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Abstract: It is shown that it is possible to adapt the quantum graph model of graphene to some
types of nonequilateral graphynes considered in the literature; we also discuss the corresponding
nanotubes. The proposed models are, in fact, effective models and are obtained through selected
boundary conditions and an ad hoc prescription. We analytically recover some results from the
literature, in particular, the presence of Dirac cones for α-, β- and (6, 6, 12)-graphynes; for γ-graphyne,
our model presents a band gap (according to the literature), but only for a range of parameters, with
a transition at a certain point with quadratic touch and then the presence of Dirac cones.

Keywords: graphyne; graphyne nanotube; quantum graph; Dirac cone
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1. Introduction

There are many proposals of two-dimensional carbon allotropes in the literature, with
graphene being the most prominent due to its peculiar electronic properties, and it has
been synthesized since 2004 (see the review [1]). Theoretical techniques to study graphene,
both single and multilayer cases, include ab initio calculations (comprising the density
functional theory) and tight-binding models. On the rigorous mathematical side, there
are three approaches for single layer graphene in the literature: one continuous model by
Fefferman and Weinstein [2] proving the “generic” presence of Dirac cones in the dispersion
relations; interesting symmetry arguments by Berkolaiko and Comech [3], and this method
applies to different settings, including some multilayer models; and a quantum graph
model (QGM), mainly due to Amovilli, Leys and March [4] and Kuchment and Post [5].
The latter approach has two advantages: it is simpler then the previous one and permits an
accurate spectral analysis including details of Dirac cones; however, this technique requires
that all edges in the graph have the same length, that is, an equilateral graph. Recently, the
present authors have proposed adaptations in the boundary conditions so that the AA- and
AB-stacked graphene multilayer could (at least qualitatively) be modeled by QGMs [6,7];
there is a work that also covers a few layers of graphene combined with hexagonal boron
nitride [8] (again with a QGM).

In this work, we discuss how to (approximately) describe some distinct structures of
graphynes via QGMs, including cases with edges of different lengths, again by playing
with boundary conditions, and our main interest is in the possible presence of Dirac cones;
ad hoc assumptions will be employed, and our results are compatible with some known
results in the literature. We also discuss graphyne nanotubes in this context. Although our
approach may seem rather exploratory, the results are mathematically correct, and it was
not without some surprise that such proposal has worked!

The structure of graphynes are obtained from that of graphene. Recall that all carbon
atoms in the graphene equilateral hexagonal lattice (we reserve the term honeycomb to
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such a regular hexagonal lattice) have sp2 hybridization with single and double bonds.
Carbon atoms in graphynes have both sp2 and sp hybridizations, and they are usually
obtained by replacing selected single C(sp2)−C(sp2) bonds in graphene with

C(sp2)−C(sp) ≡ C(sp)−C(sp2)

ones [9], which then also include triple bonds. Graphynes were predicted by Baughman,
Eckhardt and Kertesz [10] in 1987 and only small samples have been synthesized; how-
ever, recently [11,12], a scalable synthesis was obtained, and some authors advocate that
graphyne might replace graphene [13].

Some graphynes are expected to present Dirac cones, which were theoretically found
in first-principle calculations [14], tight-binding models [9] and, in a particular case for
which all edges have the same length [15], through a QGM (and Dirac cones were found).
Perhaps this work could be seen as a step forward for some parts of [15].

Here, we extend the QGM to four types of graphynes considered in [9,14] (see also [16]);
they are shown in Figure 1 and named α-, β-, γ- and (6,6,12)-graphynes. In short, we
always think of the graphene honeycomb lattice , and for each edge, we introduce a positive
parameter in the boundary conditions (see (4)) at vertices, in order to take into account the
intensity of the chemical bond in each edge; the stronger the bond, the larger the parameter
value. This will permit us to model some graphynes whose edges have different lengths,
i.e., nonequilateral ones, in terms of the honeycomb structure; it should be clear that we
have just effective models, which include some heuristic arguments, since the honeycomb
structure of such models may differ from the graphyne structures (and this is a strength of
our approach).

After modeling with QGMs, in many instances, the calculations are rigorous and
analytical, so they are without approximations (sometimes we appeal to the plots of the
graphs of functions to guide us about the possible existence of zeros). We summarize our
findings as follows:

• α-graphyne has the peculiarity of edges with three double bonds, and others with
two single and a triple bonds. We argue (see ahead) that, from the point of view of
QGMs, they have comparable bond strengths, so our model reproduces the one of
graphene [5] in this case. Hence, we do not explore α-graphene in this work (we just
include some remarks for completeness with respect to [9,14]).

• In accordance with other works [9,14], we have obtained that Dirac points are present
in β-graphyne.

• In the literature [9], a band gap was found (with no Dirac cone, of course) for the
γ-graphyne. Our QGM shows a richer structure in this case; there is a transition at
a certain parameter value t = tc (see ahead for details), with a gap band between
valence and conduction bands for 0 < t < tc, Dirac cones for tc < t < 1 and at the
transition point t = tc, there is a parabolic touch. We have an explicit description of
the gap size as a function of the parameters. Such properties should be of interest to be
confirmed by experimentalists, in particular because it opens a potential for practical
applications of γ-graphyne.
It is worth mentioning that this is one of the graphynes in which a scalable synthesis
has been recently obtained [11].

• Our effective QGM of (6,6,12)-graphyne also presents Dirac cones for all values of
the parameters, with two different Dirac points, in agreement with [9,14]. This case
is technically more involved than the others, so that we have checked that there are
no other touch points by looking at the graph of the dispersion relations (instead of
just analytical expressions as in the other cases). We have not found that it is “self-
doped” as reported in [14] (note that this property was not reported in a tight-binding
calculation [9] either).

• For the graphynes we consider, we discuss conditions so that the Dirac cones stay
present after building graphyne tubes.
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• In all cases with Dirac cones, they are explicitly located and the cone slopes are given
in terms of the parameters of the model.

a1

a2

a3

(a)

a1

a2

a3

(b)

a1a2

a3

(c)

a1
a2

a3

(d)

Figure 1. Structures of a layer of different types of graphynes (as shown). Empty and filled balls
represent sp and sp2 carbon atoms, respectively. The dashed lines delimit the fundamental domain
in each case. A possible choice of edges a1, a2, a3 (see the main text) associated with parameters
t1, t2, t3, respectively, is indicated in each case. (a) α-graphyne; (b) β-graphyne. (c) γ-graphyne.
(d) (6,6,12)-graphyne.

In Section 2, the general idea of the QGM is presented in the specific case of the
honeycomb lattice (since we propose to (effectively) think of all considered cases with
the structure of this lattice), with some heuristics and the proposed choices of boundary
conditions. In Section 3, a general discussion about dispersion relations of such QGMs
is performed, which is then, in Section 4, specialized to Dirac cones in each considered
graphyne type. Nanotubes are the subject of Section 5. Conclusions appear in Section 6.

2. Honeycomb Quantum Graph Model
2.1. Graphene Graph Model: A Short Account

Now, we briefly discuss the graphene quantum graph employed by Amoville, Leys
and March [4] and mainly by Kuchment and Post [5] (see these works for precise de-
tails). Let G be the honeycomb lattice, the hexagonal 2D structure shown in Figure 2a
(see Section 2.1.1), and let the Hilbert space L2(G) :=

⊕
e L2(e) consist of all the square

integrable functions on G. The free (i.e., no potential) graphene Hamiltonian H acting in
functions u ∈ L2(G) along each edge e is given by

Hue(x) = −d2ue

dx2 (x), (1)
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satisfying the so-called Neumann vertex conditions at the vertices. These conditions requires
the continuity of the functions and vanishing of the total flux at each vertex v, that is,
ue1(v) = ue2(v) = ue3(v) and u′e1

(v) + u′e2
(v) + u′e3

(v) = 0, respectively.

(a)
(b)

Figure 2. The honeycomb lattice G. (a) The lattice with lattice vectors E1 and E2; some type-A and
type-B vertices are labeled. (b) Its fundamental domain W; it contains three edges, a1, a2 and a3, and
two vertices, v1 and v2.

From the Floquet–Bloch theory, the study of the Hamiltonian H is reduced to the study
of the family of Bloch Hamiltonians H(θ), where θ = (θ1, θ2) is the quasimomentum in
the Brillouin zone B := [−π, π]2. These operators H(θ) act the same way H does, but in
functions that satisfy, in addition to the Neumann vertex conditions, the Floquet condition
(see (6)). Moreover, H(θ) has a purely discrete spectrum and the graph of the function
θ 7→ σ(H(θ)) is the dispersion relation of H. The range of this function is the spectrum of
H, that is, σ(H) is given by the reunion of σ(H(θ)), θ ∈ B.

Thus, in order to determine the spectrum of H and its dispersion relation, we have to
solve the eigenvalue problem

H(θ)u = λu, λ ∈ R,

which is done by employing two auxiliary operators, that is, one of them with the action (1)
and Dirichlet boundary condition, and the other a periodic (one-dimensional) Hill operator.

After calculations, one obtains an explicit dispersion relation depending on the func-
tion (compare with (15))

g(θ) =
√
(1 + eiθ1 + eiθ2)(1 + e−iθ1 + e−iθ2)

=

√
1 + 8 cos

θ1 − θ2

2
cos

θ1

2
cos

θ2

2
.

In particular, it can be shown that the dispersion relation has Dirac cones at the points
±(2π/3,−2π/3) of the Brillouin zone.

In the following, particularly in Sections 3 and 4, we shall present details of this
method adapted and applied to some graphynes.

2.1.1. Graphyne Sheet Model

The honeycomb lattice G is generated by the union of two triangular sublattices, gA
(with vertices of type A) and gB (with vertices of type B), where

gA := ZE1 +ZE2 and gB := gA + (1, 0),
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with E1 = (3/2,
√

3/2) and E2 = (0,
√

3) being the lattice vectors (see Figure 2a). Consider
the action of the group Z2 on G using shift by the vectors p1E1 + p2E2, p = (p1, p2) ∈ Z2,
with a fundamental domain (or Wigner–Seitz cell) W = {v1, v2, a1, a2, a3} (see Figure 2b).

We identify each edge e of G with the segment [0, 1], denote by E(G) the set of edges
of G and by Ev(G), the set of three edges that contains the vertex v.

The proposed Hamiltonian operator H acts along each edge e ∈ E(G) as the free
operator (see Remark 4) in suitable units,

Hue(x) = −d2ue

dx2 (x), x ∈ e, (2)

satisfying the modified Neumann vertex conditions in each vertex v of G; let Ev(G) =
{e1, e2, e3}:
(i) Modified continuity condition:

ue1(v)
t1

=
ue2(v)

t2
=

ue3(v)
t3

. (3)

(ii) Modified zero total flux condition:

t1u′e1
(v) + t2u′e2

(v) + t3u′e3
(v) = 0 . (4)

The derivatives u′ej
(v) are directed from v to the other vertex of ej and t1, t2 and t3

are the positive interaction parameters between the edge bonds. Our idea is that the
larger the bond strength in an edge (so the larger the parameter value), the larger its
contribution to the flux at each vertex and the larger the value of the function at the
vertex (due to the division by the parameter). The values of such parameters depend
on each considered graphyne.

We call the general operator H a graphyne operator. Under these conditions, the
graphyne operator is self-adjoint, as discussed in Appendix A.

Remark 1. From (4), one may suppose that the maximum value among the parameters t1, t2, t3
takes the value 1. For instance, in case t1 takes the maximum value, one may write (4) in the form

t1
(
u′e1

(v) + t̃2u′e2
(v) + t̃3u′e3

(v)
)
= 0,

with 0 < t̃2 = t2/t1 ≤ 1 and 0 < t̃3 = t3/t1 ≤ 1.

Remark 2. Note that graphene, as studied in [5], is recovered by selecting t1 = t2 = t3. This
simple remark has an important consequence for this work: it tells us that in the QGM of graphene,
the single and double bonds have effectively the same intensity, and we will assume this while
modeling graphynes. We have checked, in some cases, that our results are essentially the same
whether we slightly distinguish the intensities of single and double bonds (not shown here), but we
pay the price of much more complicated expressions to deal with.

By taking into account the above remarks, let us describe some heuristics and the
proposed parameter ranges in each graphyne case shown in Figure 1.

(i) The lattice is always the honeycomb one, i.e., the equilateral hexagonal lattice in
Figure 2a; we technically require that all edges have the same length (e.g., due to the
representation (18));

(ii) For each graphyne, we look at its structure (Figure 1) and select edges that will be
associated with a1, a2, a3 in the fundamental domain W of the honeycomb lattice
(Figure 2b), thus identifying the values of parameters t1, t2, t3 (recall that the larger
the bond strength, the larger the corresponding parameter; note that a1 differs from
the other edges since it is the unique that connects the two vertices in W).
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(iii) By looking at Figure 1, we identify four types of edge bonds b1, · · · , b4, whose bond
strengths will be probed (and compared) by their well-known enthalpy values (http://
www.wiredchemist.com/chemistry/data/bond_energies_lengths.html, accessed on
23 May 2023):

• b1 representing C−C and known enthalpy h1 = 346 kJ/mol;
• b2 representing C = C and enthalpy h2 = 602 kJ/mol;
• b3 representing C = C = C = C and enthalpy h3 = 1806 kJ/mol (this bond only

occurs in α-graphyne);
• b4 representing C−C ≡ C−C and enthalpy h4 = 1527 kJ/mol (this bond is part

of all graphyne compositions).

In graphene, there occurs only b1 and b2 bonds, and they are considered indistin-
guishable from the point of view of QGMs [5]; their enthalpy difference is h2 − h1 =
256 kJ/mol. Hence, bonds with an enthalpy difference of this order will not be distin-
guished in our modeling, and this is the case of b3 and b4, whose enthalpy difference
is 279 kJ/mol (and (h3 − h4)/(h2 − h1) ≈ 1.09). The other enthalpy values differ from
at least 925 kJ/mol (the difference between b2 and b4 with (h4 − h2)/(h2 − h1) ≈ 3.6),
and so they will be considered distinct in the modeling.

(iv) We need a criterion to associate two vertices and three graphyne edges in its fun-
damental domain (Figure 1) with those in W that could depict the main graphyne
characteristics. It is natural to pick the most common configuration that appears in
the fundamental cell of each graphyne; for β- and γ-graphynes, this procedure works,
but not for the (6, 6, 12)-graphyne. So, for the latter case, we have worked with the
options (that includes the bond b4) and selected the one that has recovered results
in [9,14].

Let’s apply the above procedure to the graphynes in Figure 1; see selections that are
labeled a1, a2, a3 in that figure:

• α-graphyne: as anticipated, all edge bonds are supposed to be indistinguishable from
the QGM viewpoint, so t1 = t2 = t3 = 1; it then coincides with the graphene QGM
(which is consistent to known results).

• β-graphyne: we have t2 = t3 = 1 (since a2, a3 have b4 bonds) and 0 < t1 < 1 (because
a1 has a b2 bond).

• γ-graphyne: we have t1 = 1 and 0 < t2 = t3 < 1.
• (6, 6, 12)-graphyne: we take t1 = t2 = 1 and 0 < t3 < 1.

Note that the choice associated with the a1 edge, in all cases, point to a corner of the
fundamental domain (there are two possibilities for the (6, 6, 12) case), but we do not have
any justification to take this as a criterion to select graphyne edges to be mapped to the
honeycomb fundamental domain.

Remark 3. With the benzene ring being a resonant structure, its bonds, represented by successive
alternating single and double bonds, are rigorously equivalent. Therefore, considering them equiva-
lent has both experimental and theoretical foundations from a quantum mechanical point of view.
This way, graphynes can be reduced to two different parameters: one associated with the benzene
ring and the other with the acetylene group C−C ≡ C−C. However, the use of enthalpy values
give quantitative relations with a potential to be applied to other situations.

Remark 4. As done in previous works [5–7,15], similar qualitative results are obtained by adding
an even potential to the operator (2). We have opted to keep things simpler by selecting a free
operator in each edge; furthermore, this choice gives explicit expressions for some spectral quantities.

2.1.2. Graphyne Nanotube Model

A carbon nanotube is a tube made of carbon with a diameter in nanoscale. There are
many types of these materials (see [17] for a more detailed discussion of nanotubes), but
here, we will keep our attention to the single-walled carbon nanotubes (SWCNTs) that can be

http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
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obtained by cutouts of a two-dimensional hexagonal lattice. Depending on the cutout, we
have different classifications of the SWCNTs. For instance, Figure 3a shows the so-called
zig-zag nanotube, since it has a zig-zag closed path around the tube. Figure 3b shows the
armchair nanotube, which is encircled by a closed path in the form of an armchair. Other
types of nanotubes considered here are the chiral nanotubes.

(a)
(b)

Figure 3. Zig-zag and Armchair nanotubes. The red line indicates the path that defines the type of
the nanotube. (a) (10,0) Zig-zag nanotube. (b) (5,5) Armchair nanotube.

Here, we discuss the propose of the corresponding single-wall graphyne nanotube
models. A more detailed discussion and classification of graphene nanotubes can be find
in [17] and the references therein.

Let p ∈ R2 \ {0} be a vector of the lattice of translation symmetries of the quantum
graph G, that is, we can write p as

p = p1E1 + p2E2, p1, p2 ∈ Z. (5)

Let ∼p be the equivalence relation given by z1 ∼p z2 if, and only if, z2 − z1 = q.p, with
z1, z2 ∈ G and q as an integer number. The graph Gp obtained as the quotient of G with
respect to the equivalence relation ∼p is proposed to model a graphyne nanotube. This graph
is naturally isometrically embedded into the cylinder R2/ ∼p. If p = (p1, p2), we denote
Gp = G(p1,p2)

. There are several types of nanotubes. For instance, G(N,0) and G(0,N) are the
so-called zig-zag nanotubes, G(N,N) are the armchair nanotubes and the chiral are nanotubes
with the form G(p1,p2)

, with p1 6= p2, p1, p2 6= 0.
The corresponding Hamiltonian operator will be denoted by Hp, called the graphyne

nanotube operator, which is defined exactly as the graphyne operator H above, with modified
Neumann vertex conditions (2), and taking into account the above additional symmetry
(see Section 5).

3. Dispersion Relation

Now, we derive the dispersion relation of the graphyne operator H; it is based on the
Floquet–Bloch theory [18–21] combined with the idea [5] of considering spectral points
outside the spectrum of the edge Dirichlet operator. We begin with the general model; then,
we specialize to each graphyne case.

For each quasimomentum θ = (θ1, θ2) in the Brillouin zone B, let H(θ) be the Bloch
Hamiltonian acting on functions satisfying the conditions (3) and (4) and also the Floquet
condition

u(x + p1E1 + p2E2) = ei(p1θ1+p2θ2)u(x), (6)

for any p = (p1, p2) ∈ Z2 and x ∈W. The spectra of H(θ) is constituted only of eigenvalues
and denoted by σ(H(θ)) = {λn(θ)}n, and the spectrum of H is the union of these spectra
(see [18]):

σ(H) =
⋃

θ∈B
σ(H(θ)). (7)
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Recall that the function θ 7→ {λn(θ)}n is the dispersion relation of H. Thus, to determine
σ(H) and the dispersion relation of H, we have to solve the following eigenvalue problem
for each quasimomentum θ ∈ B:

H(θ)u = λu, λ ∈ R. (8)

In order to solve (8), consider the auxiliary operator HD, with action

HDu(x) = −d2u
dx2 (x) (9)

and the Dirichlet boundary condition, that is, u(0) = u(1) = 0. It is well known that HD

has the purely discrete spectrum σ(HD) = {k2π2}k≥1. If λ /∈ σ(HD), then there exist two
linearly independent solutions, ϕλ,0 and ϕλ,1, of the eigenvalue problem

−ϕ′′ = λϕ, λ ∈ R, (10)

such that
ϕλ,0(0) = ϕλ,1(1) = 1, (11)

ϕλ,0(1) = ϕλ,1(0) = 0, (12)

ϕ′λ,1(x) = −ϕ′λ,0(1− x), x ∈ [0, 1]. (13)

Explicitly,

ϕλ,0(x) =
sin(
√

λ(1− x))
sin
√

λ
, ϕλ,1(x) =

sin(
√

λx)
sin
√

λ
.

The quotient

η(λ) :=
ϕ′λ,1(1)
ϕ′λ,1(0)

= cos
√

λ (14)

is well defined for λ /∈ σ(HD).
Let λ /∈ σ(HD) and 0 < tj ≤ 1, with j = 1, 2, 3. Then, we claim that the real number λ

belongs to the spectrum of H if, and only if, there exists a quasimomentum θ ∈ B such that

η(λ) = ±
√

f (θ)
T

,

with T = t2
1 + t2

2 + t2
3 and

f (θ) = t4
1 + t4

2 + t4
3 + 2t2

1t2
2 cos(θ1) + 2t2

1t2
3 cos(θ2) + 2t2

2t2
3 cos(θ1 − θ2). (15)

In order to conclude this, first, note that by the Floquet condition (6), we have (see
Figure 2b)

ua1(v2) = eiθ2 ua2(v3) = eiθ2 ua3(v4). (16)

Thus, combining (16) with the modified Neumann vertex conditions, we obtain
ua1(0)/t1 = ua2(0)/t2 = ua3(0)/t3 := A
ua1(1)/t1 = eiθ1 ua2(1)/t2 = eiθ2 ua3(1)/t3 := B
t1u′a1

(0) + t2u′a2
(0) + t3u′a3

(0) = 0
t1u′a1

(1) + t2eiθ1 u′a2
(1) + t3eiθ2 u′a3

(1) = 0

. (17)

Thus, for u to be an eigenfunction of H(θ), it must satisfy (17).
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Let λ /∈ σ(HD) and consider ϕλ,0 and ϕλ,1 as the linearly independent solutions of (10)
that satisfy (11)–(13). We can represent uaj as

ua1 = t1(Aϕλ,0 + Bϕλ,1)

ua2 = t2(Aϕλ,0 + e−iθ1 Bϕλ,1)

ua3 = t3(Aϕλ,0 + e−iθ2 Bϕλ,1)

. (18)

It is easy to see that the function defined by (18) satisfies the modified continuity
condition (3) of the modified Neumann vertex condition and solves the eigenvalue problem
(10). It remains to be verified that (18) satisfies the zero total flux condition (4). Substituting
(18) into the last two equations of (17), we obtain{

(t2
1 + t2

2 + t2
3)ϕ′λ,0(0)A + (t2

1 + t2
2e−iθ1 + t2

3e−iθ2)ϕ′λ,1(0)B = 0
(t2

1 + t2
2eiθ1 + t2

3eiθ2)ϕ′λ,0(1)A + (t2
1 + t2

2 + t2
3)ϕ′λ,1(1)B = 0

. (19)

With (13), ϕ′λ,0(0) = −ϕ′λ,1(1) and ϕ′λ,0(1) = −ϕ′λ,1(0). Substituting this into (19), then
dividing by ϕ′1(0) 6= 0 and multiplying by −1 its second equation, we obtain{

−Tη(λ)A + F̄(θ)B = 0
F(θ)A− Tη(λ)B = 0

, (20)

with F(θ) = t2
1 + t2

2eiθ1 + t2
3eiθ2 , F̄ the complex conjugate of F and T = t2

1 + t2
2 + t2

3. The
determinant δ of this system equals

δ = T2η(λ)2 − f (θ), (21)

with f (θ) = F(θ)F̄(θ), which is exactly (15). Hence, if there exists a quasimomentum θ ∈ B
such that η(λ) is one solution of δ = 0, that is,

η(λ) = ±
√

f (θ)
T

, (22)

it follows that the representation (18) solves the eigenvalue problem (8) and so λ ∈ σ(H)
by (7). Therefore, the above claim is justified.

By (14), except possibly for λ ∈ σ(HD), a discrete sequence of numbers, the dispersion
relation of H is given by

cos(
√

λ) = ±
√

f (θ)
T

, θ ∈ B, (23)

with f (θ) given by (15). This description of the dispersion relation (23) of the graphyne
operator H will allow us to study the possible presence of Dirac cones. In the next section,
we present such an analysis.

4. Dirac Cones

We make use of (23) to study the possible presence of Dirac cones. We specialize in
each case: β-graphyne, γ-graphyne and (6, 6, 12)-graphyne. Recall that a Dirac cone is a
point where, in the lowest order approximation, the valence and conduction bands linearly
touch each other, and the quasimomentum θD ∈ B for which a Dirac cone occurs is called a
D-point. In symbols, if θD ∈ B is a D-point, then there is a constant γ 6= 0 so that

λ(θ)− λ(θD) = ±γ|θ − θD|+O(|θ − θD|2) +O((λ(θ)− λ(θD))
2), (24)

with the “−” and “+” signs for the valence and conduction bands, respectively.



C 2023, 9, 76 10 of 19

Let λ /∈ σ(HD). By (23), if η±(λ, θ) are the two roots of (21), given by

η±(λ, θ) = ±
√

f (θ)
t2
1 + t2

2 + t2
3

, (25)

in order to obtain Dirac cones, one must find D-point candidates θD ∈ B and expand
D(λ) = cos(

√
λ) and η±(λ, θ) around λ(θD) and θD, respectively. Then, if θD is a D-point,

expanding D(λ) around λ(θD),

D(λ(θ)) = D(λ(θD)) + D′(λ(θD))(λ(θ)− λ(θD)) +O((λ(θ)− λ(θD))
2), (26)

which implies

D(λ(θ))− D(λ(θD)) = c(θD)(λ(θ)− λ(θD)) +O((λ(θ)− λ(θD))
2), (27)

with c(θD) =
(

λ′(θD) sin
√

λ(θD)
)

/
√

λ(θD); finally,

λ(θ) = (arccos(η±(λ, θ)) + kπ)2, k ∈ Z. (28)

Hence, if θD is a D-point candidate, we have the explicit parameter c(θD). Therefore, it
remains to be analyzed, in each type of graphyne, the possible presence of D-points.

In what follows, we will use the notations Hβ, Hγ and H(6,6,12) to represent the β-, γ-
and (6, 6, 12)-graphyne operators, respectively. The same indication will be employed to
the roots η?

± and the linear coefficients γ? of (24), with ? = β, γ, (6, 6, 12). Recall that the
α-graphyne QGM coincides with the graphene one.

• β-graphyne

Recall that by inspecting the β-graphyne structure in Figure 1b, along with the as-
sociated bonds in the honeycomb fundamental domain in Figure 2b, we have proposed
the following relations between parameters t1 < t2 = t3 = 1. Hence, the roots of (21) are
given by

η
β
±(λ, θ) = ±

√
f (θ)

2 + t2
1

, (29)

with
f (θ) = f β(θ) = 2 + t4

1 + 2t2
1(cos(θ1) + cos(θ2)) + 2 cos(θ1 − θ2). (30)

We have found that the roots η
β
+(λ, θ) and η

β
−(λ, θ) touch each other in two points of

the Brillouin zone B. Indeed, let the diagonal

Bd := {θ ∈ B : θ1 = −θ2} (31)

in the Brillouin zone. Then, for θ ∈ Bd, we have that η
β
+(λ, θ) = η

β
−(λ, θ) = 0 if, and only if,

f (θ) = 2 + t4
1 + 2t2

1(cos(θ1) + cos(θ2)) + 2 cos(θ1 − θ2)

= 2 + t4
1 + 2t2

1(cos(θ1) + cos(−θ1)) + 2 cos(θ1 + θ1)

= 4 cos2(θ1) + 4t2
1 cos(θ1) + t4

1 (32)

= (t2
1 + 2 cos(θ1))

2 = 0 (33)

which occurs in±θD
1 , with θD

1 = arccos(t2
1/2)−π. We will confirm now that these points θD

1
are, in fact, D-points of the dispersion relation of the β-graphyne operator Hβ by expanding
η

β
±(λ, θ) around θD

1 (around −θD
1 is similar). Let θ ∈ Bd.

By expanding t2
1 + 2 cos(θ1) around θD

1 , we obtain

t2
1 + 2 cos(θ1) = b(θD)

(
θ1 − θD

1

)
+O(

(
θ1 − θD

1

)2
), (34)
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with b(θD) = −2 sin θD
1 . It then follows that

η
β
±(λ, θ1)− η

β
±(λ, θD

1 ) = ±
|b(θD)|
2 + t2

1
|θ1 − θD

1 |+O
(
|θ1 − θD

1 |2
)

. (35)

Thus, combining (27) and (35),

λ(θ)− λ(θD) = ±γβ|θ − θD|+O
(
|θ − θD|2

)
+O

(
(λ(θ)− λ(θD))

2
)

,

that is, (24) holds with

γβ =
|b(θD)|

(2 + t2
1)c(θD)

, θD = (θD
1 ,−θD

1 ) (36)

For −θD, the process is similar.
Therefore, the dispersion relation of the β-graphyne operator Hβ has two Dirac cones

in the Brillouin zone (see Figure 4) for all 0 < t1 < 1, which occur at the D-points ±θD,
where θD = (θD

1 ,−θD
1 ) and θD

1 = arccos(t2
1/2)− π. Also, by analyzing the computational

3D plot of the dispersion relation, it was observed that the Dirac cones of the β-graphyne
operator Hβ are situated at the vertices of a hexagon.

-3 -2 -1 0 1 2 3

0

2

4

6

8

10

Figure 4. Dispersion relations of β-graphyne, with t1 = 0.55, restricted to the diagonal Bd; valence
(solid line) and conduction (dashed line) bands, as well as two Dirac cones, are shown.

• γ-graphyne

As already mentioned, the structure of the γ-graphyne in Figure 1c indicates the
relations 1 = t1 > t2 = t3 > 0. In this case, the roots of (21) are

η
γ
±(λ, θ) = ±

√
f (θ)

1 + 2t2
2

, (37)

with
f (θ) = f γ(θ) = 1 + 2t4

2 + 2t2
2(cos(θ1) + cos(θ2)) + 2t4

2 cos(θ1 − θ2). (38)

Here, we will also consider θ ∈ Bd, that is, θ2 = −θ1. Thus, the roots (37) are
equivalent to

η
γ
±(λ, θ) = ±

|1 + 2t2
2 cos θ1|

1 + 2t2
2

. (39)

Now, we analyze the possible presence of Dirac cones in the dispersion relation of the
γ-graphyne operator Hγ. We study (39) in three situations:



C 2023, 9, 76 12 of 19

(i) 0 < t2 <
√

2/2. In this case, the function 1 + 2t2
2 cos θ1 > 0, for all values of θ1. Thus,

η
γ
±(λ, θ) = ±

1 + 2t2
2 cos θ1

1 + 2t2
2

. (40)

The minimum and maximum of η
γ
+(λ, θ) and η

γ
−(λ, θ), respectively, occur at θ1 = ±π,

with values η
γ
±(λ,±π) = ± 1

1+2t2
2
. Note that the behavior in these points is parabolic.

Then, the roots η
γ
±(λ, θ) do not touch each other and, therefore, the dispersion relation

of Hγ does not have any Dirac cones in this parameter range (see Figure 5a).

(ii) t2 =
√

2/2. In this case,

η
γ
±(λ, θ) = ±1

2
± cos θ1

2
, (41)

with parabolic touches occurring at θ1 ± π, with value η
γ
±(λ, θ1) = 0, which proves

that the dispersion relation of Hγ does not have any Dirac cones (see Figure 5b).

(iii)
√

2/2 < t2 < 1. Differently from the cases (i) and (ii), the Dirac cones are present in
this situation. In fact, we have that η

γ
+(λ, θ) = η

γ
−(λ, θ) = 0 if, and only if, θ1 = ±θD

1 ,
with θD

1 = arccos(− 1
2t2

2
). Expanding η

γ
±(λ, θ) around ±θD

1 , in the analogous way we

have done in the β-graphyne case, we obtain

η
γ
±(λ, θ)− η

γ
±(λ, θD) = ±γ̃γ|θ − θD| − O

(
|θ − θD|2

)
, (42)

with θD = (θD
1 ,−θD

1 ) and

γ̃γ =

√
4t4

2 − 1

1 + 2t2
2

> 0. (43)

Analogously, one deals with −θD. Combining (27) and (42), we obtain

λ(θ)− λ(θD) = ±γ̄γ|θ − θD|+O
(
|θ − θD|2

)
+O

(
(λ(θ)− λ(θD))

2
)

,

with γ̄γ = γ̃γ/c(θD). Note that the γ̄ is the linear coefficient, while the upper index
“γ” indicates that we are considering the γ-graphyne. Therefore, for this parameter
range, the dispersion relation of the γ-graphyne operator Hγ has Dirac cones in its
dispersion relation (see Figure 5c).

By analyzing the computational 3D plot of the dispersion relation, it was observed
that the Dirac cones of the Hγ is similar to the β-graphyne case, i.e., the Dirac cones are
also situated at the vertices of a hexagon.

• (6, 6, 12)-graphyne

In the case of (6, 6, 12)-graphyne (see Figure 1d), the proposed parameter relations are
t1 = t2 = 1 and 0 < t3 < 1. Hence,

η
(6,6,12)
± (λ, θ) = ±

√
f (θ)

2 + t2
3

, (44)

with
f (θ) = f (6,6,12)(θ) = 2 + t4

3 + 2 cos θ1 + 2t2
3(cos θ2 + cos(θ1 − θ2)). (45)
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(a) t2 = 0.55
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(b) t2 =
√

2
2
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(c) t2 = 0.84

Figure 5. Dispersion relations of γ-graphyne restricted to the diagonal Bd; solid and dashed lines
illustrate valence and conduction bands, respectively. (a) Parameter t2 = 0.55 and θ1 ∈ [0, 2π]; there
is no touch. (b) t2 =

√
2/2 and θ1 ∈ [0, 2π]; there is a parabolic touch. (c) t2 = 0.84 and θ1 ∈ [0, π]; a

Dirac cone is shown.

This case is tricker than the previous ones; in β- and γ-graphynes, we have taken the
restriction to the segment Bd in the Brillouin zone, since it was observed that the (possible)
Dirac cones were present in the diagonal θ2 = −θ1. However, this does not happen for
(6, 6, 12)-graphyne; we have found that the two Dirac points occur at the line

θ2 = r(θ1) := (h(`)/`) θ1,

with ` = arccos
(

t4
3−2
2

)
and

h(z) := z− arcsin

(
1
t2
3

sin z

)
− π. (46)
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Thus, let Br be the following restriction of the Brillouin zone B:

Br := {θ ∈ B : θ2 = r(θ1)}. (47)

We shall check now that the points

θ+D := (`, h(`)) and θ−D = (−`, h(−`)),

in Br, are D-points. Let θ ∈ Br. Expanding f (θ) around `, we obtain

f (θ) = f (`) + f ′(`)(θ1 − `) +
f ′′(`)

2
(θ1 − `)2 +O

(
(θ1 − `)3

)
(48)

=
f ′′(`)

2
(θ1 − `)2 +O

(
(θ1 − `)3

)
, (49)

since f (`) = f ′(`) = 0, with f ′ meaning the derivative of f with respect to θ1. It implies
that

η
(6,6,12)
± (λ, θ)− η

(6,6,12)
± (λ, `) = ±γ̃(6,6,12)|θ − θ+D |+O

(
(θ1 − `)2

)
, (50)

with γ̃(6,6,12) =
√

f ′′(`)/(
√

2(2 + t2
3)). Combining (50) and (27), we obtain

λ(θ)− λ(θ+D) = γ(6,6,12)|θ − θ+D |+O
(
|θ − θ+D |

2
)
+O

(
(λ(θ)− λ(θ+D))2

)
,

with

γ(6,6,12) =
γ̃(6,6,12)

c(θ+D)
, θ+D = (`, h(`)).

Analogously, one deals with θ−D .
Therefore, the dispersion relation of the (6, 6, 12)-graphyne operator H(6,6,12) has Dirac

cones on the Brillouin zone (Figure 6), as found in [9] via a tight-binding model and in [14]
via first principles calculations, and here for all allowed parameter values.

-3 -2 -1 0 1 2 3

0

2

4

6

8

10

Figure 6. Dispersion relations of (6, 6, 12)-graphyne, with t3 = 0.55, restricted to the line Br; valence
(solid line) and conduction (dashed line) bands, as well as two Dirac cones, are shown.

Differently from the β- and γ-graphyne, which the Dirac cones are situated at the
vertices of a hexagon, the Dirac cones of the dispersion relation of (6, 6, 12)-graphyne occurs
at the vertices of a rhombus. In a similar way, one checks that the other two Dirac cones
occuring at the D-points are ±θ̄D, with θ̄D = ( ¯̀ , ¯̀/2) and ¯̀ = arccos

(
−(2− t4

3)/2
)
.
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5. Graphyne Nanotubes
5.1. Spectra of Graphyne Nanotubes

Let p = (p1, p2) ∈ Z2 \ {0} be a vector of the lattice of translation symmetries of
the graph G, denoting the corresponding nanotube by Gp = G(p1,p2)

and the graphyne
nanotube operator Hp = H(p1,p2)

, as defined at the end of Section 2.
As in Section 3, we apply the Floquet–Bloch theory that provides the Bloch Hamilto-

nian operators Hp(θ) for each quasimomentum θ in the Brillouin zone B and the decompo-
sition

σ(Hp) =
⋃

θ∈B
Hp(θ), (51)

with σ(Hp(θ)) = {λp,n(θ)}n, purely discrete. Since a function u on Gp lifts to a p-periodic
function on G, that is,

u(x + p1E1 + p2E2) = u(x),

then, by the Floquet condition (6), it follows that

p · θ = p1θ1 + p2θ2 ∈ 2πZ. (52)

Hence, we consider the restriction Bp ⊂ B of the Brillouin zone given by

Bp = {θ ∈ B : p · θ ∈ 2πZ}. (53)

Therefore, (51) turns into
σ(Hp) =

⋃
θ∈Bp

Hp(θ), (54)

and the dispersion relation for Hp is just the dispersion relation of H (see Section 3) restricted
to Bp, that is, it is given by

D(λ) = ±2
√

f (θ)
T

, λ /∈ σ(HD), θ ∈ Bp, (55)

where D(λ) = cos(
√

λ) (see (23)), f (θ) = F(θ)F̄(θ), F(θ) = t2
1 + t2

2eiθ1 + t2
3eiθ2 and

T = t2
1 + t2

2 + t2
3.

5.2. Dirac Cones

Now, we analyze the possible presence of Dirac cones in the dispersion relation (55)
of the graphyne nanotube operator Hp. As before, we analyze separately the β, γ and
(6, 6, 12)-graphyne.

Let θD ∈ B be a D-point of the graphyne operator H (see (24)). Since the dispersion
relation of Hp is the dispersion relation of H restricted to Bp, then θD is a D-point of the
nanotube graphyne operator Hp if, and only if, θD belongs to the restriction Bp. Thus, given
the D-point θD in each case of graphyne, we determine p in order to have θD ∈ Bp.

• β-graphyne nanotube

As discussed in Section 4, the dispersion relation of the β-graphyne operator Hβ has
D-points at ±θD, with

θD = (θD
1 ,−θD

1 ), θD
1 = arccos(t2

1/2)− π. (56)

Hence, the condition for θD ∈ Bp reduces to (similarly for −θD)

p · θD = p1 · θD
1 − p2 · θD

1

= arccos(t2
1/2)(p1 − p2) + π(p1 − p2) ∈ 2πZ.
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The above condition implies that the difference p1 − p2 must be an even integer, that
is, p1 − p2 = 2q, with q ∈ Z. Then,

arccos(t2
1/2)(p1 − p2) = 2 arccos(t2

1/2)q = 2πr, r ∈ Z,

that is,

t2
1 = 2 cos

(
r
q

π

)
, r, q ∈ Z. (57)

Because of the parameter t1 ∈ (0, 1), we have 0 < 2 cos(rπ/q) < 1. Let the function

gβ(x) := 2 cos(πx). (58)

It is easy to see that 0 < gβ(x) < 1 if, and only if, x ∈ Cβ, with

Cβ :=
⋃

n∈N∪{0}
(J+n ∪ J−n ),

J+n =


(

1
3 + n, 1

2 + n
)

, n even(
1
2 + n, 2

3 + n
)

, n odd
J−n =


(
− 1

2 − n,− 1
3 − n

)
, n even(

− 2
3 − n,− 1

3 − n
)

, n odd
.

Hence, t1 ∈ (0, 1) if, and only if, rπ/q ∈ Cβ. For instance, if p = (p1, p2) is such that
p1 − p2 = 14, then if r = 1 and q = 7, it follows that rπ/q = π/7 ∈ J+0 , which implies that
0 < t2

1 = 2 cos(π/7) < 1 (and so t1 ∈ (0, 1)) and, thus, p · θD ∈ 2πZ.
Therefore, ±θD are D-points of the dispersion relation of the β-graphyne nanotube

operator Hβ
p , for p = (p1, p2), if, and only if, there exists r, q ∈ Z, such that p1 − p2 = 2q

and rπ/q ∈ Cβ.

• γ-graphyne nanotube

From Section 4, we know that ±θD, with θD = (θD
1 ,−θD

1 ), θD
1 = arccos(−1/2t2

2), are
D-points of γ-graphyne operator Hγ if

√
2/2 < t2 < 1. Hence, given p = (p1, p2) ∈ Z2,

then ±θD are D-points of Hγ
p if, and only if, p · (±θD) ∈ Bp. By following the steps in the

discussion of the β-graphyne nanotube case, we obtain that

t2
2 = − 1

2 cos
(

r
q π
) , (59)

with r, q ∈ Z and p1 − p2 = 2q. Let

gγ(x) :=
√
−1/2 cos(πx).

Then, it follows that
√

2/2 < gγ(x) < 1 if, and only if, x ∈ Cγ, with Cγ =
⋃

n∈Z Jn, n
odd and Jn = (n− 1/3, n + 1/3). For instance, if p is such that p1 − p2 = 6, then for r = 1
and q = 3, it follows that rπ/q = π/3 ∈ J1 and, then t2 ∈ (

√
2/2, 1).

Therefore, for t2 ∈ (
√

2/2, 1), ±θD are D-points of the dispersion relation of the γ-
graphyne nanotube operator Hγ

p , for p = (p1, p2), if, and only if, there exists r, q ∈ Z, such
that p1 − p2 = 2q and rπ/q ∈ Cγ.

If t2 =
√

2/2, we have found that the dispersion relation of Hγ has parabolic touches
at ±(π,−π). By imposing the restriction Bp to these points, we obtain that p1 − p2 must
be even. Thus, if p = (p1, p2) is such that p1 − p2 = 2q, q ∈ Z, then it follows that the
dispersion relation of Hγ

p has parabolic touches at ±(π,−π).
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• (6, 6, 12)-graphyne nanotube

We have found in Section 4 that, for t3 ∈ (0, 1),

θ±D = (±`, h(±`)),

with ` = arccos
(

t4
3−2
2

)
and h(z) = z − arcsin

(
1
t2
3

sin z
)
− π, which are D-points for

H(6,6,12)
p . Due to the complexity of the function h(x) and the value of `, we were just able

to (analytically) analyze the possible presence of Dirac cones in the dispersion relation of
the zig-zag nanotubes G(6,6,12)

p , with p = (N, 0) and N ∈ Z. By imposing that θ±D ∈ Bp and
following the steps of β-graphyne case, we obtain

t2
3 =

√
2 cos

( q
N

2π
)
+ 2, q ∈ Z. (60)

Hence, t3 ∈ (0, 1) if, and only if, 2qπ/N ∈ C(6,6,12), with

C(6,6,12) =
⋃

n∈Z
Jn, Jn =

(
n
2
− 1

6
,

n
2
+

1
6

)
, n odd.

Therefore, θ±D are D-points for the zig-zag nanotube C(6,6,12)
(N,0) if, and only if, there exists

q ∈ Z such that 2qπ/N ∈ C(6,6,12).

6. Summary and Conclusions

In some situations, like graphene, QGMs are useful as models that usually permit an
analytical approach with explicit calculations. For a single graphene sheet, it was mainly
developed in [4,5] and has become standard, but requires that all graph edges have the
same length; it was also applied to a particular equilateral graphyne in [15]. Motivated by
previous works on multilayer graphene [6,7], the present authors have suggested some
adaptations (1) in the boundary conditions, (2) selection of graphyne edges and (3) heuristic
choices of parameters that take into account the intensity of chemical bonds, which have
permitted an effective graph modeling of some graphynes.

We have proposed QGMs of the graphynes discussed in [9,14], in order to investigate
Dirac cones; the main differences to graphene are that usually their hexagonal structure
have edges of different lengths which carry different chemical bonds (in each graphyne,
there are two or three types of bonds that repeat periodically). In principle, it is not
immediate how to model such situations via quantum graphs; hence, we had to make some
hypotheses which were based on heuristic observations and ad hoc procedures. We have
also discussed the presence of Dirac cones for the corresponding graphyne nanotubes.

Our general approach was to model through the honeycomb structure of graphene in
all cases, but introducing a positive parameter for each edge: there are three parameters,
corresponding to the three edge intensities in the associated fundamental domain W of the
honeycomb lattice (see Figure 2b). The idea is that the stronger the bond in an edge, the more
influence it should have on the boundary condition balance (see Equations (3) and (4)).
Next, we have tried to propose a way to associate edges of the graphyne to the ones
(a1, a2, a3) of W; of course, the choice must be a triple that appears in the graphyne that is
being considered, and the idea was to select the one that is more abundant in each graphyne
fundamental domain (which are indicated in Figure 1). However, this is not the case of
(6, 6, 12)-graphyne, as explained in previous sections. It was then recovered, via QGMs,
results from tight-binding and first-principle calculations in the literature, although our
results for the γ-graphyne present a transition from bands with a gap to bands with Dirac
cones, as a parameter changes.

Our effective models pick the most influential three-edge structure of each graphyne
and, also to simplify technical matters, some carbon bonds are considered to have similar
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strengths (and thus imply the same value of the corresponding parameters in (3) and (4)).
For example, the QGM of graphene in the literature does not distinguish single and double
carbon bonds, whose difference of enthalpies is 256 kJ/mol; thus, for each graphyne, we
have associated the same parameter value to edges whose difference of enthalpies is “close”
to such value. This is particularly important (and it was a guide) for the α-graphyne, whose
proposed QGM then coincides with the one of graphene.

It would be interesting whether the found transition in γ-graphyne could be replicated
either experimentally or by varying parameters in other theoretical calculations (e.g.,
tight-binding ones). We finish by mentioning that our proposal, to adapt QGMs to some
graphynes, is a combination of heuristics, effective models and, after modeling, our results
are mathematically rigorous.
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Appendix A. Self-Adjointness

In this appendix, we show how to conclude that the boundary conditions (3) and (4)
imply that the graphyne operator H is self-adjoint. By Theorems 1.4.4 and 1.4.11 in [22], in
order to check the self-adjointness of H, it is necessary and sufficient that, for each vertex v
with Ev(G) = {e1, e2, e3}, there exist two 3× 3 matrix Av and Bv such that:

(i) The 3× 6 matrix
[
Av Bv

]
has maximal rank;

(ii) The matrix AvB∗v is self-adjoint, where B∗v is the adjoint of Bv;
(iii) AvF(v) = BvF′(v), where the vector F(v) and F′(v) are given by

F(v) :=
[
ue1(v) ue2(v) ue3(v)

]ᵀ
and

F′(v) :=
[
u′e1

(v) u′e2
(v) u′e3

(v)
]ᵀ.

Consider a vertex v. We choose the following constant 3× 3-matrices

A =

t2 −t1 0
0 t3 −t2
0 0 0

 and B =

 0 0 0
0 0 0
t1 t2 t3

.

These matrices satisfy the three conditions (i), (ii) and (iii) above for nonzero parameters
t1, t2, t3. E.g., AB∗ = 0, which is self-adjoint. Therefore, the operator H is self-adjoint. Also
note that the (iii) above implies the proposed boundary conditions (3) and (4).
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