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Abstract: This work reports on membranes of a combination of chitosan–starch with lithium-modified
multiwall carbon nanotubes. One of the most important contributions of this article is the func-
tionalization of the surface of multiwall carbon nanotubes by means of an accessible technique that
allows for high grafting yields of lithium and their incorporation into a polymeric matrix. The
natural compounds chitosan and starch were used as a support to embed the nanotubes, forming
membranes with good mechanical stability. A thorough characterization via Raman, infrared and
X-ray photoelectron spectroscopies, transmission and scanning electron microscopies and dynamic
mechanical analysis is presented here, as well as electrochemical characterization. The composition,
structure and mechanical stability of the membranes make them viable candidates to be used as
anodes sustainable Li-ion batteries.

Keywords: lithium grafting; mechanical stability; composite membrane; lithium-ion battery;
multiwall carbon nanotubes; chitosan–starch

1. Introduction

Lithium-ion batteries (LIBs) dominate the market for portable electronic devices and
are becoming increasingly important in other markets, such as electric vehicles [1–3]. How-
ever, many issues are being investigated to improve their security, efficiency and cost. One
of the most promising approaches for improving the efficiency of this type of battery is the
use of polymer electrolytes [4,5]. The carrier transport properties of common ionic liquids
are very comparable to those of a polymer electrolyte [6], with the particularity that the
polymer can be prepared as a membrane, providing mechanical support and stability to the
cells. A solid electrolyte in a battery cell separates the electrodes, avoiding short circuits but
allowing for the transport of specific ions (Li+) from one electrode to the other at acceptable
operating speeds. Similar characteristics are necessary for electrolytes for other applications,
like proton-conductive materials used in fuel cells [7]. The electrolytes are required to
exhibit high ionic conductivity and, at the same time, provide mechanical strength. This is
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the case of multivalent phosphate cross-linked chitosan biopolymer membranes in borohy-
dride fuel cells [8], biodegradable polystyrene sulfonated-lignosulfonate polymers as an
electrolyte in fuel cell membranes [9] and, recently, conductive polymers within a hydrogel
matrix to obtain synthetic hydrogels with characteristics for applications, such as artificial
biological tissues, flexible electronics and conductive membranes [10]. Designing new engi-
neered electrolytes like those is a challenge [11]. Other classic examples of such membranes
are those based on coordination compounds using high-molecular-weight polymers and
Li salts, like LiClO4 or LiN(CF3SO2)2. Examples of these polymers in the literature are
polyethylene oxide, polypropylene oxide, polybis, methoxy ethoxyethoxy-phosphazene,
polydimethyl siloxane, polyacrylonitrile, polymethyl methacrylate, polyvinyl chloride
and polyvinylidene fluoride [6,12]. Most of the synthetic polymers mentioned above are
difficult to degrade, causing environmental pollution problems. Because of this, today,
there is an interest in natural polymers (carbohydrates), which degrade naturally in a
normal environment in a short period of time. Such polymers are commonly referred to
as biopolymers [13,14]. Research on the use of biopolymers as an electrolyte is currently
highly competitive but represents a fertile area for future work [13,15]. This is the case with
multivalent phosphate cross-linked chitosan biopolymer membranes in borohydride fuel
cells [8], biodegradable polystyrene sulfonated-lignosulfonate polymers as an electrolyte in
fuel cell membranes [9] and, recently, conductive polymers within a hydrogel matrix to
obtain synthetic hydrogels with characteristics for applications, such as artificial biological
tissues, flexible electronics and conductive membranes [10].

Carbon nanotubes as anodes in lithium batteries were used in a study from two
decades ago. Two of the first works were one where the electrochemical discharge capacity
of single-walled carbon nanotubes exceeded 1300 mAh/g after 30 charge/discharge cycles
applying a current density of 20 µA/cm2 [16] and a Japanese review where they concluded
that single-walled carbon nanotubes have a high capacity of up to 3611 mAh/g [17].
On the other hand, in the literature, one can also find reviews that talk about the use
of multiwall carbon nanotubes as electrodes, introducing other materials, like Mn3O4,
CoFe2O4, FexOy, Sn and CoSn, between carbon walls exhibiting capacities ranging from
100 to 1000 mAh/g [2]. Additionally, in one of the latest publications, carbon nanotubes
synthesized from used cooking oil at 900 ◦C showed excellent performance as anodes in
a Li-Ion battery with a capacity of 213.75 mAh/g in cycle 30 [18]. In recently published
work, we found that some researchers designed nanoporous nanocomposites of silicon
microparticles with carbon nanotubes (PSI-CNTs) that offer a high specific capacity of
3210.1 mAh/g at a rate of 1/15 C. Their initial coulomb efficiency (CE) is 87.3%, but after
100 cycles, the capacity stabilizes above 2000 mAh/g, and the CE is 99.5% [19]. In recent
studies, carbon nanotubes (CNTs) have been used as promising materials in different
applications. Christwardana et al. [20] developed a photo-bioelectrochemical cell with
a CNT-chlorophyll photo-biocatalyst, generating photo-currents 6-times higher than the
current in darkness. On the other hand, Liu [21] presented a composite of polymer-CNT
nanofibers as an anode for Li-ion batteries with a reversible capacity of 1105.2 mAhg−1

and almost 100% columbic efficiency. Meanwhile, Li et al. [22] reported defect-rich sulfur-
doped short amorphous carbon nanotubes (SACTs-S) with a high reversible capacity of
1608.7 mAhg−1 at 50 mAg−1 and 538.0 mAhg−1 over 2500 cycles at 2000 mAg−1. This
remarkable performance demonstrates the potential of CNT-based materials for future
energy applications.

With the aim to embed CNTs in a polymeric electrolyte, good candidates were searched
among biopolymers, finding that cellulose, starch, chitosan, agar, pectin and gelatin are
good options [23]. For example, solid electrolytes based on polymeric pectin are used for the
storage of anionic polysaccharide and ammonium iodide salt, exhibiting their maximum
ionic conductivity (4.5 × 10−3 S/cm) at room temperature [24]. Similarly, a polymeric
electrolyte based on corn starch with different percentages of sodium bisulfite (NaHSO3)
shows an ionic conductivity of 2.22 × 10−4 S/cm at room temperature [25]. On the other
hand, biopolymers such as chitosan and starch have been studied by different authors in
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this context [26–28], explaining their properties in detail. Furthermore, some authors have
proposed using them as a matrix for carbon nanotubes [29–31]. The ionic conductivity of
chitosan was found to be as high as 10−4 S/cm after 1 h hydration when it was prepared
as membranes [32] and 2.1 × 10−3 S/cm when it was prepared as ionogel electrolyte with
cellulose [33]. On the other hand, starch is not far behind, being an excellent electrolyte
when mixed with other materials. This is the case of potato starch with Mg(ClO4)2, which
exhibited high ionic conductivity (2.01 × 10−2 S/cm), low relaxation time (55 µs) and
a wide voltage window of electrochemical stability (about 3 V) [34]. Another case is
that of flexible electrolyte membranes of nanocomposites of polyethylene oxide/starch
nanocrystals complexed with MgBr2 salt, with an ionic conductivity of 1.16 × 10−6 S/cm
at room temperature [35]. More recently, poly(ε-caprolactone) membranes have been
synthesized with chitosan and bis(trifluoromethanesulfonyl)imide salt (LiTFSI to 50 wt%)
to obtain an ionic conductivity of 7.7 × 10−4 S/cm [36].

However, the use of combinations of chitosan and starch as solid electrolytes is new,
taking advantage of the properties of these polymers. Chitosan provides strength, while
starch provides good ionic transport. There is a report on an unplasticized solution of
starch–chitosan doped with NH4I, which had a good conductivity at room temperature
of up to (3.04 ± 0.32) × 10−4 S/cm [37]. In a different work, the synthesis of a biodegrad-
able solid polymer electrolyte of a mixture of chitosan and potato starch, plasticized
with glycerol and lithium perchlorate (LiClO4), showed a maximum ionic conductivity of
6.5 × 10−4 S/cm [38]. In a more recent report, a chitosan–starch solid biopolymer with
9 wt% of oxidized graphene showed a maximum conductivity of around 10−3 S/cm [39].

Combining these natural polymers with carbon nanotubes as electrodes provides a
novel and eco-friendly approach to designing LIBs with improved performance, stability
and reduced environmental impact. Moreover, the combination of chitosan and starch
as solid electrolytes takes advantage of their respective strengths, resulting in a promis-
ing electrolyte matrix with enhanced ionic transport capabilities [39,40]. This composite
represents an innovative and sustainable solution to address some challenges of lithium-
ion batteries. For this reason, this article reports on the production of carbon nanotube
membranes (MWNTs) embedded in a chitosan/starch matrix, with the intention of using
them in a future development as an electrode for lithium-ion batteries. Furthermore, two
unconventional routes for lithium-modified multi-walled carbon nanotubes with lithium
hydroxide (LiOH) are presented: reflux (RLi) and sonication (SLi). The compositional,
mechanical and electrochemical properties of the composites are thoroughly studied.

2. Materials and Methods
2.1. Materials Synthesis

Multiwall carbon nanotubes (MWNTs) prepared via chemical vapor deposition were
obtained from Sun Nanotech Co. (Nanchang City, Jiangxi province, China) The MWNTs
had a diameter from 10 to 30 nm and a length of 1 to 10 µm, with a purity > 90% and a
surface area of 90 to 350 m2/g [41]. The other reactants were purchased from Sigma-Aldrich
Co. LLC. (San Luis, MI, USA). These reagents did not undergo any further purification.

According to the literature cited [42–47], the purification/oxidation of the MWNTs
was achieved in a 3:1 mixture of HNO3 (75%) and H2SO4 (98%) at 85 ◦C for 3 h in a reflux
process. The resulting material was vacuum washed to a neutral pH with deionized water.
The product is called MWOHs in this work. Afterwards, it was lithium-modified in two
different ways, according to the study of [48].

Reflux-lithiated nanotubes (RLi) were synthesized using a carefully controlled pro-
cedure involving a specific weight ratio of 6:1 w/w between MWOHs and LiOH. LiOH
was dissolved in an aqueous solution with a concentration of 0.01 M. The synthesis process
was conducted in a round-bottom flask equipped with a reflux condenser. The flask was
charged with the precursor mixture, and a stirring bar magnet was employed to ensure
homogeneity. The reaction mixture was then subjected to reflux conditions, maintaining
a temperature of 75 ◦C for a duration of 2 h. During this period, chemical reactions took
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place, leading to the formation of lithiated nanotubes. Subsequent to the reaction, the re-
sulting material underwent thorough purification. Vacuum washing with deionized water
was employed, with multiple wash cycles being conducted until the pH of the solution
reached a neutral state. This step was crucial to remove any residual reactants or byprod-
ucts. Finally, the obtained lithiated nanotubes were carefully collected and preserved in a
hermetically sealed glass jar to prevent any unintended interactions with the surrounding
environment. In contrast, the synthesis of sonicated-lithiated nanotubes (SLi) involved a
different approach. The same precursor materials, with the same weight proportions, were
used. However, instead of refluxing, the synthesis took place under sonication conditions.
The precursor mixture was placed in a flask equipped with an ultrasonic homogenizer. The
mixture was subjected to ultrasonic waves at room temperature for a duration of 2 h. The
sonication process facilitated the incorporation of lithium ions into the nanotube structure.
Similar to the reflux method, the resulting sonicated-lithiated nanotubes were subjected to
thorough purification through vacuum washing with deionized water. The purification
process was repeated until the pH of the solution reached neutrality, ensuring the removal
of any residues. The purified nanotubes were then securely stored in an airtight glass jar
to prevent any degradation or contamination. These distinct synthesis approaches, reflux
and sonication, provided two sets of lithiated nanotubes (RLi and SLi) with controlled
properties. These synthesized materials held promise for various applications due to their
unique structural and electrochemical characteristics.

The polymer electrolyte was prepared with a mixture of chitosan–starch solutions.
According to previous research [15,49–51], the chitosan (Ch) solution (2% m/v) was pre-
pared by dispersing chitosan in an acetic acid aqueous solution (1% v/v) and then stirring
at 100 rpm. After the chitosan was completely dispersed, the solution was sonicated for
15 min to break any air bubbles present and then allowed stand for 1 h. The starch (St)
solution (2% m/v) was prepared dispersing starch in glycerin and heating above its gela-
tinization temperature (90 ± 2 ◦C) [52], continuously stirring at 100 rpm for 20 min. The
solution was then cooled down to room temperature by ceasing heat and stirring. Finally,
the chitosan–starch films (ChSt) were obtained mixing equal volumes of chitosan and starch
solutions and then sonicating to homogenize.

The complete membranes for each batch of MWNTs (pristine MWNTs, MWOHs, RLi
and SLi) were prepared by dispersing them within the chitosan–starch polymer matrix at
a concentration of 0.025% w/v. The dispersion, totaling 4.55 × 10−3 L m−2, was poured
into a polyethylene container. Ultrasonic agitation was employed for 120 s, accompanied
by mechanical vibration. The resulting dispersion was subsequently air-dried at room
temperature in polystyrene molds within a fume hood for a duration of 24 h. Following this
process, the samples underwent characterization. An overview of the complete fabrication
procedure is provided in Figure 1.
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2.2. Characterization

For the characterization of MWNTs, MWOHs, RLi and SLi, the analyses of X-ray
photoelectron spectroscopy (XPS) were performed with a JEOL JPS-9200 Photoelectron
Spectrometer (ESCA) (Tokyo, Japan). Infrared (FTIR) spectra were recorded using a Vector
33 Bruker spectrophotometer (Billerica, MA, USA) at 32 scans, with a resolution of 4 cm−1.
Solid samples were embedded in KBr disks. Raman spectra were recorded with a Dilor
LabRAM Micro-Raman with a resolution of 0.5 cm−1, with a 514.5 nm laser with 15 s of
integration time. High-resolution transmission electron microscopy (HRTEM) of MWNTs
and MWOHs was performed with a JEOL–JEM 2010FEG instrument (Tokyo, Japan); on the
other hand, micrographs of RLi and SLi were recorded with a JEOL–JEM 2200FS instrument
(Tokyo, Japan). All the samples for microscopy were prepared by depositing droplets of a
suspension of the studied materials on 100-mesh microscope gold grids.

All the chitosan–starch examples were characterized via dynamic mechanical analysis
(DMA) with the objective of analyzing the thermo-mechanical properties of the polymer
electrolyte. Dynamic mechanical analysis (DMA) was recorded using an RSA III of TA
instruments (New Castle, DE, USA). Measurements were run using tweezers to tension in
a temperature range from 30 ◦C to 350 ◦C, with a frequency of 1.0 Hz. Scanning electronic
microscopy (SEM) was recorded in a SEM JEOL 5200 (Tokyo, Japan) with 5.0 of resolution
to 25 kV. Infrared (FTIR) spectra were recorded in a Vector 33 Bruker spectrophotometer
(Billerica, MA, USA) at 32 scans, with a resolution of 4 cm−1.

The electrochemical measurements were performed using an EG&G PAR VersaSTAT
3 Potentiostat/Galvanostat (Princeton, NJ, USA). Cyclic voltammetry studies were per-
formed from −2.5 to 2.5 V, at a scan rate of 50 mV/s. Electrochemical impedance spectroscopy
(EIS) experiments were carried out in potentiostatic mode in the 1 MHz to 1 Hz frequency
range. The impedance spectra were registered with a logarithmic data collection scheme at
10 steps per decade at open-circuit potential with a small signal amplitude of 10 mV.

3. Results and Discussion

The results obtained are presented below, separating them into two sections. First, the
results of the characterization of the different reinforcement used are shown, such as carbon
raw and oxidized nanotubes (MWNTs and MWOHs), as well as lithium-modified ones (RLi
and SLi). Subsequently, the characterization of the chitosan–starch (ChSt) membranes with
the different kinds of nanotubes is shown.

3.1. Characterization of Carbon Nanotubes via FTIR

Figure 2 shows the normalized spectra of the MWNTs after the different treatments.
It is possible to see the characteristic FTIR peaks of the carbon nanotubes [53–57], which
describe the normal modes of vibration at ~1632 cm−1 for E1u and ~800 cm−1 for A2u in
multiwall carbon nanotubes (MWNTs) in all cases. Additional bands can be identified in
oxidized carbon nanotubes (MWOHs, RLi, SLi) between 1750 and 1550 cm−1 for v(C=O),
1466 cm−1 for δ(O–H) and between 1300 and 950 cm−1 for v(C–O) due to vibrations of
the carboxyl groups and at 3443 cm−1 for isolated surfaces of vs(OH) [54,57–59]. The
presence of lithium in the samples could be evidenced through the interaction of Li with
oxygen and carbon. According to some authors [60–65], the molecular vibration bands
suggest the presence of ROCO2Li, Li2O, Li2CO3, ROLi and LiOH. O–H bands are visible
at 3700–3100 cm−1, being broader in the lithium-modified samples than in the pristine
MWOHs. st(C–H) at 3000–2800 cm−1 and st(C–O) at 1064 cm−1 correspond to ROCO2Li
and ROLi, respectively. st(Li–O) of the Li2O is visible at 530 and 476 cm−1. Additionally,
the C–O band at 880 cm−1 may originate from Li2CO3. Finally, the bending vibrations CH2
at 1466 cm−1 and C=O symmetric at 1628 cm−1 and asymmetric at 1367 cm−1 vibrations
indicate the presence of ROCO2Li. These results indicate that lithium ions are interacting
with carbon nanotubes at these normal modes of vibration, thus promoting their use as
electrodes in lithium batteries [66].
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3.2. Characterization of Carbon Nanotubes via Raman Spectroscopy

Raman spectra of MWNTs, MWOHs and lithium-modified multiwall carbon nanotubes
(RLi and SLi) are shown in Figure 3. For some authors, Raman spectroscopy is considered
the fingerprint of carbon nanotubes [67–73], allowing one to produce a deep analysis of
the oxidation, purification and modification of the structure of their outer walls. The
most prominent peaks of the spectra at ~1570 cm−1 (G band), ~1340 cm−1 (D band) and
~2684 cm−1 (G’ band) and their overtones found as small peaks at 1233 and 2898 cm−1

are all attributed to carbon [59,71,73–82] and give a good indication of the state of CNTs.
In some publications [83,84], the G band (the name G comes from “Graphite”) is used
as an indicator of purity since the CNTs should ideally present a graphitic order with
carbon in sp2 hybridization. When broken bonds are present, carbon can hybridize sp3,
giving rise to the D band (the name D comes from “Defect”). Thus, this band can be used
to identify if there are dangling bonds or impurities on the surface of the CNTs [85,86].
The ratio between the intensities of these two bands gives a hint of the purity of carbon
nanotubes, but it says nothing of the kind of material (graphite, fullerene, CNTs); for this
last thing, the FWHM of the peaks should also be considered (e.g., the FWHM of graphite
is usually larger than that of CNTs) [86]. In this work, to consider the width of the peaks,
the area of the peaks was used instead of the intensity. The areas of the different peaks
are tabulated in Table 1, for the different samples. The G’ band is related to the G band,
whose intensity is proportional to the purity of the multiwall carbon nanotubes due to the
absence of nanocarbons (disordered phase) in the samples [87]. The ratio between areas
of the different peaks (G’/G, G’/D and D/G) was calculated, as shown in Table 1. The
values suggest that the oxidation of MWNTs cured defects, since the ratio D/G decreases
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and ratio G’/D increases. The small difference in G’/G values could be due to the removal
of carbonaceous material during oxidation [88].
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Table 1. Areas of the Raman bands and ratios between them for the different modifications of MWNTs.

Samples D G G’ G’/G G’/D D/G

MWNTs 72,068 79,955 81,314 1.02 1.13 0.90
MWOHs 40,546 52,738 51,791 0.98 1.28 0.77
RLi 64,666 80,951 77,683 0.96 1.20 0.80
SLi 98,968 117,520 108,288 0.92 1.09 0.84

The samples intercalated with lithium show a drop in G’/D compared to MWOHs due
to the decrement in the area of G’ caused by the exfoliating action of LiOH, which degrades
carbonaceous materials [89,90]. The exfoliated surface of MWNTs is more reactive [91],
which is positive for capturing Li-ions. Moreover, Li-ions can be intercalated in MWCNT’s
inner walls because of coulombic repulsion effects [92]. A significant decrement in the
D/G ratio in comparison with the MWNTs is observed in the lithium-modified samples, in
accordance with various publications [92–99], indicating a possible exfoliation of carbon
nanotubes. It is also important to mention that the small peaks that appear in the spectra
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refer to normal vibration modes that are affected in position due to the oxidation of
multiwall carbon nanotubes [100]. Furthermore, the G’/G and G’/D are larger in RLi than
in SLi, indicating that there is an increment in the G’ band with respect to the other bands in
this sample [101]. The greater contribution of this band to the RLi spectrum could suggest
a higher graphitic character of this sample, as this band is observed as an overtone of
graphitic samples, and it is not affected by defects [102]. The graphitic nature of the sample,
in addition to allowing for Li ion intercalation, enhances electron transfer, promoting its
use as an electrode in lithium batteries [103]. SLi may have undergone a higher degree of
oxidation during Li incorporation, as indicated with the higher proportion of the D band in
this sample in comparison with RLi. This effect is common when oxidizing graphene [102].

3.3. Characterization of Carbon Nanotubes via XPS

XPS was employed to quantify the relative lithium content of RLi and SLi compared
to carbon and oxygen, referencing MWNT and MWOH spectra for analysis. Carbon (C1s)
exhibited binding energies within a range of 295 to 281 eV, oxygen (O1s) within 540 to
528 eV and lithium (Li1s) within 61 to 57 eV. The deconvolution of C1s, O1s and Li1s peaks
was based on established data from previous XPS studies on lithium-modified multiwall
carbon nanotubes [63,104–107]

In terms of the C1s peak, the hydroxyl (–OH at 286.6 eV) and carboxyl (–COOH
at 288.6 eV) bands of lithium-modified multiwall carbon nanotubes were found to be
more prominent compared to pure nanotubes. This phenomenon may be attributed to the
presence of lithium carbonate. An increase in π-π* electronic transitions (at 290.9 eV) in
MWOHs indicated potential CNT wall exfoliation due to acids [57]. Conversely, lithium-
modified nanotubes demonstrated reduced transitions, implying non-covalent interactions.

Regarding the O1s band, the intensity of carboxyl, carbonyl and carbonate bands were
considered (–COOH at 531.2 eV, O=C at 532.1 eV, and C–O*–C=O at 534.3 eV). Comparing
the spectra of RLi and SLi, one could observe that the contribution of C–O and C=O bands
in SLi is much higher, indicating that the sample was oxidized due to the L incorporation
method, as suggested by the Raman spectra. Nevertheless, both samples are well lithiated,
as indicated by the presence of the Li2CO3 band at 56 eV. On the other hand, analyzing
the Li 1s line, it is possible to observe the presence of Li0 and Li2O on lithited surfaces.
Furthermore, strong electrostatic interactions between lithium ions and CNTs led to a
decrease in the intensity of π-π* transitions (at 290.9 eV) [104] in lithiated samples with
respect to the non-lithiated samples. The presence of lithium indicated the potential of
these samples for facilitating electrode-to-electrode transfer in lithium batteries. Figure 4
(subscripts A and B) provides an illustrative deconvolution of spectra encompassing the
aforementioned bands according to different reports [108,109].

3.4. Characterization of Carbon Nanotubes via HRTEM

The HRTEM micrograph in Figure 5, of the as-received MWNTs, shows the walls of
a multiwall carbon nanotube and other allotropic forms of carbon as impurities. An FFT
pattern (Fast Fourier Transform) was obtained from two zones: “1” is part of a multiwall
carbon nanotube and “2” belongs to graphite. In both areas, the FFT shows the presence of
fine dots (defined peaks in the line scan), confirming the presence of ordered carbon. On
the other hand, the diffuse rings in the FFT patterns and the corresponding wide peaks in
the line scans indicate sections of low crystallinity due to impurities, likely corresponding
to low-order graphite originating from MWNTs [110,111].

The HRTEM micrograph of MWOHs in Figure 6 clearly shows defects on the walls
of the nanotubes. By analyzing two areas of these MWOHs micrographs with FFT, both
display more diffuse spots, and the line scan shows a rather poor crystallinity, revealed
by the wide peaks and low intensity of the central spot. This is a characteristic of defec-
tive CNTs exhibiting distorted layers [59,112], confirming the oxidation of the multiwall
carbon nanotubes.
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HRTEM micrographs and ED patterns of RLi and SLi are shown in Figure 7. From
the micrographs, it is possible to see the presence of a higher amount of material covering
the nanotubes in RLi than in SLi. This material must be Li0 and Li2O, as confirmed via
XPS. In SLi, Li becomes more internal, forming Li2CO3. Thus, ultrasound induces the
insertion of Li. The crystal planes of the nanotubes are evident in both cases, indicating that
the crystallinity of the material remains, even after the oxidation and lithiation processes.
In a recent publication [113], it was confirmed that the crystallinity of MWNTs increases
after oxidation. The diffraction patterns indicate that the material is polycrystalline, in
accordance with the HRTEM micrographs, showing bending crystalline planes. The two
inner rings in the ED patterns originate in MWNTs [101,114]. The smallest one denotes
the d-spacing of graphite oxide, which, in the present case, is 10.44 Å. The second ring
corresponds to the d-spacing between (002) graphite planes, being, in the present case,
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3.92 Å. The d values of outer diffuse rings (2.33, 1.91 and 1.38 Å) are in accordance with
d values found for VAST-MWNTs [115], which, in XRD with Cu Ka, produce reflexes at
67.97◦, 47.65◦ and 38.5◦ 2θ, respectively. These last values are characteristic of platinum,
being from its (111), (200) and (220) planes [116]. Thus, the as-purchased VAST-MWNT
contains Pt. Therefore, with this, we confirm that by analyzing the diffraction patterns of
the HRTEM micrographs in the lithiated carbon nanotubes, we corroborate that they can
be used as electrodes in lithium batteries, as has been previously reported [117].
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3.5. Characterization of the Chitosan–Starch (ChSt) Membranes via DMA

To test the mechanical properties of the polymeric matrix and how this property is
improved by introducing multiwall carbon nanotubes, the membranes were characterized
via dynamic mechanical analysis (DMA). Only the membranes with the lithiated nanotubes
were omitted, due to the predominant amount of oxide groups linked to lithium, as
confirmed via XPS characterization.

Dynamic mechanical analysis (DMA) was used to characterize the electrolyte ChSt
and the nanocomposites of this electrolyte with MWNTs and MWOHs, with the purpose of
giving an idea about the mechanical stability of the composites, away from the lithiation
of the carbon nanotubes. DMA is a thermo-mechanical test where viscoelastic data of
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the materials under test are collected at different temperatures [118,119]. Figure 8 shows
the values of the modulus E’ at different temperatures. It is possible to observe that for
MWOHs, E’ is around 445% the value of the other samples at 35 ◦C. Even at 200 ◦C, the E’
of this sample practically doubles that of chitosan–starch and is 1.6-times that of MWNTs.

C 2023, 9, x FOR PEER REVIEW 11 of 22 
 

The d values of outer diffuse rings (2.33, 1.91 and 1.38 Å ) are in accordance with d values 

found for VAST-MWNTs [115], which, in XRD with Cu Ka, produce reflexes at 67.97°, 

47.65° and 38.5° 2θ, respectively. These last values are characteristic of platinum, being 

from its (111), (200) and (220) planes [116]. Thus, the as-purchased VAST-MWNT contains 

Pt. Therefore, with this, we confirm that by analyzing the diffraction patterns of the 

HRTEM micrographs in the lithiated carbon nanotubes, we corroborate that they can be 

used as electrodes in lithium batteries, as has been previously reported [117]. 

 

Figure 7. HRTEM (left) and ED patterns (right) of RLi and SLi. 

3.5. Characterization of the Chitosan–Starch (ChSt) Membranes via DMA 

To test the mechanical properties of the polymeric matrix and how this property is 

improved by introducing multiwall carbon nanotubes, the membranes were characterized 

via dynamic mechanical analysis (DMA). Only the membranes with the lithiated nano-

tubes were omitted, due to the predominant amount of oxide groups linked to lithium, as 

confirmed via XPS characterization. 

Dynamic mechanical analysis (DMA) was used to characterize the electrolyte ChSt 

and the nanocomposites of this electrolyte with MWNTs and MWOHs, with the purpose 

of giving an idea about the mechanical stability of the composites, away from the lithiation 

of the carbon nanotubes. DMA is a thermo-mechanical test where viscoelastic data of the 

materials under test are collected at different temperatures [118,119]. Figure 8 shows the 

values of the modulus E’ at different temperatures. It is possible to observe that for 

MWOHs, E’ is around 445% the value of the other samples at 35 °C. Even at 200 °C, the E’ 

of this sample practically doubles that of chitosan–starch and is 1.6-times that of MWNTs. 

10 nm

10 nm

Figure 7. HRTEM (left) and ED patterns (right) of RLi and SLi.

C 2023, 9, x FOR PEER REVIEW 12 of 22 
 

 

Figure 8. Storage modulus (E’) at different temperatures via dynamic mechanical analysis (DMA). 

The dashed lines and arrows indicate reference temperatures used for the discussion. 

The fact that the storage modulus of the membrane increases as the temperature rises, 

up to the critical point of 250 °C, for ChSt and the membrane with MWNTs, is because 

there is an increment in crystallinity of the films produced by the arrangement of the 

starch molecules and because the interactions between the OH– groups of the glucose 

units and the H+ groups of the water molecules minimize [120]. The storage modulus 

increases linearly from 35 to 150 °C, but the slope of the curve is higher for MWNTs than 

for ChSt. Then, from 150 to 250 °C, there is a steady state for both samples, indicating that 

a maximum ordering is reached. On the other hand, when oxidized carbon nanotubes 

(MWOHs) are incorporated into the chitosan–starch film, a phenomenon similar to add-

ing a plasticizer to the membrane is observed. As the temperature increases, the thermal 

energy begins to overcome these intermolecular forces. The polymer chains start to expe-

rience more vibrational motion and increased molecular mobility. This phenomenon is 

often referred to as “softening” or “rubbery behavior”. As a consequence, the material 

becomes less rigid and more compliant, leading to a decrease in the storage modulus [121]. 

Through the relationship between the storage and loss modulus, the internal friction 

of materials can be determined, known as Tan (δ). High internal friction is reflected as 

high Tan (δ) values. Depending on the degree of adhesion between the phases, the internal 

energy is dissipated at the interface. Enhanced adhesion results in increased friction, as 

evidenced by a Tan (δ) value of 0.8 at 35 °C for the sample with MWOHs, while the other 

two samples exhibit a value of 0.55. Thus, oxidizing the MWNTs greatly enhances the ad-

hesion properties between phases, probably due to –OH groups that promote hydrogen 

bonds. Stability in their mechanical properties gives us the confidence to use these mate-

rials in lithium batteries, as used in other reported works [122]. Sample MWOH was con-

sidered a model for RLi and SLi, taking into account that the oxygen content and the sur-

face characteristics of these samples are similar, as evidenced through FTIR and Raman 

spectroscopies and XPS. 

3.6. Characterization of the Chitosan–Starch (ChSt) Membranes via FTIR 

Figure 8. Storage modulus (E’) at different temperatures via dynamic mechanical analysis (DMA).
The dashed lines and arrows indicate reference temperatures used for the discussion.



C 2023, 9, 87 12 of 22

The fact that the storage modulus of the membrane increases as the temperature rises,
up to the critical point of 250 ◦C, for ChSt and the membrane with MWNTs, is because
there is an increment in crystallinity of the films produced by the arrangement of the
starch molecules and because the interactions between the OH– groups of the glucose
units and the H+ groups of the water molecules minimize [120]. The storage modulus
increases linearly from 35 to 150 ◦C, but the slope of the curve is higher for MWNTs than
for ChSt. Then, from 150 to 250 ◦C, there is a steady state for both samples, indicating that
a maximum ordering is reached. On the other hand, when oxidized carbon nanotubes
(MWOHs) are incorporated into the chitosan–starch film, a phenomenon similar to adding
a plasticizer to the membrane is observed. As the temperature increases, the thermal energy
begins to overcome these intermolecular forces. The polymer chains start to experience
more vibrational motion and increased molecular mobility. This phenomenon is often
referred to as “softening” or “rubbery behavior”. As a consequence, the material becomes
less rigid and more compliant, leading to a decrease in the storage modulus [121].

Through the relationship between the storage and loss modulus, the internal friction of
materials can be determined, known as Tan (δ). High internal friction is reflected as high Tan
(δ) values. Depending on the degree of adhesion between the phases, the internal energy is
dissipated at the interface. Enhanced adhesion results in increased friction, as evidenced by
a Tan (δ) value of 0.8 at 35 ◦C for the sample with MWOHs, while the other two samples
exhibit a value of 0.55. Thus, oxidizing the MWNTs greatly enhances the adhesion properties
between phases, probably due to –OH groups that promote hydrogen bonds. Stability
in their mechanical properties gives us the confidence to use these materials in lithium
batteries, as used in other reported works [122]. Sample MWOH was considered a model
for RLi and SLi, taking into account that the oxygen content and the surface characteristics
of these samples are similar, as evidenced through FTIR and Raman spectroscopies and XPS.

3.6. Characterization of the Chitosan–Starch (ChSt) Membranes via FTIR

For the nanocomposites of carbon nanotubes in a chitosan–starch matrix, when we
compare the different FTIR spectra, they are very similar between the ChSt with the
different modifications of multiwall carbon nanotubes: raw (MWNTs), oxidized (MWOHs)
and lithium-modified (CRLi and CSLi). For this reason, we only show the FTIR spectra
of starch, chitosan and their mixture in Figure 9, as shown in other reports, where the
reinforcement of nanostructures in polymeric matrices is practically imperceptible [123].
We can remember that they have a reinforcement in the polymer matrix of chitosan–starch
at 0.025% w/v. For starch, a band at 3274 cm−1 of st(O–H) of glycosidic chains is present.
Also characteristic of starch, peaks at 2921 and 2926 cm−1 are present. These are st(CH)
vibrations associated with the methine ring hydrogen atoms [124–127]. For chitosan, the
peak at 3496 cm−1 is due to the OH group (νOH), the one at 3345 cm−1 is due to NH
group-stretching vibration (νNH) and the ones at 2926, 2873, 1421, 1322 and 1249 cm−1 are
due to symmetric or asymmetric CH2 stretching vibrations attributed to pyranose rings
(νCH). The peak at 1646 cm−1 is due to C=O in amide groups (amide I band). The one at
1593 cm−1 is due to NH2 bending vibration in an amino group (δNH2). The peak at 1421
and 1322 cm−1 is due to vibrations of OH in a CH ring, the one at 1381 cm−1 is due to CH3
in amide group, the one at 1249 cm−1 is due to C–O group, the one at 1156 cm−1 is due
to –C–O–C– in glycosidic linkage, the ones at 1096 and 1030 cm−1 are due to C–O groups
(νC–O) in amides and the one at 897 cm−1 is due to the CH3COH group [128–130]. A linear
combination of the spectra of starch, chitosan and MWNTs is observed in the composites,
depending on their composition. Although these reinforcements could be imperceptible
in this FTIR characterization, their use as electrolytes [123] or electrodes [131] for their
proposal in lithium batteries has been reported.
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3.7. Characterization of the Chitosan–Starch (ChSt) Membranes via SEM

The SEM micrographs in Figure 10 display the surface (S) and cross-sectional (C)
morphologies of the ChSt, MWNTs and MWOHs nanocomposite samples. The ChSt sample
exhibits a smooth and continuous surface in both morphologies, indicating a homogeneous
structure without observable fissures. In contrast, the samples reinforced with raw carbon
nanotubes (MWNTs) and oxidized carbon nanotubes (MWOHs) display distinct slit for-
mations in the cross-sectional views, indicative of the incorporation of nanotubes into the
membrane matrix.

Regarding the absence of SEM images for the lithiated carbon nanotubes (RLi and
SLi), there is a specific rationale for this omission. Lithiated nanotubes were not included
in the SEM characterization due to their relatively low percentage of reinforcement in
the composite. Given the minute amount of lithium-modified nanotubes, any observable
morphological differences would likely be negligible and difficult to distinguish from the
background matrix. Therefore, the decision was made to focus the SEM analysis on the
most significant reinforcements, MWNTs and MWOHs, to provide clearer insights into the
composite structure.

Additionally, it is important to note that the organic nature of the samples required
a thin gold coating prior to SEM imaging. This coating was applied to enhance the
conductivity of the samples and minimize the risk of charging effects, ensuring accurate
and reliable imaging under the electron beam.
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Figure 10. Scanning electron microscopy (SEM) of the surface (S) and cross-section (C) of biopolymer
chitosan–starch (ChSt) with MWNTs and MWOHs reinforced.

3.8. Electrochemical Characterization of the Chitosan–Starch (ChSt) Membranes

Figure 11 depicts the assembly of the device for electrochemical characterization, which
consists of two aluminum electrodes sandwiching the chitosan–starch (ChSt) membrane of
1 × 1 cm. The cell was hot sealed with polyethylene terephthalate. The tests were performed
with a membrane of reflux-lithiated nanotubes (RLi), considering that these nanotubes are
less oxidized than the SLi and may enhance electron transfer when used electrochemically.
A membrane of oxidized carbon nanotubes (MWOHs) was also measured as a reference.
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Figure 12 shows cyclic voltammetry curves of using the assembly from Figure 11 and
membranes of MWOHs and RLi. The third cycle is shown for both samples. As can be
seen, the voltammograms are relatively symmetrical, as expected when using a symmetric
electrochemical cell. Both the membranes with MOWHs and RLi present pairs of oxidation
and reduction peaks close to 0 V. The difference in potential either between oxidation or
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oxidation peaks is of 0.84 V for MWOHs and 0.75 V for RLi. The peaks of the RLi sample are
just shifted, having a lower potential difference between oxidation and reduction peaks (the
processes are facilitated). This could be related to a lower ohmic drop. In fact, the parallel
resistance, most probably related to the charge transport in the electrolyte, is lower in the
sample with lithium. This can be denoted in the impedance spectra of cells with different
membranes (See Figure 13). As can be observed, the diameter of the semicircle is smaller
for the RLi sample. This is associated with parallel resistance. Then, the conductivity of the
membrane is enhanced due to the presence of Li in the carbon nanotubes.
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The pairs of peaks close to 0 V may be related to the oxidation and dissolution of
aluminum. It has been reported that the Al deposition and dissolution occur at about
0.35 V when using a three-Al electrode electrochemical cell and an Al ion-conducting
electrolyte [102]. On the other hand, double oxidation and reduction peaks with a potential
difference of about 0.4 V have been observed using an Al2O3 working electrode in aqueous
solution [132]. The voltammetry peaks shifted depending on the pH of the solution. The
peaks most probably appeared due to the oxidation and dissolution of Al in alkaline and
acidic solutions. The findings of the past two reports could be supported by the theory of Al
electrochemical etching. Depending on the conditions of the electrolyte (conductivity, pH,
viscosity, etc.), it is possible to change the potential of the electrochemical cell, producing
either oxidation or dissolution of Al and aluminum oxides, or a combination of both
processes [133].

Additionally, the RLi sample presents an oxidation–reduction couple at higher poten-
tials (indicated with dashed arrows in Figure 12b). These peaks appear at ±1.34 V. These
peaks may be related to the alloying/de-alloying process of Li with Al. Using nanostruc-
tured Al as an electrode in a Li ion battery, it has been possible to have Li storage through
the formation of Li-Al alloys. The difference in potential between Al and Li-Al alloys has
been reported as 0.5 V in water-free Li ion-conducting electrolytes [134]. In the present
case, the difference in potential is larger; however, it is well known that the nature of the
electrolyte could have an effect on the potential of the battery. For example, when using
a water-containing polymer electrolyte of polymethylmetacrylate in a Li ion battery, it
was possible to change the voltage of the battery from 3 to 3.86 V when the electrolyte
was UV-cured [135]. The fact that Al-Li alloying occurs is an indication that the lithiated
carbon nanotubes could work as a source of Li ions and that these ions could be transported
through the chitosan–starch matrix.

4. Conclusions

This comprehensive analysis involving XPS, FTIR and Raman spectroscopies and
HRTEM effectively validated the successful oxidation and lithium modification of multi-
walled carbon nanotubes. Notably, the presence of hydroxyl and carbonyl groups within
oxidized multi-walled carbon nanotubes facilitates the binding of lithium ions originating
from LiOH. Particularly, the carbon nanotubes lithiated with the reflux methodology exhibit
good Li incorporation while oxidation is minimized, maintaining the graphitic character.
Such nanotubes are optimal for Li ion exchange and electron transfer.

Furthermore, the discernible enhancement in mechanical strength, as evidenced by the
storage modulus measured through dynamic mechanical analysis (DMA), is particularly
pronounced in the polymeric membranes with MWOHs compared to the ones with MWNTs.
Thus, some oxidation of the carbon nanotubes is positive. This enhancement is reflected
in the dispersion of carbon nanostructures within the biopolymer matrix, as observed in
SEM micrographs.

Electrochemical characterization in symmetrical cells with Al current collectors indi-
cates an enhancement in ionic transport through the membranes when the carbon nanotubes
are lithiated. On the other hand, Al-Li alloying was inferred, indicating that the lithiated
carbon nanotubes could work as a source of Li ions and that these ions could be transported
through the chitosan–starch matrix.
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