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Abstract: This paper presents a comparison of traditional thermal and chemical reduction methods
with more recent ionizing radiation reduction via gamma rays and electron beams (e-beams). For GO,
all synthesis protocols were adapted to increase production scale and are a contribution of this work.
The typical Raman D-band of the GO was prominent (ID/IG ratio increased sixfold). When comparing
the GO reduction techniques, dramatic differences in efficiency and GO particle characteristics were
observed. Although thermal and chemical reduction are effective reduction methods, as shown
through the use of FTIR spectroscopy and the C/O ratio from EDS chemical analysis, the thermal
process renders great weight losses, whereas chemical processing may involve the use of hazardous
chemical compounds. On the other hand, comparing the gamma rays and e-beam for 80 kGy, the
Raman spectra and chemical analysis suggested that the e-beam caused a greater GO reduction: C/O
ratio from EDS of 5.4 and 4.1, respectively. In addition to being fast and effective, ionizing radiation
reduction processes allow easier control of the reduction degree by adjusting the radiation dose.
When the dose increased from 40 to 80 kGy, the Raman spectra and EDS showed that the ID/IG and
C/O ratios increased by 15 and 116%, respectively.

Keywords: graphene oxide; Hummers method; reduced graphene oxide; chemical reduction; green
reduction; electron beam reduction; thermal reduction; radiation reduction; gamma ray reduction

1. Introduction

In recent decades, 2D materials have attracted a lot of attention in materials engineer-
ing because of their high thermal conductivity, optical transparency and high surface area.
Among the different 2D materials, metal dichalcogenides [1], boron nitride [2], carbon
nitride [3], MXenes [4], and graphene stand out [5,6].

Graphene is a one-atom-thick layer composed of hexagonally bonded carbons in sp2

hybridization [7]. Graphene can be produced from graphite via chemical vapor deposition
(CVD) [8], mechanical [9], chemical [10] or electrochemical [11–13] methods. After the
first graphene sheet was synthesized via mechanical exfoliation, many researchers became
interested in studying this material due to its electrical and thermal conductivity and gas
barrier properties as well as the high Young’s modulus [5,14].

However, to produce graphene in large quantities, the graphite oxidation process is
preferable to produce graphite oxide, followed by exfoliation to graphene oxide (GO) and
reduction to obtain reduced graphene oxide (rGO) [15]. GO can be produced via different
methodologies. It was first described by Brodie (1859), who applied fuming HNO3 (nitric
acid) and KClO3 (potassium chlorate) as intercalant and oxidant agents, respectively [16].
The complexity of this method and its hazardous process led to the need to create new
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methodologies for GO production. Hummers (1958) developed a protocol where H2SO4
(sulfuric acid), NaNO3 (sodium nitrate) and KMnO4 (potassium permanganate) were used
to oxidize graphite [17]. The benefit of the latter method was the removal of HNO3 via the
addition of KMnO4 as an oxidizing agent. Nevertheless, some improvements were needed,
such as an increase in the oxidation level to mitigate the number of unoxidized graphite
particles in the produced material [18–21]. Consequently, several modifications have been
made to the Hummers method, originating the modified Hummers method [22]. Hou et al.
demonstrated that increasing the amount of H2SO4 and KMnO4 increased the oxidation
degree [23]. Aixart et al. found that the degree of exfoliation increased proportionally
with the reaction time [24]. Ucar et al. verified that applying a pre-oxidation step before
the modified Hummers method could increase the oxygen content on the graphene oxide
sheets [25].

The majority of publications utilized a graphite content ranging from 0.5 to 3 g per
batch of GO production, which may not be representative of studies aimed at producing
GO in large scale [23,26–30].

During the process of graphite oxidation using the Hummers method, sp2 bonds are
interrupted due to the insertion of oxygen-containing groups (hydroxy, epoxy, carbonyls,
carboxyl, ketones, alcohols, and lactones) on their basal planes and edges, which signifi-
cantly alter the van der Waals interactions between the layers and endow GO with strong
hydrophilicity. Some GO properties are impacted by the conversion to an sp3 structure,
such as the decrease in electrical and thermal conductivities when compared to the ones of
pristine graphene [31,32].

With the purpose of restoring the intrinsic properties of graphene, GO can be converted
into reduced graphene oxide (rGO) via the removal of oxygen-containing groups. There
are numerous methodologies to reduce graphene oxide. Thermal and chemical reductions
are the procedures with the highest number of publications [33,34]. Feng et al. reviewed
the latest developments of different strategies to reduce GO, and they concluded that the
precise oxidation of GO via a reliable technique was still questionable and, consequently, it
was very difficult to control the degree of reduction precisely and repeatedly [35].

There is a growing interest in reducing GO using thermal energy to obtain rGO
with structural and electrical properties similar to the ones of graphene sheets [36]. It
has been reported that between 140 and 180 ◦C, the vaporization process of intercalated
water molecules dominates, whereas, for the range of temperatures between 180 and
600 ◦C, the main carboxyl groups are removed. In the temperature range of 600–800 ◦C,
all the residual carboxyl and partial hydroxyl groups are released. A further increase
in the temperature to around 1000 ◦C causes the removal of the residual hydroxyl and
partial epoxide groups leading to the generation of a large number of structural defects
caused by C=C cracking [37]. Sieradzka et al. studied the effects of graphite particle size
on the morphological structure of thermally reduced rGO and clearly showed that such
morphologies affected the electrical properties of reduced graphene oxides [38].

Another well-known method is chemical reduction because of its large-scale reduction
potential [35,39]. Hydrazine monohydrate (N2H4·H2O) is the most used chemical reducing
agent despite the fact that it is a very toxic chemical component. Furthermore, the N2H4
reduction process incorporates C-N groups into the graphene sheet. Sodium borohydride
(NaBH4) is an alternative to reduce graphene oxide via chemical reduction despite the fact
that it is also toxic. Despite the potential for large-scale production, other papers showed
that the initial amounts of GO to produce rGO are still low, up to 0.5 g [37,40,41]. A more
recent method that has been attracting the attention of researchers is the electrochemical
method, which shows potential for large-scale production, being both green and sustainable
and allowing for the oxidation and defect control of the rGO produced [11–13]. The
reduction of graphene oxide via ionizing radiation has also been recently studied [19,42,43].
This technique consists of reducing the GO by submitting its particles to gamma radiation
or to an electron beam (e-beam) [44]. The principle of this method is to create active
free radicals with reduction potential (product of radiolysis) to chemically react with GO,
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therefore reducing it. When a suspension of GO in water/alcohol is submitted to radiation,
the water molecules will decompose into oxidizing and reducing species: hydroxyl radical
(•OH), hydrogen radical (•H), and hydrated electrons (eaq−). The presence of alcohol in the
dispersion decreases the concentration of oxidative species (•OH), creating a high-capacity
reducing solution, which reduces the GO particles [42–46]. The goal is to produce rGO
faster, more efficiently, and that is also easily scalable [47,48].

There are few studies reported in the literature about the electron beam reduction
method. An advantage of this technique is the possibility of reducing GO without the
use of toxic agents. Yang et al. studied several radiation doses: 5, 15, 20, and 40 kGy.
They could not obtain rGO with these levels, but they found that the interplanar spacing
decreased, indicating the removal of some oxide groups from GO [47]. On the other hand,
Jung et al. applied the radiation dose of 50, 100, and 200 kGy and showed that the electrical
conductivity increased proportionally with the radiation dose [48].

Regarding the gamma radiation method, it is a less recent methodology than the
e-beam method. It uses radioactive isotopes as the energy source. It was applied by
Atta et al. to reduce GO with 100 kGy [49]. Jacovone et al. reduced GO with radiation
doses of 20, 40, and 80 kGy [50]. Ansón-Casaos et al. applied radiation doses of 60, 90,
and 150 kGy [51]. Although these studies have explored the GO reduction by ionizing
radiation, the lack of complete characterizations of the reduced materials has not allowed a
conclusive comparison of the effects of several radiation doses.

In this context, the objective of this work was to produce GO using a scalable method
and with an appropriate degree of oxidation and submit it to four different reduction
methods, comparing the traditional GO thermal and chemical reduction methods with the
more recent ionizing radiation reduction using gamma rays and e-beam. Characterizations
of the GO and rGO were performed using Raman, XRD, SEM, EDS, and AFM techniques.
Among the numerous articles reporting studies on these techniques, to our knowledge, few
use different reduction processes starting from the same GO and provide an appropriate
characterization of the rGO produced. All production protocols, from graphite to graphene
oxide, were adapted to increase production scale and are a contribution of this work.
Therefore, to increase the amount of initial graphite and ensure its proper oxidation, four
main adjustments were performed on the original method described by Hummers [17]:
(1) addition of the pre-oxidation step, (2) increasing the dosage of H2SO4, (3) increasing
the reaction time, and (4) inclusion of the centrifugation process to remove unoxidized
particles of graphite from the obtained material.

2. Materials and Methods

The graphite specified as Grafmax FP 120, with a carbon content of 99.98%, was
supplied by the National Graphite company (São Paulo, Brazil). For GO and rGO produc-
tions, the following chemical compounds (reagent grade) were used: sulfuric acid (H2SO4),
potassium persulfate (K2S2O8), diphosphorus pentoxide (P2O5), sodium nitrate (NaNO3),
potassium permanganate (KMnO4), hydrogen peroxide (H2O2), hydrochloric acid (HCl),
sodium borohydride (NaBH4), and ethyl alcohol 99.5% (C2H6O). Chemical reagents were
purchased from Synth (Diadema, Brazil) and Sigma-Aldrich Brasil (São Paulo, Brazil).

In this work, the synthesis of GO was carried out starting from graphite through the
Hummers method [17] with a pre-oxidation step. Additionally, a centrifugation step was
included at the end of the process. The GO obtained was reduced using 4 different methods:
chemical, thermal, gamma radiation, and electron beam. Figure 1 shows the synthesis
routes for all samples. Graphite, GO, and rGO obtained by all methods were characterized,
and the nomenclatures are shown in Table 1.
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Figure 1. Schematic illustration of GO and rGO syntheses.

Table 1. Nomenclatures of different samples produced.

Nomenclature Samples Description

GRF Graphite
GO Graphene oxide

rGOq Reduced graphene oxide by chemical reduction
rGOt750 Reduced graphene oxide by thermal reduction at 750 ◦C

rGOt1000 Reduced graphene oxide by thermal reduction at 1000 ◦C
rGOe40 Reduced graphene oxide by electron beam reduction at 40 kGy
rGOe60 Reduced graphene oxide by electron beam reduction at 60 kGy
rGOe80 Reduced graphene oxide by electron beam reduction at 80 kGy
rGOg Reduced graphene oxide by gamma radiation

2.1. Preparation of Graphene Oxide

Graphite (10 g) was pre-oxidized with sulfuric acid, potassium persulfate and diphos-
phorus pentoxide. The dispersion remained at 80 ◦C for 6 h under continuous stirring.
After that, this dispersion was washed with distilled water and filtered until achieving a
pH of around 7. Subsequently, the material pre-oxidized was dried in an oven at 60 ◦C for
24 h. Next, the pre-oxidized graphite was subjected to the modified Hummers’ method:
460 mL of sulfuric acid and 5.0 g of sodium nitrate were added to the pre-oxidized graphite,
stirring continuously, and keeping it in an ice bath (temperature around 5 ◦C) for 30 min.
After that, 30.0 g of potassium permanganate was added slowly for 30 min, and keeping
the reaction cooled for another 30 min. After this time, the dispersion was heated to 40 ◦C
for a period of 2 h. Then, 920 mL of deionized water was added. The dispersion remained
under stirring for another 15 min. After that, 50 mL of hydrogen peroxide solution was
added to the dispersion and stirred for 30 min. Gradually the dispersion changed from
dark greenish black to a yellow color, indicating a high level of oxidation. The dispersion
was then filtered using a Büchner funnel in a vacuum system with 1 L of HCl. Then, the
material retained in the funnel was dialyzed with deionized water for 4 days until neutral
pH. Afterward, the material was subjected to an ultrasonication process for 1 h, using a
probe of 19 mm and 70% of amplitude (Ultrathermostatic Quimis, 120 W, 40 kHz), followed
by centrifugation at 2000 rpm for 15 min. A centrifugation process was applied to remove
particles that were not completely oxidized.

2.2. Preparation of Reduced Graphene Oxide by Chemical Reduction

The dispersion containing 1 g of GO was subjected to ultrasound for 60 min, with
an amplitude of 60% (Ultrathermostatic Quimis, 120 W, 40 kHz). After that, deionized
water was added until the dispersion completed 1 L. Then, 6 g of sodium borohydride was
added, followed by heating for 3 h at 120 ◦C. After heating, the dispersion was filtered with
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deionized water, diluted in 4 L, and then filtered again [41]. The resulting dispersion was
lyophilized.

2.3. Preparation of Reduced Graphene Oxide via Thermal Reduction

The thermal reduction was carried out by heating the lyophilized GO in an atmo-
sphere of N2 (flow of 0.12 m3/h) using an oven at 750 ◦C and 1000 ◦C. After reaching the
temperature, the GO was kept at a constant temperature for 45 s [37].

2.4. Preparation of Reduced Graphene Oxide by Gamma Radiation Reduction

The GO dispersion was diluted in a solution of 50% (v/v) ethanol and deionized water.
The dispersion was submitted to radiation in the cobalt-60 compact type multipurpose
irradiator of the Radiation Technology Center (CETER) at IPEN (Instituto de Pesquisas
Energéticas e Nucleares, São Paulo, Brazil). As the radiation hitting the sample’s surface
varies according to the distance to the radioactive source [52], the irradiation was performed
in two stages, rotating the sample by 180◦ between stages. The total radiation dose was
80 kGy, applied at a dose rate of 7.8 kGy/h [42]. The resulting dispersion was lyophilized.

2.5. Preparation of Reduced Graphene Oxide by Electron Beam Reduction

The GO dispersion was diluted in a solution of 50% (v/v) ethanol and deionized
water. The irradiation process was carried out in the JOB 188 electron beam accelerator
(Dynamitron®, Edgewood, NY, USA), a commercial equipment of the CETER—IPEN. To
guarantee the complete radiation of the samples, the dispersion did not exceed 3 mm in
thickness. The dose rate was 2.68 kGy/h, and the total radiation doses were 40, 60, and
80 kGy [47]. The resulting dispersion was lyophilized.

2.6. Characterization

Raman spectroscopy was performed on lyophilized samples. At least 3 spectra were
obtained for each sample, using a Raman spectrometer, confocal Raman microscope Al-
pha300 R (WITec, Ulm, Germany), with a green wavelength of 532 nm and 45 mW. The
calculation of the crystallite size of the samples was done by the equation described be-
low [53,54]:

La (nm) = 2.4 · 10−10 · λ4
laser ·

IG
ID

, (1)

where IG/ID is the ratio between the intensities of the G and D bands. The λlaser refers to
the laser wavelength (nm).

Samples were also analyzed using Fourier transform infrared spectroscopy (FTIR),
using a Nicolet iS10 (Thermo Scientific, Waltham, MA, USA), using the attenuated total
reflectance (ATR) apparatus. X-ray diffractometry (XRD) analysis was performed in a
Miniflex diffractometer (Rigaku, Cedar Park, TX, USA), with copper as the x-rays source
(λ = 1.5418 Å), steps of 0.02◦, and soaking time of 5 s. The interlayer spacing of GO
and rGO was calculated using Bragg’s equation [38]. A scanning electron microscope
(SEM) was applied to analyze GO and rGO morphologies using a FEI Company field
emission Inspect F50 instrument (Hillsboro, OR, USA). All samples were coated with gold
for conduction purposes. Energy-dispersive spectrometry (EDS) was used to analyze the
chemical composition of the graphene oxides and reduced graphene oxides. The reported
results were an average of at least 10 measurements from different regions on the sample.
Atomic force microscopy (AFM) was performed using the Bruker MultiMode 8 atomic
force microscope (Billerica, MA, USA) on samples prepared on a mica surface.

3. Results
3.1. Raman Spectroscopy

Raman spectroscopy data and curves are shown in Table 2 and Figure 2. The Raman
spectrum of the GRF (Figure 2a) shows the G band positioned at 1593 cm−1, presenting
an area 4.8 times larger than the D band, identified at 1366 cm−1. The ID/IG ratio was
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0.18, showing the higher intensity of the G band, as a result of regularity in the stacking
of the graphitic structure, with a full width at half maximum (FWHM) of ~23 cm−1. This
band corresponds to sp2 carbon vibrations of the graphene layers. On the other hand, the
D band, with an FWHM value of ~50 cm−1, indicates the presence of heteroatoms, point
dislocations in the structure, and other defects [55,56]. The 2D band, the second highest
intensity in the spectrum, is positioned at 2730 cm−1, also due to the interactions between
the stacked graphene layers [57]. The crystallite size (La) obtained was 104 nm.

Table 2. Data obtained from the Raman spectra of all reduced graphene oxides.

D
Band/FWHM

(cm−1)

G
Band/FWHM

(cm−1)

2D Band
(cm−1) La (nm) ID/IG

GRF 1366/49.9 1593/22.8 2730 104.0 0.18
GO 1370/207.6 1608/170.1 2668 18.3 1.05

rGOq 1341/99.8 1588/89.5 2679 15.9 1.21
rGOe80 1343/75.1 1572/71.8 2665 15.6 1.23
rGOe60 1343/81.5 1574/77.7 2679 16.9 1.14
rGOe40 1343/92.7 1578/82.5 2669 17.9 1.07
rGOg 1341/83.6 1576/74.5 2679 15.9 1.21

rGOt750 1344/193.9 1585/174.3 2657 19.3 1.00
rGOt1000 1344/170.6 1585/111.5 2647 18.7 1.03

GO Raman spectra can be shown in Figure 2b. Both D and G bands are also observed
in the GO spectrum, with an ID/IG ratio of 1.05. This value refers to the presence of sp3

hybridization regions, resulting in the prominent D band. Both bands are wider than the
ones observed for graphite, indicating a decrease in the sp2 domains. This broadening was
confirmed using the FWHM values, which were 208 and 170 cm−1, for the D and G bands,
respectively. The La decreased from 104 to 18.3 nm, reflecting the lower content of graphitic
domains (i.e., disruption of the graphitic stacking order) [55–57].

Figure 2c shows the Raman spectra of the rGO produced via thermal reduction.
Despite both ID/IG ratios of rGOt750 and rGOt1000 being similar in comparison with the
one for GO, the D and G bands were narrowed, as confirmed by the lower value of the
FWHM for GO, indicating that rGOt750 and rGOt1000 have less oxygen-containing groups
in their structures when compared to GOs [56]. La did not change significantly when
compared to GO. The 2D bands are barely identifiable, positioned around 2660 cm−1.

The Raman spectra of the GO reduced by electron beam (rGOe40, rGOe60, rGOe80)
are shown in Figure 2d. The ID/IG ratio increased proportionally with the radiation dose:
1.07, 1.14, and 1.23 for rGOe40, rGOe60, and rGOe80, respectively. These results suggest
an increase in the number of new domains, with a higher density of defects, such as grain
boundaries and a higher number of edges present in the carbon backbone, due to the
reduction process [56]. The FWHM of the D and G bands decreased with the increasing
dose. This difference is probably due to the lower quantity of oxygen-containing groups
in the graphene layers. Crystallite sizes decreased with the increase in the radiation dose
level [47]. rGOe80 and rGOg presented similar Raman spectra, although the ID/IG ratio for
rGOe80 resulted in a small increase (around 1.5%) in comparison to the one for rGOg. In
addition, the lower FWHM in D and G bands suggests that e-beam radiation causes higher
GO reduction than gamma rays [49]. rGOq (Figure 2e) showed the D (1341 cm−1) and G
(1588 cm−1) bands with widths narrower than those of unreduced GO. The ratio of the
intensities of the D and G bands, 1.21, was similar to the ones of rGOg and rGOe80 [56].

According to Saito et al. [58], the presence of disorder activates certain vibrational
modes, which, in ordered structures, are inexpressive, such as the D and D′ band modes and
the D + D′ combination mode. The authors reported the evolution of the 2D band and the
D + D′ band in monolayer graphene submitted to ion bombardment. The combined modes
of D + D′, at 2930 cm−1, could only be observed at higher doses of ion bombardment. Similar
results were also found when graphene was subjected to electron beam bombardment, as
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presented by Childres et al. [59], which was also discussed by Selhorst and co-authors [60].
Therefore, the 2D and D + D′ bands observed in the curves of rGOg and rGOe, Figure 2d,e,
suggest that the radiation doses used in the present study introduced defects in the rGO
structures.
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To prove the reproducibility of the protocols proposed in this work, Figure S1 shows
Raman spectra of the first and second production batches of GO and rGOs. All samples
showed reproducibility in the curve profile and in the ID/IG ratio.
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3.2. X-ray Diffraction (XRD)

The XRD curves for GRF, GO, and rGO are shown in Figure 3 and Table 3. Graphite
exhibits very sharp diffraction peaks at 2θ = 26.3◦ and 54.6◦, corresponding to an interplanar
spacing of 3.4 Å and 1.7 Å, assigned to the (002) and (004) planes of the graphite’s hexagonal
structure, respectively. The GOs XRD pattern exhibits a peak at 2θ ~10◦, corresponding
to an interplanar spacing of 8.7 Å, attributed to the (001) plane of GO [61]. The insertion
of oxygen-containing functional groups during the oxidation process, such as epoxy and
carbonyl groups, impacts the spacing increase between the layers [62]. Furthermore, these
hydrophilic oxygen-containing functional groups absorb water molecules, thereby also
contributing to the increase in the interlayer spacing. The absorbed water molecules in
the basal plane galleries and structural defects cause the interplanar spacing to vary in the
range of 6.1 Å, for dry GO, to 12 Å, for hydrated GO [63].

C 2023, 9, x FOR PEER REVIEW 8 of 18 
 

rGOe80 resulted in a small increase (around 1.5%) in comparison to the one for rGOg. In 

addition, the lower FWHM in D and G bands suggests that e-beam radiation causes higher 

GO reduction than gamma rays [49]. rGOq (Figure 2e) showed the D (1341 cm−1) and G 

(1588 cm−1) bands with widths narrower than those of unreduced GO. The ratio of the 

intensities of the D and G bands, 1.21, was similar to the ones of rGOg and rGOe80 [56]. 

According to Saito et al. [58], the presence of disorder activates certain vibrational 

modes, which, in ordered structures, are inexpressive, such as the D and D’ band modes 

and the D + D’ combination mode. The authors reported the evolution of the 2D band and 

the D + D’ band in monolayer graphene submitted to ion bombardment. The combined 

modes of D + D’, at 2930 cm−1, could only be observed at higher doses of ion bombardment. 

Similar results were also found when graphene was subjected to electron beam 

bombardment, as presented by Childres et al. [59], which was also discussed by Selhorst 

and co-authors [60]. Therefore, the 2D and D + D’ bands observed in the curves of rGOg 

and rGOe, Figure 2d,e, suggest that the radiation doses used in the present study 

introduced defects in the rGO structures. 

To prove the reproducibility of the protocols proposed in this work, Figure S1 shows 

Raman spectra of the first and second production batches of GO and rGOs. All samples 

showed reproducibility in the curve profile and in the ID/IG ratio. 

3.2. X-ray Diffraction (XRD) 

The XRD curves for GRF, GO, and rGO are shown in Figure 3 and Table 3. Graphite 

exhibits very sharp diffraction peaks at 2θ = 26.3° and 54.6°, corresponding to an 

interplanar spacing of 3.4 Å and 1.7 Å, assigned to the (002) and (004) planes of the 

graphite’s hexagonal structure, respectively. The GOs XRD pattern exhibits a peak at 2θ 

~10°, corresponding to an interplanar spacing of 8.7 Å, attributed to the (001) plane of GO 

[61]. The insertion of oxygen-containing functional groups during the oxidation process, 

such as epoxy and carbonyl groups, impacts the spacing increase between the layers [62]. 

Furthermore, these hydrophilic oxygen-containing functional groups absorb water 

molecules, thereby also contributing to the increase in the interlayer spacing. The absorbed 

water molecules in the basal plane galleries and structural defects cause the interplanar 

spacing to vary in the range of 6.1 Å, for dry GO, to 12 Å, for hydrated GO [63]. 

  
(a) (b) 

Figure 3. XRD patterns of (a) graphite, GO, rGOt750, rGOq; (b) rGOq, rGOe80, rGOe60, and rGOe40. 

  

Figure 3. XRD patterns of (a) graphite, GO, rGOt750, rGOq; (b) rGOq, rGOe80, rGOe60, and rGOe40.

Table 3. The structural parameters of the GRF, GO, and rGO are determined using XRD technique:
2θ (diffraction angle), and d (interlayer space).

2θ (◦) d (Å)

GRF 26.3 3.4
GO 42.3/10.1 2.1/8.7

rGOq 43.1/25.3/10.9 2.1/3.5/8.1
rGOg 43/22.2/11.3 2.1/4.0/7.8

rGOt750 43.8/24.7 2.1/3.6
rGOe80 42.8/22.2/11.1 2.1/4.0/7.9
rGOe60 42.7/22.1/10.7 2.1/4.0/8.2
rGOe40 42.7/22.6/10.5 2.1/3.9/8.4

The ordered crystal structure was partially restored when GO was reduced. This
is verified by the reappearance of a wide diffraction peak, due to the irregular stacking
of the graphene layers, from 22◦ to 25◦, corresponding to an interplanar spacing around
4 Å, assigned to the plane (002) of rGO. In addition, the peaks around 2θ = 42◦ (for GO)
and 2θ = 44◦ (for reduced GOs) are related to a short-range order within the layers of the
stacked graphene, which are present in the semicrystalline, typical profile of the turbostratic
graphite structure [64–66].

Furthermore, it also presents a peak around 10◦ for the reduced GOs, with the ex-
ception of the one thermally reduced, which may suggest that part of the GO was not
completely reduced [67]. Conversely, the XRD curve of the thermally reduced material
revealed a completely amorphous structure because of the lack of diffraction peaks. When
comparing the curves of rGOe40, rGOe60, and rGOe80, it was observed that the peak
intensities at around 22◦ increase as the dose rises, suggesting that the reduction was most
effective for 80 kGy [47,49].
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3.3. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of GO and reduced GO samples can be seen in Figure 4. It is possible
to identify the presence of oxygen-containing functional groups in the GO spectrum,
indicating that groups were covalently bonded to the basal plane of the graphitic structure.
An intense and broad band between 3700 and 3000 cm−1 is related to O-H stretching,
which can be attributed to the hydroxyl and COOH groups present in the GO [63]. The
band at approximately 1730 cm−1 corresponds to the carboxyl/carbonyl (C=O) stretching
groups [61]. The band at around 1615 cm−1 is generated by the structural vibrations of
the graphitic domains, being attributed to the C=C stretching of the aromatic rings. The
band at 1170 cm−1 is associated with the C-O-C stretching, referring to the epoxy groups.
The sharp band around 1045 cm−1 is attributed to O-H deformations, characteristic of
C-OH groups [63,68,69]. The spectra of all reduced GO samples showed a decrease in band
intensities related to the carbon–oxygen functional groups, in particular for the sample
thermally reduced at 1000 ◦C [47].
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3.4. Energy-Dispersive Spectrometry (EDS)

EDS analysis (Table 4) was performed to compare the elemental compositions of the
GO and rGO samples. The EDS results corroborate FTIR analysis, suggesting that all
reduction methods contributed to the oxygen percentage decrease in rGO when compared
to the ones for GO.

The C/O ratios ranged between 1.6 and 6.2. The following sequence represents the
C/O values in ascending order: GO, rGOe40, rGOe60, rGOq, rGOt750, rGOg, rGOe80,
and rGOt1000. The rGOe80 and rGOt1000 exhibited the lowest oxygen contents among all
reduced GO. With regard to rGOq the presence of residual sodium was identified, most
likely due to contamination caused by sodium borohydride, the reduction agent used in
this process [63,70].

3.5. Scanning Electron Microscopy (SEM)

The morphological structure of GRF, GO and rGO were analyzed using scanning
electron microscopy. The micrographs are shown in Figure 5. In general, graphite presented
particles larger than 50 µm (Figure 5a). However, the images show that after the oxidation
process, the size of the particles decreased (Figure 5b). The morphology of graphite shows
compacts of platelets and flat particles with well-defined edges. On the other hand, the
GO particles show a more open structure, with irregular curved edges and the presence
of folded surfaces, due to the expansion of the interlayer spacings and the lower amount
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of ordered stacked sheets caused by particle breaks and the attachment of the oxygen-
containing functional groups [61]. After the reduction process (Figure 5c–i), the particles
presented morphologies with greater roughness as a result of the defects generated in
the structure of the basal plane via the removal of the oxygen-containing groups. The
roughness was more evident for rGOe40, rGOe60, and rGOe80 (Figure 5d–f). Regarding the
rGOt750 and rGOt1000 (Figure 5h–i), the particles presented much smaller sizes, around
10 µm. Nevertheless, for these thermally reduced GO, a re-stacking was not allowed, as
observed by XRD patterns [61,63,71]. In addition, during the thermal reduction treatment,
micro-explosions occur when the oxygen-containing groups are released, resulting in small
and porous particles and a high loss of material (above 90%), comprising the disadvantages
of such a method.

Table 4. Semi-quantitative elemental composition, by EDS, of GO and rGO, and the corresponding
C/O ratio.

C (%) O (%) Na (%) C/O

GO 60.8 39.2 0 1.6
rGOq 70.3 23.7 6.0 3.0

rGOe80 84.4 15.6 0 5.4
rGOe60 74.4 25.6 0 2.9
rGOe40 71.7 28.3 0 2.5
rGOg 80.3 19.7 0 4.1

rGOt750 79.1 20.9 0 3.8
rGOt1000 86.1 13.9 0 6.2
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3.6. Atomic Force Microscopy (AFM)

AFM analysis was performed to determine the thickness of isolated GO and rGO flakes.
Figure 6 shows both the image and the thickness profile (three directions scan per image)
of GO, rGOq, rGOe80, and rGOg flakes. It can be seen in Figure 6a a GO particle with
approximately 3 µm of width and thickness varying from 1 to 1.5 nm. This suggests that the
oxidized graphite was properly exfoliated to obtain thin flakes of graphene oxide [12,44].
Figure 6b–d show the thicknesses of reduced GOs: around 2 nm for rGOq, around 2 nm for
rGOe80, and around 8 nm for rGOg. When compared to the GO flake, the thicknesses of
the reduced GO particles increased. This means that the oxygen-containing groups were
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removed, which makes the layers come close together, and a re-stacking of the layers took
place. Both rGOq and rGOe80 flakes can be classified as multi-layer graphene, whereas
rGOg can be classified as graphite nanoflakes or nanoplates [7].
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4. Conclusions

The protocols for GO production, starting from graphite, were adapted from the
original method described by Hummers [17] to increase production scale and ensure
graphite oxidation. The addition of pre-oxidation and centrifugation processes rendered a
higher amount of GO per batch.

It was possible to observe through the Raman spectra of the GO that the typical D band
was prominent, and both D and G bands are wider than the ones observed for graphite,
which is caused by the insertion of the large number of oxygen-containing groups and
other defects in the graphene layers. The combined analyses of the XRD patterns and FTIR
and EDS spectra confirmed the graphite oxidation and the obtention of GO particles. In
addition, the C/O atomic ratio was 1.6. According to Bianco et al. [7], GO C/O ratios must
be less than 3.0 and typically closer to 2.0.

When comparing the GO reduction techniques, the traditional thermal and chemical
reduction, as well as the more recent ionizing radiation reduction using gamma rays and
e-beam, dramatic differences in the efficiency, and the GO particle characteristics, were
observed.

It was found that, as extensively reported in the literature, thermal reduction is an
effective reduction method. The rGOt1000 presented the lowest oxygen content, with a
C/O ratio of 6.2. Furthermore, the particles presented the smallest sizes, and the XRD
curves revealed a complete lack of diffraction peaks, revealing that the re-stacking was
not allowed. However, the disadvantage of this method is the high loss of material during
the thermal reduction (above 90%) caused by micro-explosions during the release of the
oxygen-containing functional groups.

The results for rGOq showed a satisfactory reduction, as evidenced by the decrease in
the absorption band intensities corresponding to the oxygen-containing functional groups
in the FTIR spectrum and an intermediate oxygen content (EDS) when compared to the
other reduction methods. It is important to highlight that the final product contained
sodium as a contaminant (EDS), and the procedure may involve the use of hazardous com-
pounds, such as hydrazine monohydrate (N2H4·H2O) and sodium borohydride (NaBH4).

Regarding the radiation reduction methods, both gamma rays and e-beam were
effective in obtaining rGO. Particularly, when comparing the two techniques for the same
radiation dose, that is, rGOe80 and rGOg, the Raman spectra suggested that the e-beam
technique caused a higher GO reduction than the gamma ray technique, as corroborated by
the C/O atomic ratio from the EDS analysis, which resulted in 5.4 and 4.1, for rGOe80 and
rGOg, respectively.

Finally, comparing the effects of different e-beam radiation doses, 40, 60, and 80 kGy,
the Raman spectra and EDS chemical analysis showed that the ID/IG ratios and C/O
atomic ratios increased with the radiation dose, whereas the interplanar spacing decreased
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when the radiation dose increased. In other words, the reduction power increased with the
radiation dose.

Furthermore, both radiation methods allow for easier control of the reduction degree
when compared to the previous methods by adjusting the reduction radiation dose. How-
ever, it should be pointed out that both methods involve radiation production, which limits
access to proper facilities and require the inherent care related to the use of high-energy
radiation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c9030073/s1, Figure S1: Raman spectra of the first and second
production batches of GO and rGOs: (a) GO; (b) rGOq, (c) rGOe40, (d), rGOe60, (e) rGOe80, (f) rGOg,
(g) rGOt750, and (h) rGOt1000.
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