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Abstract: Resistive sensing responses of the thin films obtained by dehydrohalogenation of polyvinyli-
dene chloride (PVDC) and polyvinylidene chloride–polyvinyl chloride (PVDC-PVC) copolymer were
investigated. The structure of the samples was studied by transmission electron microscopy, Fourier-
transform infrared spectroscopy and Raman spectroscopy. The analyses demonstrate the formation of
a porous structure based on polyyne–polyene chains. The formation of a foam-like oxidized sp-rich
structure was observed for the samples obtained via the chemical treatment of the PVDC. However, a
loose film with a developed structure and a lower fraction of sp-hybridized carbon was observed for
KOH-treated PVDC-PVC. The resistive sensing responses of both of the dehydrohalogenated struc-
tures were measured for various concentrations of acetone, acetic acid, ammonia hydroxide, methanol,
ethanol, benzene and water. The interplay between the efficiency of the dehydrohalogenation of the
films, their structure and sensing selectivity is discussed.

Keywords: carbonization of linear polymers; foam-like sp-based coatings; selective sensing of acetic
acid; polyyne–polyene structure

1. Introduction

Development of reliable, reproducible, durable and selective gas sensing devices
is a crucial task, as industrial facilities tend to rely on sensors allowing them to control
toxic, flammable, explosive and harmful gases. Marketing research and quality control in
pharmaceutical, fragrance and food industries also involve gas sensing, not to mention
environmental monitoring. Various approaches, such as ion mobility spectroscopy and
gas chromatography can be applied to investigate aerial environment [1]. Nevertheless,
safety and quality control are usually associated with the detection of a limited amount of
gases, which can be done by relatively simple devices measuring the variation of infrared
absorption, electrochemical response, thermal conductivity, quartz crystal microbalance
and electrical resistivity of the materials. Among these techniques, resistive gas sensing is
of particular interest due to the low cost, high stability and sensitivity of the sensors [1].
Although the use of resistive sensors is hampered by their low selectivity and high opera-
tional temperature, chemically modified carbon materials are known to overcome these
drawbacks [2]. In our previous work, we demonstrated that these disadvantages may
be overcome by using dehydrofluorinated polyvinylidene fluoride (PVDF) as a sensing
material [3]. As the modification of the material by dehydrohalogenation is known to
induce the formation of pores and chemically active sites [4], such chemical treatment is a
promising way to enhance the gas-sensing capabilities of the material. Dehydrohalogena-
tion was previously used to form chemically active nitrile imines and nitrile oxides [5],
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make partially dehydrofluorinated powder capable of energy storage [6] and neutralize
toxic polychlorinated dibenzo-p-dioxin compounds [7]. However, the applicability of
the dehydrohalogenation procedure to the formation of the functionalized continuous
materials was hampered due to the limited interaction area between the chemically active
solution and a precursor. The approach introduced in [3] allowed us to suggest a route
which makes it possible to form a continuous structure with a modified surface layer by
means of drop-casting of PVDF and its subsequent dehydrohalogenation.

Interestingly, the chemical treatment of PVDF led to the formation of sp-containing
carbon (i.e., the material containing sp-hybridized carbon atoms). Such material is denoted
as “polyyne–polyene” in our studies. Such notation indicates that the obtained material
has a chain-like structure, which is comprised from both sp- (polyynic) and sp2-hybridized
(polyenic) linear fragments. In our previous studies, such structures were confirmed as a
result of the dehydrohalogenation of PVDC [8] and PVDF [3]. Sp-containing materials are of
recent interest, as theoretical studies reveal a tunable bandgap of such materials depending
on the length of the carbon chain [9], their prominent thermal conductivity and mechanical
strength [10]. Additionally, the effects of spin-polarized transport of electrons [11], strain-
induced transition between metallic and insulator states [12] and ballistic conductivity [13]
were predicted for sp-hybridized chains, thus making sp-containing materials highly
promising for various applications related to their electrical performance. As PVDF sensing
revealed that polyyne–polyenes have a high sensing selectivity to ammonia vapor [3], in the
current paper, we investigate other linear polymers with structures akin to the one of PVDF,
such as polyvinylidene chloride (PVDC) and polyvinylidene chloride–co-vinyl chloride
(PVDC-PVC) copolymer. PVDC/PVC carbonization is considered to be more efficient
in comparison to PVDF, as bonding energy of C-F is higher than the one of C-Cl [14,15].
Therefore, it was suggested that the formation of sp-hybridized carbon during PVC/PVDC
dehydrohalogenation by potassium hydroxide treatment is more prominent than for PVDF.

Ammonia sensing is a crucial task, as ammonia, being the second-highest produced
chemical commodity used in packaging, refrigerants, explosives, fertilizers and pharma-
ceuticals, is also an environmental contaminant and toxic substance [16]. Therefore, the
disruptions of the technological processes involving ammonia pose a considerable threat to
both human health and nature, and the development of novel, cheap and reliable meth-
ods of NH3 concentration monitoring in ambient conditions is of considerable interest to
industrial and scientific communities. As PVDF-devived material showed a prominent
selective sensing of ammonium-containing vapor [3], the current study aimed to investi-
gate if dehydrohalogenated PVDC and PVDC-PVC can also be the bases of NH3-sensitive
resistive sensors.

In the current paper, dehydrohalogenated PVDC and PVC/PVDC materials were
investigated by transmission electron microscopy (TEM), Fourier-transform infrared spec-
troscopy (FTIR) and Raman spectroscopy, and their sensing response to acetone, ammonia
hydroxide, ethanol, benzene and water vapors was assessed, allowing us to provide an
insight into the sensing properties of the sp-containing structures.

2. Experimental Section
2.1. Formation of Polyyne–Polyenes and Sp-Based Sensors

The synthesis of polyyne–polyene coatings with resistive sensing capabilities was
carried out via the drop-casting of the dissolved PVDC and PVDC-PVC and their subse-
quent carbonization in potassium hydroxide solution. Polyvinylidene chloride (PVDC) and
polyvinylidene chloride–co-vinyl chloride (PVDC-PVC) powders (Aldrich Chemical Com-
pany, Inc., Milwaukee, WI, USA) were used as precursors. For the copolymer, the vinylidene
chloride fraction was 65%, and the vinyl chloride fraction was 35%. Two types of samples
based on those precursors were produced separately, but the procedure was similar.

A 5 mg dose of the polymer powder was dissolved at 70 ◦C in 10 mL of the mixture
of acetone and N,N-dimethylformamide (DMF) in a 3:7 proportion. To implement con-
ventional drop-casting, we poured the solution into Petri dishes, where it dried until the
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evaporation of the liquid. In this stage, we synthesized semitranparent coatings of 100 nm
thickness.

Afterwards, a carbonization of the drop-cast polymer films was implemented. First,
KOH and CH3OH solution was obtained by dissolving KOH powder. This solution was
diluted by acetone in a 1:9 proportion. To initiate the carbonization, potassium hydroxide,
methanol and acetone mixture was poured into the Petri dishes containing drop-cast PVDC
and PVDC-PVC films.

PVDC and PVDC-PVC were carbonized by dehydrochlorination ensuring the removal
of polymer side-groups. In Equation (1), we show a more general case of the reaction taking
place for PVDC-PVC, where we assume n + m = p + q (adopted from [17]):

(-CH2-CCl2-)n. . .(-CH2-CHCl-)m + 2(n + m)KOH→ (-CH=CCl-)p. . .(-C≡C-)q + 2(p + q)H2O + 2(p + q)KCl (1)

The formation of the chains consisting of sp-hybridized polyynic (–C≡C–)q and
sp2-hybridized polyenic (–CH=CCl–)p fragments leads to the synthesis of the
polyyne–polyene sp-containing disordered material containing various side-groups and
capping groups [3].

The carbonization lasted at ambient conditions for 24 h. During the dehydrohalogena-
tion, the coatings separated from the surface of the Petri dishes, changing the appearance
from translucent to opaque black.

Afterward, the residual products were removed from the synthesized material by
cleaning in the ultrasonic cleaner (Wahluen electronic tools, Shantou, China) filled with dis-
tilled water for 15 min. Afterwards, that film was placed into acetone. Distilled water was
purified on-site via the electric medical water distiller DE-4-02 (“EMO”, Saint-Petersburg,
Russia). The thickness of the obtained material was 100 nm.

Aluminum films were deposited onto the carbonized coatings to manufacture the
contacts of gas sensors (see Figure 1). To ensure the sensing area stayed uncoated, masks
made of stainless steel were attached to the polyyne–polyene coatings. The masked samples
were fixed on the substrate holder of the film deposition setup, then the 1.3 × 10−3 Pa
residual pressure was achieved in the chamber via the turbomolecular pump. Afterwards,
argon flow into the chamber was initiated, ensuring a working pressure of 1 × 10−2 Pa.
In these conditions, aluminum films were deposited by radiofrequency (13.56 MHz) mag-
netron sputtering of an Al target at 100 W magnetron discharge power. Deposited contacts’
thickness was controlled by the quartz piezoelectric sensor.
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2.2. Characterization of the Samples’ Structure

The transmission electron microscopy (TEM) was investigated by LEO 912 AB (Carl
Zeiss, Jena, Germany). For TEM analyses, we used the structures produced from the
~100 nm thick PVDC and PVDC-PVC films. The synthesis conditions for these materials
were the same as the ones of other samples. The energy of incident electrons was 120 keV.
Grids used for the TEM studies consisted of copper cellular frames coated by thin polymer
films. To place the structure onto TEM grids, samples were pressed to the polymer-coated
side of the grids and removed after 5–10 s of grid-sample interaction. This technique was
reported in [18].

Raman spectra were obtained via the Horiba HR 800 micro-Raman spectrometer. The
excitation power was 1 mW, the wavelength was 488 nm and×50 objective lens (N.A. = 0.85)
was used. Spectra were measured from 3–5 regions of the films, and, after the comparison,
the most typical spectra for each sample were chosen for the subsequent procession.

Brucker IFS-66v/S FTIR spectrometer (Bruker Optics, Karlsruhe, Germany) was used
for Fourier-transform infrared spectroscopy (FTIR) investigation. The resolution of the
Brucker IFS-66v/S spectrometer is 0.5 cm−1.

2.3. Sensing Response Measurements

For the investigation of the room-temperature sensing response, polyyne–polyene
films with aluminum contacts were placed inside the glove box (Plas Labs, Lansing, MI,
USA), and their contacts were connected to the nanoamperemeter (Tektronix 4050, Beaver-
ton, OR, USA). Equation (2) was used for the assessment of the relative sensing response
∆σ/σ0. In Equation (2), ∆σ is a sensing response, i.e., the difference of the conductivities
in the sensing and non-sensing state, σmax is the maximum conductivity of the sample
measured throughout its interaction with the vapor, σ0 is the conductivity of the sensor in
the ambient atmosphere.

∆σ/σ0 = (σmax − σ0)/σ0 (2)

The response and relaxation periods were estimated as times required for the conduc-
tivity change from σ0 to σ0 + 0.9∆σ (response) and from σmax to σmax − 0.9∆σ (relaxation).
The experiments were carried out 3–4 times for each sample and gas.

3. Results
3.1. TEM

Figure 2a,b shows the TEM images of the sp-containing film derived from PVDC.
Hereinafter, dehydrohalogenated PVDC and PVDC-PVC structures are defined as dh-
PVDC and dh-PVDC-PVC, respectively. TEM analysis of dh-PVDC shows that its structure
resembles foam. Its pores of 60 nm diameter are separated by fragments of the material of
~5–15 nm width and ~1 nm thickness. This morphology is formed due to the high efficiency
of the dehydrochlorination leading to chlorine substitution, leading to potassium chlorine
formation. This process induces the shrinkage of the material due to the mass reduction.

As for the chemically treated PVDC-PVC, a loose film with a developed structure was
observed. The development of the dh-PVDC is unsurprisingly more prominent than that of
the dh-PVDC-PVC, as PVDC-PVC contains a larger fraction of hydrogen, and C-H bonds
have larger dissociation energy than C-Cl [19,20]. Although the vinyl chloride proportion
in the PVDC-PVC material is only 35%, significant variation between the morphology of
the samples derived from dh-PVDC and dh-PVDC-PVC is observed.

3.2. Raman Spectroscopy

Typical Raman spectra of dh-PVDC and dh-PVDC-PVC are shown in Figure 3. The
subtraction of the spectra background was carried out by OriginPro software. After the
background subtraction, the spectra were normalized to similar intensity and, for better
distinguishment, a horizontal slope was applied to the spectrum derived from PVDC-PVC.
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The spectrum of dh-PVDC (red line in Figure 3) shows relatively wide lines at 1160,
1560 and 2170 cm−1. These lines are related to the vibrations of the C-C and of trans-isomeric
polyenic structures [21], C=C of various carbon-based materials including disordered
carbon and polyenes [8], and the vibrations of C≡C bonds [22–24], respectively. The
plateau at 1210–1460 cm−1 is mainly attributed to the contribution of the D-line related to
the breathing mode of sp2-hybridized clusters [25]. Its emergence is generally related to the
disorder of the sp2-hybridized component. The fitting of the similar spectra and its more
detailed discussion are presented in [8].

As for the spectrum of dh-PVDC-PVC (black line in Figure 3), it shows relatively
narrow lines. The positions of the polyene-related C-C and C=C bands of the dh-PVDC-
PVC material are shifted to the lower wavenumbers of 1110 cm−1 for C-C and 1490 cm−1

for C=C, indicating that the sp2-carbon fragments of the dh-PVDC-PVC structure are longer
than that of dh-PVDC [26,27]. The line centered at 1000 cm−1 is ascribed to the out-of-
plane wagging of C-H typical for the Raman response of distorted polyenes [28]. As for
the Raman line centered at 2210 cm−1, it is centered close to the position of the doubled
1100 cm−1; therefore, we assign it to the second order of C-C-related peak [28]. Although
vibrations of the C≡C bonds may contribute to the Raman spectra in the 1800–2240 cm−1

region [29], we assume the polyyne contribution to the observed line in the studied case to
be small.

The analysis of the Raman spectra shows that the formation of (-C≡C-)n polyynic frag-
ments is more prominent for dehydrochlorinated PVDC than for dehydrochlorinated PVDC-
PVC copolymer; however, a more prominent dehydrohalogenation of PVDC apparently
results in a more distorted highly porous sp-containing structure. The dh-PVDC-PVC film
shows a more ordered polyenic structure with only a slight fraction of sp-carbon fragments.

3.3. FTIR

FTIR spectra of the materials obtained by PVDC and PVDC-PVC dehydrohalogenation
are shown in Figure 4. The set of lines at 440–460, 590–600 and 650–660 cm−1 is typical
for the stretching of C-Cl2 bonds [30]. Chlorine presence may be caused by partial dehy-
drochlorination of the structure, as the interaction of the KOH and deep layers of polymers
is suppressed. The band positioned at 530–540 cm−1 is attributed to the skeletal vibrations
of the PVDC backbone. It emerges for the dh-PVDC only, and its intensity is even higher
than that of an untreated PVDC [8,30], whose presence indicates the possibility of the
elongation of the chains during their cross-linking, which may be induced by the removal
of their capping groups. For the dh-PVDC-PVC, this line cannot be observed, apparently
due to the insufficient length of PVDC fragments for this line to be infrared-active. The
lines at 740–750 cm−1 and 870–880 cm−1 are ascribed to CH2 [30].
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The wide bands positioned in the range of 900–1600 cm−1 are typical for carbon
components, and their assignment is not as straightforward as that of the bands attributed
to PVDC. The bands at 1010–1070 and 1200–1260 cm−1 are assigned to C-C, C-O-C and
C-O [3,31,32]. The band at 1350–1360 cm−1 is assigned to C-H and C-O [31,33]. The
band at 1400–1430 cm−1 can be attributed to C-O and C-Hx [34–36]. The line located at
1600–1630 cm−1 is assigned to C=C [23]. In the chained structures, the FTIR activity of the
bands associated with C-C and C=C may be caused by the presence of imperfections in the
chains, such as a deformation of their structure and the presence of side- and end-groups.

The intensive band positioned at 1710 cm−1 is assigned to C=O [31]. Notably, the
lines located at 1200–1260, 1350–1360 and ~1710 cm−1 are more intensive for the PVDC-
derived material, and all of them are, at least partially, attributed to C-O and C=O bond-
ing. These oxygen-related lines of dh-PVDC are indicated by blue arrows in 4(a). In its
turn, the line at 1880–1940 cm−1 may be related to N-O [37,38] of the surface adsorbates
and contaminations.

The band positioned at 2160–2170 cm−1 is ascribed to C≡C bonding [22–24]. It is
active both in FTIR and in Raman spectra, which is caused by the violation of the exclusion
principle taking place for long bended chains [39]. Notably, the position of the peak shows
that sp-hybridized fragments have a single C≡C bond [40].

C-H-related lines of dh-PVDC are located at 2930 and 2970 cm−1, as shown in
Figure 4b. These locations are typical for aliphatic (i.e., non-aromatic) hydrocarbon
fragments [41,42], which proves that hydrocarbons comprising the structure are predomi-
nantly non-aromatic, which corroborates its chain-like structure. In its turn, the dh-PVDC-
PVC shows not only lines related to aliphatic carbon structure at 2930 and 2970 cm−1

but also the 3020-cm−1-centered line, which is related to the vibration of aromatic carbon
bonded to hydrogen [43]. The wide line at 3060–3700 cm−1 is related to the O-H vibrations
of adsorbed water [44].

Thus, the materials obtained from both of the precursors show the presence of sp/sp2-
hybridized carbon, predominantly existing in the chained form, and non-treated polymeric
fragments. The differences in the FTIR and the Raman spectra can be summarized as
follows: the film obtained by PVDC dehydrochlorination is more disordered, oxidized and,
according to the Raman analysis, features a larger fraction of sp-carbon. At the same time,
the dh-PVDC-PVC sample shows a more prominent presence of the ordered, yet distorted,
polyenes and aromatic carbon. These results corroborate the TEM studies indicating
the higher effectiveness of the dehydrohalogenation process of the PVDC sample, thus
resulting in a more prominent formation of a porous structure with the dangling bonds
subsequently saturated by atmospheric oxygen. At the same time, more fragments of
the dh-PVDC-PVC are dehydrohalogenated incompletely, because hydrogen elimination
from the polymer by KOH is less effective compared to that of chlorine. As a result, the
PVDC-PVC chemical rearrangement leads tothe formation of sp2-hybridized polyenic and
phenylic clusters passivated by hydrogen rather than (-C≡C-)n polyyne fragments. The
oxidation of dehydrohalogenated PVDC-PVC may be suppressed not only by a lower
fraction of dangling bonds, due to the relatively low porosity of the resulting structure.

3.4. Sensing Properties

In Figure 5, the variation of ∆σ/σ0 at different gas concentrations is presnted. The
saturation at large concentrations of analyzed vapors is characteristic for the Langmuir
adsorption isotherm [45]. For the dh-PVDC, a prominent decrease in the slope of ∆σ/σ0
dependence of ethanol, methanol, acetone and water was observed. However, it was not
observed for ∆σ/σ0 dependence on the concentration of ammonium hydroxide and acetic
acid; for these gases, saturation can apparently be observed at larger concentrations of
vapors. For dh-PVDC-PVC in the present range of concentrations, saturation was observed
for all types of gases. Notably, the resistive response on benzene and acetone, in the case
of dh-PVDC-PVC material, was observed only at the range of concentrations exceeding
15 × 103 ppm. In the case of the dh-PVDC, the resistive response on benzene was not
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observed, but for acetone, the resistive response was observed only after 15 × 103 ppm.
The saturation is observed for all types of gases, which suggests that charge carrier transfer
between vapor molecules and sensing material is governed by similar mechanisms.
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PVDC (a) and PVDC-PVC (b) precursors to various concentrations of vapors.

For both analyzed structures, electrical conductance enlarges after the vapor absorp-
tion. The origin of such a response is an electron transfer between adsorbed gas and the
highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital
(LUMO) of the material. Methanol CH3OH, ethanol C2H5OH, ammonium NH3, ammo-
nium hydroxide NH3+H2O and water H2O act as electron donors when they are adsorbed
by polymers [46,47] and carbon materials such as nanotubes [48], graphene [49] and porous
carbon [50]. As electron transfer from adsorbed gas HOMO to the LUMO of the material
leads to an increase in its electrical conductivity; the observed response to all gases confirms
that the structure is an n-type semiconductor. Ammonium is a most prominent example of
the electron donor gas, and polymeric materials typically have prominent resistive sensing
responses to NH3 due to the efficiency of the mechanism discussed above [51]. In the
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current study, ammonium hydroxide was chosen as the ammonium source which made it
possible to determine the materials’ response to NH3 vapor.

The study of time-dependent sensing response was carried out for the acetone, am-
monia hydroxide, ethanol, benzene, acetic acid and water vapors of 1.6 × 103 ppm con-
centrations. In the case of acetic acid sensing, the response and the relaxation periods for
the dh-PVDC were 260 and 360 s, and for the dh-PVDC-PVC both the response and the
relaxation occurred for 200 s (see Figure S1). When the acetic acid was introduced into the
chamber, the resistivity of the dh-PVDC sensing film began to increase. As shown by the
structural investigation (Section 3.3), oxygen passivation forms on the surface of the sample
under exposure to ambient atmosphere. As shown in [52,53], in the absence of the detected
gas, oxygen-containing, functional groups capture and trap electrons from the conduction
band of the material. In their turn, when the structure is exposed to gaseous CH3COOH,
gas molecules of acetic acid interact with the adsorbed oxygen on the sample surface. As a
result of the interaction between the gas molecules with the absorbed oxygen, acetic acid
molecules are oxidized and the electrons are released back into the conduction band of
the material [54]. As shown in [3], polyyne–polyene material is an n-type semiconductor;
therefore, its conductivity increases after the acetic acid exposure leading to the electrons
detrapping. This effect is to some extent unconventional, as CH3COOH is a prominent
electron-withdrawing gas [55], therefore its interaction with non-oxidized n-type polymers
typically leads to resistivity increase.

PVDC-PVC-derived material shows a sensing response to acetic acid which is 4.4 times
larger compared to that of the dh-PVDC samples, which is apparently related to its
higher oxygenation, which leads to the prominent effect of the electron detrapping af-
ter CH3COOH and dh-PVDC interaction.

In the case of ammonium hydroxide sensing, the response and the relaxation periods
are: for the dh-PVDC—75 and 190 s, and the dh-PVDC-PVC—430 and 550 s (see Figure S1).
Such a considerable difference can be explained by slower adsorption between dh-PVDC-
PVC and ammonia molecules caused by a strong bonding between the analyte and the
material. However, the intensities of the sensing response to ammonium hydroxide for
both of the structures are almost equal.

Notably, the sensing response of dh-PVDC to the gases other than ammonium hy-
droxide is significantly larger compared to that of dh-PVDC-PVC, which can be attributed
to a more developed foam-like structure of dh-PVDC. A larger fraction of highly reactive
sp-carbon fragments in dh-PVDC can also increase its chemosensing aptitude. However,
previously we concluded that in polyyne–polyene structures the sp-carbon effect on the
resistive sensing response is only slight, as the levels in the band structure related to
the π-electrons of sp-hybridized carbon only slightly affect the electronic properties of
polymeric materials [3]. Thus, the similarity of the dh-PVDC and the dh-PVDC-PVC to
sensing response to ammonium is apparently caused by a more potent interaction between
dh-PVDC-PVC and HN3 and a more developed structure of dh-PVDC.

Figure 6 shows a comparison of the sensing responses of the samples to differ-
ent gases. For the dh-PVDC sample, the ratios of the responses to various vapors are
∆σNH3+H2O/∆C2H5OH = 4.4, ∆σNH3+H2O/∆σCH3OH = 4.9, ∆σNH3+H2O/∆σCH3COOH = 0.8 and
∆σNH3+H2O/∆σH2O = 3. For the PVDC-PVC sample, the ratios of the responses to various
vapors are ∆σNH3+H2O/∆σC2H5OH = 8.5, ∆σNH3+H2O/∆σCH3OH = 8.7, ∆σNH3+H2O/∆σCH3COOH = 3.2
and ∆σNH3+H2O/∆σH2O = 6.1.

It is worth noticing that the selectivity of the sensing response of the studied polyyne–
polyene materials to ammonia is significantly less than that of similar materials obtained by
dehydrofluorination of polyvinylidene difluoride (dh-PVDF) reported in [3].
∆σNH3+H2O/∆σC2H5OH of dh-PVDF is 74 times higher than that of dh-PVDC, while
∆σNH3+H2O/∆σH2O of dh-PVDF is 26 times higher [3]. Such a prominent change can
be attributed to the presence of residual polyvinylidene difluoride (PVDF) fragments
in dh-PVDF. The selective PVDF response to ammonia has been reported for polyani-
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line/polyvinylidene difluoride composites [56,57]; however, PVDF’s role in the sensing of
polymer-based nanocomposites requires further investigation.
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In summary, according to our studies, the sensing response mechanism of the dh-
PVDC and dh-PVDC-PVC can be explained by the doping of the structures caused either by
the chemical interaction between the vapor molecules and the surface of polyyne–polyene
material, or by the electron transfer between the molecule and the sensing structure. The
latter mechanism is prevalent for the gases with prominent electron donor capabilities, such
as ammonia, which strongly interact with both dh-PVDC and dh-PVDC-PVC structures
(Figure 7a). In its term, considerable chemical interaction takes place between the acetic acid
and dh-PVDC; although CH3COOH is a prominent electron acceptor, its interaction with the
oxidized surface results in electron detrapping and also leads to the conductivity increase
(Figure 7b). Other analyzed vapors act as weak electron donors during the interaction with
the polyyne–polyene surface, and their response results only in a slight increase in the
samples’ conductivity (Figure 7c). As surface chemistry was found to play a significant role
in the sensing response, subsequent studies should be aimed at a more detailed analysis of
polyyne–polyenes’ oxidation, chemical stability and longevity of their performance.
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4. Conclusions

In this paper, sp-containing films of a polyyne–polyene structure prepared by PVDC-
PVC and PVC drop-casting and subsequent dehydrohalogenation were investigated. The
porous dh-PVDC-PVC sample shows a prominent presence of polyenes and aromatic
carbon. The foam-like coating containing 60-nm-sized pores obtained by PVDC dehy-
drochlorination (dh-PVDC) is more disordered and oxidized, featuring a larger fraction
of sp-carbon. Both the more developed structure of the dh-PVDC and its more notable
oxygenation and sp-carbon formation are explained by more efficient dehydrohalogenation
of the PVDC structure containing less hydrogen than the PVDC-PVC.

Both the dh-PVDC-based and the dh-PVDC-PVC-based resistive gas sensors demon-
strate a slightly selective response to ammonium hydroxide vapor due to the strong electron
donor capability of ammonia. In turn, the dh-PVDC-based sensors also show a significant
response to acetic acid vapor, which is explained by the effective interaction of CH3COOH
with the oxygenated material.

Surface functionalization [58,59] and metal doping [60] are typically associated with
the improvement of the performance of the carbon-based sensors. Therefore, subsequent
studies of polyyne–polyenes’ sensing capabilities can be aimed at the formation of the
carbon–metal hybrids or structures with modified surface layer, which are to be tailored
towards selective ammonia sensing. However, as PVDF-derived material showed con-
siderably higher NH3 selectivity than dh-PVDC and dh-PVDC-PVC, we consider that
subsequent development will be associated with dehydrofluorinated PVDF rather than
PVDC/PVC.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/c9030082/s1, Figure S1: time-resolved relative resistive
sensing response of dh-PVDC-PVC and dh-PVDC to ammonium hydroxide and acetic acid vapors.
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