut when
ingested [8]. On the other hand, RD is a cationic azo dye that comes with harmful effects,
such as dermatitis (skin irritation) and skin cancer [9]. Therefore, these dyes must be treated
effectively instead of being disposed of in water bodies.
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Pharmaceuticals have increased human quality of life and have helped us fight dan-
gerous diseases. However, their frequent presence in water sources through several means
is now a growing concern and they are viewed as ‘emerging contaminants (ECs)’ [10–24].
Due to their considerable presence in the environment, they are often referred to as ‘pseudo
persistent’ contaminants [11,25–28]. Groundwater and surface water both contain some
pharmaceutical remnants with concentrations nearly less than 100 ng/L, while treated
water contains these contaminants at concentrations below 50 ng/L [29]. These levels
are soaring across the world, daily, and according to the authors of [30], a very high
concentration of pharmaceuticals is present in African and European waters.

Pharmaceuticals commonly found in UK waters are Atenolol (AT), Ibuprofen (IBU),
Ciprofloxacin (CPF), and Carbamazepine (CB) [31]. AT is described as Beta-blockers
(BB), commonly advised for hypertension, heart rhythmic disease, or myocardial
infractions [32,33]. CB is a frequent drug used in treatment lines for epilepsy and pre-
vents human-embryonic cell growth [34,35]. CPF is considered to be among the top ten
fluoroquinolone antibiotics for treating bacteria and fighting infections [36,37], and the
presence of this organic pollutant in the environment not only creates an ecological dis-
balance but also leaves long-term effects in the body when more than the prescribed dose
is ingested [38]. IBU is an anti-inflammatory drug, used for the treatment of pain, fever,
and rheumatic disorders, and is very commonly used in the UK [39]. If not removed
efficiently from the wastewater, it has a detrimental effect on human health and the aquatic
ecosystem [40]. Therefore, there is an imperative need to treat the water and wastewater
(containing these organic pollutants).

Removal of various contaminants through the adsorption process has proven to be
the most efficient and cost-effective method [3,40]. Adsorbents of hydrophobic nature have
emerged as an effective removal means for both organic and inorganic contaminants [40].
Porous graphene (PG), i.e., a carbon-based material with super-hydrophobicity, has sur-
faced as an effective adsorbent for the removal of contaminants such as dyes and heavy
metals [3]. PG has also been tested against six emerging contaminants, namely atenolol,
carbamazepine, ciprofloxacin, diclofenac, gemfibrozil, and ibuprofen, at their trace con-
centrations and has been shown to have an effective removal efficiency (>99%) at low PG
dosages (100 mg/L) [31]. It also showed good recyclability and effective regeneration for
up to four cycles [31]. The removal efficiency of these pharmaceuticals was further in-
creased using PG as a filter media in the adsorption column filter tertiary unit [41]. Various
composites, such as GNP/BNA (graphene nanoplatelet/Boron Nitride), with a maximum
adsorption capacity of 185 mg/g, have proven to be potential candidates for the removal of
ciprofloxacin [42].

Synthesis of PG via various methods has also been studied. Graphene oxide (GO)
has proven to be the vital precursor to synthesize PG, and the most common chemical
technique to obtain GO is the Hummers method [43]. Several green techniques have been
incorporated to achieve PG via GO as the common precursor [44–46]. However, all these
green methods use GO as a precursor, synthesized from the techniques involving noxious
reactants resulting in the release of toxic gases into the environment. Thus, there is an
absolute need for greener adsorbent materials.

A recent novel technique was demonstrated, where a greener method was obtained
to synthesize a greener PG [47]. The authors [47] reported a high yield of greener GO
synthesized by oxidation of graphite via this near-green technique. The successful synthesis
of the as-produced bi-layered greener PG was confirmed via various characterization
techniques, such as Atomic Force Microscopy, Transmission Electron Microscopy, X-ray
diffraction, and Scanning Electron Microscopy. Herein, for the very first time, we report
the Brunauer–Emmett–Teller (BET) Specific Surface area of this novel greener PG and
investigate its efficacy in removal the of seven emerging contaminants (ECs), such as AT,
CB, CPF, IBU, MeO, MeR, and RD.

The aim of this study is to understand the potency of this novel greener PG, syn-
thesized via a near-green route [47], for treating emerging contaminants in wastewater.



C 2023, 9, 97 3 of 19

For the very first time, this study outlined the removal efficacy of greener PG in water
treatment applications and proved its potential as a candidate for an adsorbent material.
BET measurements for this novel greener adsorbent were also carried out to investigate
and compare the surface area of the PG derived commercially from noxious reagents.
This research aimed to establish an environmentally friendly PG adsorbent in the field of
wastewater/water treatment.

2. Materials and Methods
2.1. Chemical and Adsorbent Preparation

Graphite powder (~20 µm), Sulphuric Acid (H2SO4:95–98% w/w), Paraffin Wax, Ethyl
cellulose (48.0–49.8% (w/w)), Cyclohexane (anhydrous 95%), MeO, MeR, RD dye, and
analytical-grade pharmaceuticals (AT, CPF, CB, and IBU) were directly purchased from
Sigma-Aldrich Co. (Poole, UK) and used without further purification. Potassium ferrate
was supplied by Skyrun Industrial Co., Ltd., Nanjing, China, High-Tech Industrial Park,
Chemical Zone, Zhejiang, China. Commercial reduced graphene oxide (purity > 99% and
thickness 5–10 nm) was purchased internationally from Platonic Nanotech Private Ltd.,
Kachwa Chowk, Mahagama, Dist.-GODDA, Jharkhand, India.

Preparation of greener PG—The material was obtained via near-green synthesis, as
reported in ref. [47].

Preparation of commercial PG—Reduced graphene oxide (rGO) was placed overnight at
200 ◦C in a vacuum oven to obtain commercial PG.

Pharmaceuticals (AT, CPF, CB, and IBU) and organic dyes (MeO, MeR, RD)—Stock solu-
tions were obtained by mixing pharmaceuticals and dyes with the de-ionized water (DW).
To avoid the photo-degradation of these prepared stock solutions, airtight containers were
used for their storage and were kept in a dark place.

2.2. Analytical Methods
Microstructural Surface Area Characterization

Brunauer–Emmett–Teller (BET) specific surface area (SSA), porosity, pore volume,
and pore size of the greener PG were analyzed using a Quantachrome Autosorb-iQ gas
area characterization analyzer. After being heated at 200 ◦C for four hours to flush out
impurities lodged in the pores, the sample (greener PG) was cooled in an external bath at
−195.8 ◦C. After that, the nitrogen gas (N2) was applied, and the total volume and pressure
were then measured.

2.3. Batch Tests and Analysis

All seven pollutants were tested in batches under various experimental settings,
including contact time and varying greener PG doses. Each test was run three times, and
the average result was used to analyze the data.

2.3.1. Effect of the Contact Time and Study of Kinetic Models

Without adjusting the pH of the contaminated solutions, kinetic experiments were
conducted for the pollutants with a starting concentration of 10.0 mg/L (stock solution)
throughout various time intervals, at room temperature (22 ± 3 ◦C) (AT, CB, CPF, IBU,
MeO, MeR, and RD). Each of these 20 mL contaminant solutions was placed into 50 mL
airtight sealed bottles. These contaminant solutions were then given a specific amount of
adsorbent (1 mL injected from a suspension of 5 g of greener PG/L). The solutions were
then each magnetically stirred for the allotted amounts of time (t = 5, 10, 15, 20, 40, 80, and
120 min). Finally, a 0.2 µm membrane filter was used to instantly filter the samples that
were collected at the designated time.
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Two kinetic models: pseudo first-order (Equation (1)) and pseudo second-order
(Equation (2)) were used to examine the reaction kinetics of the seven tested contami-
nants removal by greener PG [48]:

dq
dt

= k1(Qe − Qt) (1)

dq
dt

= k2(Qe − Qt)
2 (2)

where Qe (mg/g) refers to the equilibrium adsorption capacity, Qt (mg/g) is the adsorption
capacity at a specific time ‘t’, and k1 (1/min) and k2 (g/mg min) define the pseudo first-
and second-order reaction rate constants, respectively.

2.3.2. Effect of the Adsorbent Dosage and Study of Adsorption Isotherms

The effects of injecting different adsorbent dosages such as 0.5, 1, 1.5, 2, 2.5, and 3
mL from a 5 g/L suspension into a specific contaminant concentration (10 mg/L) were
investigated in this batch testing. The contaminants with varying adsorbent dosages were
placed in a shaker for 24 h, and finally, the supernatants of the samples were collected using
a 0.2 µm membrane filter.

Three models—Langmuir, Freundlich, and Temkin—were analyzed to evaluate the
modeling of these seven contaminants’ sorption onto greener PG [48]:

Qe =
Qmax kL Ce

(1 + kLCe)
Langmuir (3)

Qe = kF C1/n
e Freundlich (4)

Qe =

(
RT
Bt

)
ln(kt Ce) Temkin (5)

where Qmax (mg/g) refers to the maximum adsorption capacity determined by Langmuir,
kL (L/mg) is the Langmuir isotherm constant, kF ((mg/g)(mg/L)1/n) is the Freundlich
isotherm constant, and n (dimensionless and n = 1) is the constant governing heterogeneity
and adsorption intensity. The universal gas constant is R (8.314 J/mol. Kelvin), the
Temkin isotherm binding constant is kt (L/g), the Temkin isotherm constant is Bt (J/mol),
and the absolute reaction temperature is T (temperature in K). To further comprehend
the adsorption process, the Langmuir separation factor (RL) was also determined using
Equation (6). The RL expresses (dimensionless) the favorability of the Langmuir model-
based adsorption process. RL = 0 denotes the irreversible adsorption, whereas RL = 1
promotes the linear adsorption. For there to be favorable adsorption, 0 < RL < 1.

RL =
1

(1 + Ci KL)
(6)

For the best fit of the experimental data with the aforementioned models, in addi-
tion to a linear fitting, a nonlinear regression was also investigated. Additionally, this
regression was taken into account to prevent mistakes from the nonlinear/linear transfor-
mation [49]. Based on the lowest Akaike Information Criterion (AIC) value calculated, using
Equation (7), this criterion for nonlinear regression is the most precise and trustworthy
statistical comparison measure to compare the best-fitting models with the experimental
data [50]:

AIC = 2K + Nln
(

SSE
N

)
+

2K(K + 1)
(N − K − 1)

(7)
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where N refers to the number of experimental points, K denotes the total number of model
parameters, and SSE stands for the Sum of Squared Errors, which is calculated as:

SSE = ∑N
i

(
Qexperimental

e − Qmodel
e

)2
(8)

3. Results and Discussion
3.1. Morphological Study of the Greener PG

Morphological characterizations illustrated in ref. [47] confirmed the successful syn-
thesis of greener PG obtained via a near-green technique. Herein, the BET SSA of this
greener PG was obtained to understand the importance of greener PG’s SSA in the ad-
sorption of contaminants. Figure 1 depicts the isotherms and Barret Joyner Halenda pore
size distributions of greener PG. As per the given IUPAC classification, the N2 adsorption–
desorption isotherms curves for the greener PG sample demonstrated type IV with an
H3 hysteresis loop revealing the same characteristics feature for mesopores [51,52]. The
adsorption segment of the nitrogen isotherms at P/P0 showed a fast increase, implying
the formation of large mesopores and macropores [51,53], with pore width calculated
as 3–5 nm. The rest of the parameters of the greener PG sample obtained from the N2
adsorption–desorption isotherms are shown in Table S2. The BET SSA of the greener
PG was calculated as circa 289.146 m2g−1, which is significantly higher than that of the
previously reported commercial rGO-derived PG (circa 82.76 m2g−1) [3,54,55]. This proved
that the sample showed a porous morphology with a bi-layer structure, which in turn
resulted in a large number of active adsorption sites for the electrostatic reaction and finally
boosted the adsorption mechanism.
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Figure 1. Measurement of the specific surface area. The pore size distribution of greener PG was
calculated using the Barrett–Joyner–Halenda method as an inset at 77 K, with a pore size of 1–4 nm.

3.2. Adsorption Performance
3.2.1. Effect of Contact Time on the Contaminants’ Removal

The effect of contact time on the adsorption of AT, CB, CPF, IBU, MeO, MeR, and
RD onto greener PG for different time intervals, i.e., 5–120 min, are shown in Figure 2.
A fast sorption rate (>90%) was seen during the first 40–50 min. Thus, for batch study,
120 min was the adequate period for the adsorption of these ECs onto greener PG. In
total, 1 mL of greener PG dosage was used for all seven ECs to study the effect of contact
time on the sorption performance of greener PG. Figure 2 shows concentration profiles
at different contact time ‘t’ (Ct) for ECs: AT, CB, CPF, and IBU. Fast sorption kinetics for
the initial period of 60 min (indicating maximum adsorption) was observed for these four
ECs, and then the adsorption rate declined with increasing time, prior to saturating after



C 2023, 9, 97 6 of 19

60–80 min. Similarly, Figure 2, for dyes, MeO, MeR, and RD depict faster sorption kinetics
for the initial period of 40 min and then the adsorption rate plummets with an increase
in the contact time period. The results indicated an excellent adsorption performance of
greener PG for these ECs, which was attributed to the availability of surface pores on
the greener PG, reflected by its BET SSA in Figure 1. To further illustrate the sorption
kinetics, two models (Equations (1) and (2)), i.e., pseudo first-order (Supplementary-S1)
and pseudo second-order (Figure 3), were studied to understand the reaction kinetics
of the seven ECs removal by the greener PG [48]. Of these models, the pseudo second-
order rate model fitted the best for outlining the kinetic sorption of the seven tested
ECs onto greener PG, as shown by the highest correlation coefficient values (R2 = 0.99).
Moreover, the Qe (adsorption capacity at equilibrium) values calculated for all seven
pollutants, for the pseudo second-order model, were in close proximity to the Qe values
obtained via the experiment. This indicates a linear relationship between t/Qt and time
(where Qt is adsorption capacity at time ‘t’), reflecting the dependence of adsorption rate
on adsorption capacity instead of adsorbate concentration. All the kinetic parameters
for both models, along with their R2 values, are listed in Table 1. Sorption kinetics can
also be interpreted in terms of hydrophilicity and hydrophobicity of the adsorbents and
contaminants, indicated by the n-octanol/water partition coefficient (log Kow values) [56].
With the help of this indicator, it has previously been proven that IBU is hydrophobic [31],
while CB [31] and MeR [57] both have a hydrophobic/phallic nature, which facilitates the
adsorption kinetics with greener PG (having a super-hydrophobic nature). Similarly, the
dyes, MeO and RD are also proven to have a hydrophobic nature [58,59], reflecting their
rapid adsorption kinetics. These hydrophobic interactions between hydrophobes and water
cause the hydrophobes (greener PG and ECs of hydrophobic nature) to attract each other
and orient away from water [31,60], thus increasing the adsorption performance of greener
PG for these hydrophobic contaminants. On the contrary, the hydrophilic nature of CPF
and AT [31] reflects the slightly low adsorption onto greener PG.
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Figure 3. Pseudo second-order fitting for the seven tested emerging contaminants: (a) AT; (b) CB;
(c) CPF; (d) IBU; (e) MeO Dye; (f) MeR Dye; (g) RD Dye.

Table 1. Kinetic parameters obtained for the two models, for emerging contaminants adsorption onto
greener PG. R2 is defined as the accuracy of the fitted model.

Contaminant
Adsorbed onto

Greener PG

Pseudo First-Order Pseudo Second-Order

R2 Slope Intercept Qe
(mg/g)

K1
(1/mins) R2 Slope Intercept Qe

(mg/g)
K2 (g/mg

mins)

AT 0.54 0.028 1.89 6.621 −0.0002 0.99 0.07 0.38 13.38 0.0020

CB 0.90 −0.01 2.54 12.72 −0.001 0.98 0.05 0.523 19.09 696.53

CPF 0.56 −0.02 1.93 6.94 −0.0002 0.99 0.04 0.11 21.38 3962.14

IBU 0.94 −0.02 3.10 22.2 −0.0001 0.98 0.03 0.73 27.11 1005.0

MeO 0.94 −0.04 3.06 21.45 −0.0003 0.99 0.03 0.21 32.70 0.0002

MeR 0.97 −0.03 2.89 18.02 −0.0003 0.99 0.03 0.20 30.59 4574.6

RD 0.82 −0.03 3.89 49.27 −0.0003 0.95 0.002 0.76 44.54 2582.82

3.2.2. Effect of Various Adsorbent Dosages on Contaminant Removal

To understand the removal potency of this greener PG, a batch adsorption test was
conducted on these seven ECs for six different dosages of greener PG (0.5 mL, 1 mL, 1.5 mL,
2 mL, 2.5 mL, and 3 mL of adsorbent injected from a 5-g/L suspension). The results are
shown in Figure 4. The experiment was run for 24 h to ensure that each of the contaminants
reached its equilibrium. For all the contaminants, the experimental conditions were the
same and are listed below in Figure 4. The figure shows that with the increase in adsorbent
dosage, the removal efficiency for these seven tested ECs increased. Greener PG showed a
greater removal efficiency (between 85–95%) for dyes (MeO, MeR, and RD) than for ECs (AT,
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CPF, CB, and IBU). Among the dyes, MeO and RD showed the highest removal efficiency
(>90%) by greener PG, resulting from hydrophobe–hydrophobe attraction between greener
PG and these two dyes. The greener PG showed an effective removal potency for the four
ECs, i.e., AT, CPF, CB, and IBU, with a removal efficiency between 70 and 90%, and IBU
showing the highest removal efficiency (94.4%), which is attributed to its hydrophobic
nature. Table S1 summarizes the full data of the removal efficiency of the adsorbent for
these seven ECs with varying greener PG dosages. These seven emerging contaminants
were also tested against the commercially obtained PG and are illustrated in Figure 5.
Commercial PG showed less adsorption for each of these ECs as compared to greener PG.
This could be attributed to the low specific surface area of the commercial PG mentioned
in Section 3.1. Greener PG exhibited large meso- and macro-pores, which increased the
overall surface area of this greener adsorbent and further acted as an adsorption site for the
seven ECs.
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Figure 4. Equilibrium study for the seven tested emerging contaminants depicting their removal
efficiency with varying greener PG Dosages: (a) AT; (b) CB; (c) CPF; (d) IBU; (e) MeO; (f) MeR; (g) RD.

After reaching the equilibrium, the concentration (Ceq) of each of these ECs was ob-
tained at varying greener PG dosages. The concentration profiles for each of the seven
tested ECs with various adsorbent doses are shown in Figure 6. All these seven contami-
nants displayed similar profiles, i.e., the concentration (Ceq) of each of these ECs decreased
with the increasing doses of greener PG, indicating maximum EC adsorption at the highest
greener PG dosage. This increase in adsorption with an increase in adsorbent dosages was
aided by the adsorption capacity (Qe) curves for each EC shown in Figure 7. Contaminants
IBU, MeO, and RD exhibit similar adsorption profiles, indicating their highest removal
with maximum adsorption capacities: 37.86 mgg−1 (Figure 7d), 38 mgg−1 (Figure 7e), and
39.5 mgg−1 (Figure 7g), respectively. A very minimal variation in adsorption capacity
was observed after 2 mL of greener PG dosage, contributing to nearly identical removal
efficiencies of the contaminants for other two higher greener PG dosages. This proves that
this greener PG obtained from near-green synthesis showed a considerable potential for
water treatment application.
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To study the adsorption behavior of greener PG, adsorption isotherms for each of these
seven ECs were investigated [61]. In this study, we examined three models—Langmuir
(Equation (3)), Freundlich (Equation (4)), and Temkin (Equation (5)), in both their linear
and nonlinear forms [48–50]. In the case of linear modeling, the best-fitted adsorption
model was expressed with the help of linear correlation coefficient R2 and other intrinsic
parameters, which are listed in Table S3. The Temkin model for all seven contaminants was
eliminated, as the intrinsic parameter, Bt, showed negative values [54,62,63]. For all the
seven tested contaminants, the R2 values for these three models are highlighted in Table S3.

According to the values obtained for R2 (>0.9), Freundlich and Langmuir showed
the best fit for CPF, MeO, and RD contaminants, and the Freundlich model fitted the best
for the contaminants AT, CB, IBU, and MeR, confirming multilayer adsorption of these
contaminants onto greener PG. However, based on the other intrinsic parameters shown in
Table S3, RD followed the Langmuir model as it showed a negative slope in the case of the
Freundlich isotherm model, confirming the monolayer adsorption of the dye RD onto the
greener PG [61].
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Figure 7. Adsorption curve for seven tested contaminants at different greener PG dosages (mL):
(a) AT; (b) CB; (c) CPF; (d) IBU; (e) MeO; (f)MeR; (g) RD.

The nonlinear modeling was also studied for these three models [49,50]. Freundlich’s
model showed the best fit for all the contaminants, except RD. For the six contaminants
AT, CPF, CB, IBU, MeO, and MeR, a positive value of slope and the lowest AIC values
(obtained from Equations (7) and (8)) were obtained for the Freundlich model, indicating
the possibility of the involvement of physisorption in the adsorption process and hetero-
geneity in the greener PG surface. Separation factor values, RL, were also obtained for these
six contaminants and showed either more than 1 or less than zero values, further indicat-
ing the Freundlich model being the best suited for these six ECs. RD showed the lowest
AIC value for the Langmuir model, indicating the monomolecular adsorption on greener
PG surface without any dye stacking. This was further confirmed with separation factor
(RL = 0.94), obtained between 0 and 1, and contributing to the favorable adsorption pro-
cess. This showed the possibility of a binary [63] sorption mechanism. The AIC values
(highlighted as being the best-suited model) and other nonlinear intrinsic parameters were
calculated for all seven contaminants (Table 2).
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Table 2. Nonlinear adsorption isotherm parameters for all seven emerging contaminants removal by
greener PG. Lowest AIC values are highlighted for the best-suited model.

CONTAMINANT Freundlich Isotherm Model Langmuir Isotherm Model Temkin Isotherm Model

ATENOLOL (AT)

Kf ({mg/g} {mg/L}1/m) = 1.82
m = 1/n = 1

R2 = 0.93
AIC = 40.89

Qmax (mg/g) = 3.79
Ki (l/mg) = −0.24
RL = −0.697878596

R2 = 0.77
AIC = 26.90

Kt (L/mg) = 0.90
Bt (J/mol) = −25.32

R2 = 0.92
AIC = 54.22

CARBAMAZEPINE (CB)

Kf ({mg/g} {mg/L}1/m) = 2.31
m = 1/n = 1

R2 = 0.92
AIC = 44.94

Qmax (mg/g) = 5.15
Ki (l/mg) = −9.77
RL = −0.010334966

R2 = 0.73
AIC = 42.8

Kt (L/mg) = 0.083
Bt (J/mol) = −20.99

R2 = 0.98
AIC = 63.99

IBUPROFEN (IBU)

Kf ({mg/g} {mg/L}1/m) = 2.764
m = 1/n = 1
R2 = 0.764

AIC = 48.51

Qmax (mg/g) = 7.61
Ki (l/mg) = −0.0104

RL = 1.116444
R2 = 0.390

AIC = 49.39

Kt (L/mg) = 0.04
Bt (J/mol) = −11.55

R2 = 0.89
AIC = 83.40

CIPROFLOXIN (CPF)

Kf ({mg/g} {mg/L}1/m) = 6.79
m = 1/n = 1

R2 = 0.98
AIC = 35.91

Qmax (mg/g) = 17.15
Ki (l/mg) = −0.003

RL = 1.037482
R2 = 0.95

AIC = 43.37

Kt (L/mg) = 0.041
Bt (J/mol) = −13.26

R2 = 0.99
AIC = 77.76

METHYL RED (MeR)

Kf ({mg/g} {mg/L}1/m) = 4227.29
m = 1/n = 1

R2 = 0.82
AIC = 121.44

Qmax (mg/g) = 19.799
Ki (l/mg) = −0.0011

RL = 1.98879407
R2 = 0.46

AIC = 49.26

Kt (L/mg) = 0.024
Bt (J/mol) = −9.911

R2 = 0.89
AIC = 87.26

METHYL ORANGE (MeO)

Kf ({mg/g} {mg/L}1/m) = 17.44
m = 1/n = 1

R2 = 0.98
AIC = 45.73

Qmax (mg/g) = 28.52
Ki (l/mg) = −0.00018

RL = 1.00178603
R2 = 0.92

AIC = 50.74

Kt (L/mg) = 0.001
Bt (J/mol) = −5.31

R2 = 0.988
AIC = 104.06

RHODAMINE-B (RD)

Kf ({mg/g} {mg/L}1/m) = 75.77
m = 1/n = 1

R2 = 0.98
AIC = 58.0

Qmax (mg/g) = 155.54
Ki (l/mg) = 24197.99
RL = 1.03314 × 10−6

R2 = 0.94
AIC = 23.72

Kt (L/mg) = 2.9 × e−10

Bt (J/mol) = −7.122

R2 = 0.98
AIC = 114.59

Therefore, both linear and nonlinear modeling implied that the adsorption process
was governed by nonlinearity in the adsorption of seven ECs onto greener PG. Unlike
the PG obtained via the Hummers method, which has shown the heterogenous behavior
(following Sips and Toth models) in the adsorption process [31], the removal process by the
greener PG followed the Freundlich adsorption model for most of the contaminants with
potential involvement of both physio/chemisorption.

Table 3 summarizes the various carbon-based adsorbents in ascending order of their
BET-SSA, for water treatment applications. The greener PG, synthesized in this research,
had the third highest BET-SSA when compared with other adsorbents, and showed higher
adsorption capacity for these seven EC in comparison to especially MWCNT and com-
mercial PG. The greener PG also showed a comparable result with PG derived from the
Hummers method, with the added advantage of being a risk-free adsorbent to the envi-
ronment. RAG, of the synthesis process, is also depicted in the table, demonstrating the
environmentally friendly nature of the synthesis process. Of all the synthesis processes
describing their RAG to be Green (G), greener PG is the only adsorbent with high BET-SSA.
Thus, this adsorbent can be an easy alternative to many adsorbents belonging to the carbon
family, with comparable removal efficacy towards emerging pollutants removal.
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Table 3. Comparison table of the adsorbents depicted in ascending order of their BET SSA, for water
treatment application.

ADSORBENT
MATERIAL BET SSA (m2/g) Contaminants Tested for

Adsorption/Absorbate
ADSORPTION

CAPACITY (mg/g) References

RAG of Synthesis
Process
R—Red

A—Amber
G—Green

Graphite 4.5 Carbamazepine—CB
Methyl Orange—MeO

CB—3.65 ± 0.05
MeO—13.6 [64–66] G

Commercial
Graphene 15

Carbamazepine—CB
Methyl Orange—MeO

Ciprofloxacin—CPF
Atenolol—AT

Ibuprofen—IBU

CPF—323
AT—<6

IBU—6.0
CB—22.8 ± 0.5

MeO—89.3

[66–69] A

Graphene Oxide
(GO) 38

Carbamazepine—CB
Methyl Orange—MeO

Ciprofloxacin—CPF
Atenolol—AT

Ibuprofen—IBU
Methyl Red—MeR
Diclofenac—DCF

Rhodamine b—RD
Gemfibrozil—GEM

CPF—417.79
AT—7.598

GEM—2.981
IBU—10.01
DCF—3.65
CB—8.89

MeR—63.69
MeO—16.83

RD—0.54

[31,67,70,71] R

Chemically reduced
Graphene Oxide

(rGO)
53

Ciprofloxacin—CPF
Carbamazepine—CB

Methyl Orange—MeO
Diclofenac

sodium—DCFS
Malachite Green—MG

CPF—18.2
DCFS—59.67
CBZ—55.13
MG—279.85
MeO—244

[72–77] R

Commercial Porous
Graphene (PG) 82.76

Carbamazepine—CB
Methyl Orange—MeO

Methyl Red—MeR
Ciprofloxacin—CPF

Atenolol—AT
Ibuprofen—IBU

Rhodamine b—RD

CPF—11.34
CB—7.92
AT—0.84

IBU—3.976
MeO—7.06
MeR—13.48
RD—4.872

This paper A,R

Multi walled Carbon
nanotube—MWCNT 160

Carbamazepine—CB
Methyl Orange—MeO

Ibuprofen—IBU
Ciprofloxacin—CPF

CPF—1.745
CBU—108
MeO—27.6
IBU—186.5

[68,73,78,79] A,R

GREENER PG 289.14

Ciprofloxacin—CPF
Methyl Orange—MeO

Methyl Red—MeR
Rhodamine b—RD

Atenolol—AT
Ibuprofen—IBU

Carbamazepine—CB

CPF—28.596
CB—25.74
AT—19.29
IBU—37.65
MeO—37.16
MeR—84.75
RD—38.52

This paper G

Porous Graphene 679

Ciprofloxacin—CPF
Rhodamine b—RD

Atenolol—AT
Ibuprofen—IBU

Carbamazepine—CB
Gemfibrozil—GEM
Diclofenac—DCF

CPF—370.11
AT—2.738

GEM—4.604
IBU—47.85
DCF—41.23
CB—88.96

RD—16.6 × 104

[31] R

Activated Carbon 1156

Ciprofloxacin—CPF
Diclofenac—DCF

Carbamazepine—CB
Ibuprofen—IBU

Methyl Red—MeR

CPF—1.860
DCF—56.2

CB—3.2
MeR—10.0
IBU—12.6

[68,80–82] R

Thus, this research investigated and summarized an efficacy of the greener PG as
an excellent adsorbent candidate for the removal of emerging contaminants in water
treatment applications.
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4. Conclusions and Outlook

This study aimed to explore the removal of seven emerging contaminants, i.e., atenolol,
ciprofloxacin, ibuprofen, carbamazepine, methyl orange, methyl red, and rhodamine-B, by
the greener PG, synthesized via a near-green synthesis method. The BET analysis showed
high specific surface of 289.146 m2g−1 and confirmed porous morphology with a bi-layer
structure of the greener PG. The potency of this greener PG in water treatment application
was explored by obtaining adsorption profiles for different batch conditions: (i) contact
time, and (ii) adsorbent dosage. Both linear and nonlinear modeling methods were applied
to avoid any error. The study revealed that:

(i) Fast sorption kinetics are followed by a pseudo second-order model;
(ii) With the increase in greener PG dosage, adsorption of the investigated contaminants

increases;
(iii) Langmuir model fitted best for rhodamine-b dye, confirming the monomolecular

adsorption on the greener PG surface and no stacking of the adsorbed dye;
(iv) The remaining six contaminants followed the Freundlich model, involving a possibil-

ity of physisorption;
(v) Overall, removal efficiency of the greener PG showed better performance when

compared with commercial rGO-obtained PG, for all the seven contaminants.

Despite these encouraging findings, there is a need to explore the long-term effects of
the commercially available and greener PG in the aquatic environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c9040097/s1, S1. Kinetic pseudo first-order modeling graphs.
Figure S1: Pseudo first-order model for: (a) Contaminant AT; (b) Contaminant CB; (c) Contaminant
CPF; (d) IBU; (e) Contaminant MeO; (f) Contaminant MeR; (g) Contaminant RD. Table S1: Summary
of Equilibrium study of greener PG on seven emerging contaminants. Table S2: Parameters of
the greener PG sample obtained from the N2 adsorption–desorption isotherms. Table S3: Linear
adsorption isotherm parameters for all seven contaminants; removal by greener PG.
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