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Abstract: Sodium polyacrylate is the superabsorbent waterlock polymer used in disposable diapers,
which are the third largest single consumer item in landfills. As diapers are difficult to recycle,
their use produces an incredible amount of environmental waste. In the present article, we present
a reliable and facile approach to transform sodium polyacrylate, the main constitute in the used
diapers, in a carbon-based magnetic sorbent material, capable for use in environmental applications.
A nanoporous carbon magnetic hybrid material was prepared by reacting NaPA with iron acetate
species under chemical activation conditions. Analysis of the characterization results revealed,
the creation of a nanoporous structure, with high specific surface area value (SgBET = 611 m2/g),
along with the formation of nanosized zero valent iron nanoparticles and iron carbide (Fe3C),
inside the carbon pore system. 57Fe Mössbauer spectroscopy verified also the existence of these
two main iron-bearing phases, as well as additional minor magnetic phases, such as Fe3O4 and
γ-Fe2O3. Vibrating sample magnetometry (VSM) measurements of the obtained hybrid confirmed its
ferromagnetic/ferrimagnetic behavior. The hybrid material demonstrated a rapid sorption of Cr(VI)
ions (adsorption capacity: 90 mg/g, 24 h, pH = 3). The results showed highly pH-dependent sorption
efficiency of the hybrids, whereas a pseudo-second-order kinetic model described their kinetics.

Keywords: carbon; magnetic; nanoporous; superabsorbent polymers; hexavalent chromium; adsorption

1. Introduction

Superabsorbents (SAs) are defined as the materials which can absorb and hold large
quantities of liquids, in comparison with their dry weight [1–3]. The most well-known
material among them, is the sodium polyacrylate (NaPA), a super absorbent polymer
(SAP), which structure is composed of very long carbon chains bonded with sodium
atoms in repeating units, with the chemical formula of –CH2–CH(COONa). When sodium
polyacrylate is exposed to water, the higher concentration water molecules outside the
polymer, attract the polar water molecules inside the polymer chains, via osmosis [4]. The
NaPA swells and continues absorbing water until its concentration inside and outside the
polymer coming to an equilibrium, while the initial material transforming into a hydrogel.
Taking advantage of its ability to absorb as much as 400–800 times its mass in water, NaPA
is used in many applications, such as: (i) absorbent for water and aqueous solutions in baby
diapers, (ii) additive in surgical sponges, (iii) adult incontinence products and feminine
hygiene products, (iv) thickening agent or sorbent infiltration units in industrial processes,
and (v) water reservoir and soil amendment for agricultural uses [1,5–7].
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On the other hand, the extensive use of NaPA especially in diapers, napkins, etc., as a
superabsorbent component, has caused major environmental problems. These disposable
products, form a sizeable portion of non-recyclable landfill waste, also contain many
harmful chemicals that are subsequently scattered into the environment [8,9]. According to
EPA (Environmental Protection Agency) the total number of produced disposable diapers
per year in the USA were estimated about 27.5 billion, while the produced wastes that
ended up in landfills were ~4.15 million tons (year 2017) [10]. Given this situation, large
amounts of SAPs could be obtained from the castoff of above landfill wastes, which could
be exploited as utility resources to prepare value-added products. Recently studies have
shown that SAPs are very suitable precursors for the preparation of sponge-like activated
carbons or porous carbon composites [11,12]. These SAPs contain, as well as carbon
backbone chains and carboxylic groups, exchangeable metal ions, which serve as activating
agents for a process that promotes stable carbon structures with an increased specific
surface area and porosity. In addition, when the NaPA is placed in a solution containing
other metal ions, i.e., Ca2+, Ni2+, Co2+, Gr3+, Fe3+, etc., they preferentially bind to the
anionic sites in the polymer, displacing the sodium ions and resulting in the formation
of new hydrogels [13–16]. These types of hydrogels, which contain transition metal ions,
seems to be suitable precursor for the fabrication of porous carbon structures decorated
with oxides or metal nanoparticles.

Recently, there are many studies on the development of low-cost adsorbents based
on carbon, namely by using waste materials for that purpose [17]. Activated carbon is
the oldest and most widely used porous carbon material as adsorbent, used in a broad
spectrum of applications, including water purification, remediation of polluted aquatic
environments, gas storage, catalysis, medical and biomedical applications, etc. [18,19].

Furthermore, composite materials made by activated carbon or other type porous
carbons and oxide/metal nanoparticles, have attracted a lot of interest for the remediation
and treatment of water contaminated by heavy metal pollutants. The efficiency of these
composites for environmental remediation is due to their higher reactivity and enhanced
functionalities which are attributed to synergistic effects between matrix and nanoparticles.
Among various types of nanoparticles that were investigated, magnetic iron and iron oxides
have received considerable interest concerning the clean-up of environmental pollutants
due to their small particle size, high surface area, catalytic activity, low cost, and simplicity
of their production [20–23]. On the other hand, magnetic iron nanoparticles are sensitive
in air oxidation and are easily formed in aggregations which decrease their effectiveness
in environmental remediation. For these reasons, their stabilization into a host matrix is
a big challenge for scientists because the nanoparticles could be protected and randomly
dispersed without aggregations [24–27]. Moreover, the porous matrix should not only act
as a supporting material, but also can also play an active role in the catalytic and sorption
properties of the nanoparticle’s system, especially when this particular combination of
properties, could potentially generate novel hybrid materials, with better and/or new
properties than the pristine materials.

Until now, there is a small number of studies regarding the development of carbon
structures from carbonization of SAPs [11–13]. However, none of these studies utilized car-
bon/iron nanoparticle composites for environmental remediation processes. In the present
work, we prepared a magnetic composite structure consisting of iron nanoparticles and
porous carbon, using carbonization-chemical activation of iron polyacrylate, in conjunction
with the ability of iron carboxylate compounds to transform upon pyrolysis into crystalline
magnetic phases [28–30]. The structure of hybrid material was examined using X-ray
diffraction (XRD), Fourier-transform (FT) Infrared thermal analysis methods, surface area
measurements, and transmission electron microscopy (TEM). The nature of the nanoparti-
cles and their magnetic behavior were examined employing Mössbauer spectroscopy, and
magnetic measurements using vibrating sample magnetometer (VSM). Additionally, the
hybrid was tested in comparison to pristine carbon for its ability to remove hexavalent
chromium from aqueous solutions. This is the first time that such a hybrid material derived
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from SAPs and consisting of magnetic nanoparticles, has been tested for environmental
remediation and especially in hexavalent chromium removal. Chromium (Cr) is a widely
used heavy metal in many engineering and chemical industries [31,32] but it is considered
as a major pollutant on its oxidation state of Cr(VI). Cr(VI) is highly soluble and exerts
toxic effects on humans and animals [33,34]. In the present study we present the ability of
the new hybrid magnetic material in the Cr(VI) removal. Kinetic study was carried out
using the pH and concentration of pollutants as parameters.

2. Materials and Methods
2.1. Reagents

All chemical reagents were used as purchased without further purification.
Sodium polyacrylate, NaPA, cross-linked, iron(iii) nitrate nonahydrate (Fe(NO3)·9H2O),
1,5-diphenylcarbazide (C13H14N4O, ≥97%), potassium dichromate (K2Cr2O7, 99.98%),
sodium hydroxide (NaOH, 97%) and phosphoric acid (H3PO4, 85%) were purchased from
Sigma-Aldrich. Potassium hydroxide (KOH, 85%) was purchased from Riedel-de Haen
(Seelze, Germany) whereas hydrochloric acid (HCl, 37%), acetic acid (99.5%) and acetone
(99.9%) from Merck. Finally, ethanol 99.5% (EtOH) and methanol 99.8% (MeOH) were
supplied by Panreac (Barcelona, Spain).

2.2. Synthesis of Materials

3 g of NaPA was transferred in a 100 mL pyrex beaker, and then 80 mL solution of
distilled water containing 3 g of Fe(NO3)3·9H2O, was added in the beaker at once. The
NaPA immediately was transformed into a red-brown fluffy solid. The obtained solid, was
dried for 1 h at 60 ◦C and then it was exposed to vapors of acetic acid at 80 ◦C for 1 h. The
solid powder was dried again for 30 min at 80 ◦C to remove any physically absorbed acetic
acid. Afterwards, the powder was mixed with the activating agent KOH (with weight
ratio of 1:1) using an agate mortar for 5 min. Finally, the composite magnetic material was
obtained after calcination for 30 min in Ar flowing atmosphere at 600 ◦C with 10 ◦C/min
increment temperature rate (hereafter named NaPA@MAC). For comparison purposes, a
sample of pure carbon was also prepared as a blank, using NaPA as the precursor and
distilled water as swelling liquid. The final product (NaPA@C) was obtained under the
same above carbonization conditions using KOH as activating agent (1:1).

2.3. Characterization of Materials

Infrared (FT-IR) spectra of samples in powder form, dispersed in KBr pellets, which
were the average of 32 scans at 2 cm−1 resolution, were measured with a JASCO FT/IR-6000,
Fourier transform spectrometer in the frequency range of 400–4000 cm−1.

X-ray powder diffraction data were collected on a D8 Advance Bruker diffractometer
using Cu Ka (40 kV, 40 mA, λ = 1.541 78 Å) radiation and a secondary beam graphite
monochromator. Diffraction patterns were collected in the 2θ range from 10 to 90 degrees,
in steps of 0.02 degrees and 2 s counting time per step.

Thermogravimetric (TGA) and differential thermal analysis were performed using a
Perkin Elmer Pyris Diamond TG/DTA. Samples of approximately 5 mg were heated in the
air from 25 ◦C to 1000 ◦C, at a rate of 5 ◦C/min.

The 57Fe Mössbauer spectrum of the NaPA@MAC was collected in transmission
geometry at room temperature (300 K) using a constant-acceleration spectrometer, equipped
with a 57Co(Rh) source kept at room temperature. Velocity calibration of the spectrometer
was carried out using metallic α-Fe at 300 K and all isomer shift (IS) values are given
relative to this standard. The experimentally recorded spectrum was fitted and analyzed
using the IMSG code [35].

The magnetic properties of the NaPA@MAC were investigated by means of isother-
mal magnetization (M) versus (vs) applied magnetic field (H) measurements, which
were conducted at room temperature using a vibrating sample magnetometer (VSM)
(LakeShore 7300).
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Transmission electron microscopy (TEM) observations were performed using the
instrument JEM HR-2100, JEOL Ltd., Tokyo, Japan operated at 200 kV in bright-field mode.
A drop of high-purity distilled water, containing the ultrasonically dispersed particles, was
placed onto a holey carbon film supported by a copper-mesh TEM grid (CF300-CU-UL,
carbon square mesh, CU, 300 mesh from Electron Microscopy Science, Hatfield, UK) and it
was air-dried at room temperature.

Nitrogen porosimetry measurements were carried out at 77 K on a Quantachrome
Autosorb iQ porosimeter using samples prior outgassed under vacuum (i.e., 10−6 mbar) at
120 ◦C for 10 h. The overall pore volume was calculated via the total adsorbed nitrogen
amount at P/P0 = 0.998 and the specific surface area was calculated using the BET, the
Langmuir, and the CPSM model.

UV-Visible (UV-vis) spectra of solutions were measured in quartz cuvettes with a
UV-2401(PC)-Shimadzu (Kyoto, Japan) two-beam spectrophotometer in the range
400–700 nm at a step of 0.5 nm using a halogen lamp.

2.4. Batch Experiments

The composite magnetic material NaPA@MAC has been used as adsorbent to remove
Cr(VI) from aqueous solutions at temperature T = 23 ◦C. The effect to the adsorption, of
pH value, initial Cr(VI) concentration and contact time were studied by different kinetic
experiments. More specific, in order to study the effect of the pH to the adsorption
capacity, 7.18 ppm Cr(VI) solutions with different pH value 1.5, 3.0, 4.5, 5.5, and 6.5
reacted with 180 mg/L NaPA@MAC for 24 h. The pH value was adjusted by adding
1 N HCl or NaOH whereas the Cr(VI) solutions were prepared by appropriate dilutions of
a stock Cr(VI) solution (1 mg/mL). After 24 h, 3 mL of the suspensions were withdrawn,
centrifuged and the Cr(VI) concentration was photometrically determined by applying
the 1,5-diphenylcarbazide method [36]. The effect of the initial Cr(VI) concentration on
the adsorption process was studied at pH 3 and different Cr(VI) solutions (0–300 mg
Cr(VI)/gNaPA@MAC) while for the contact time effect, 7.18 ppm Cr(VI) solution at pH 3
was used. The Cr(VI) concentration of the solution was measured, at different time periods
by following the method described above. A similar kinetic experiment also applied by
using NaPA@C non-magnetic material as adsorbent, for comparison reasons.

3. Results and Discussion
3.1. Structural Characterization

Figure 1 displays the infrared spectrum of NaPA, NaPA@C, and the spectra of magnetic
carbon derivative NaPA@MAC, before (a), and after treatment with the 48 ppm Cr(VI)
solution for 24 h (b). All spectra show an intense and broad absorption band around
3420 cm−1, corresponding to stretching vibrations of the free and intermolecular bonded
hydroxyl groups. The OH-bending vibrations of the same groups appear at around
1630 cm−1, overlapped with the vibrations’ bands of carboxyl anions –COO− (~1585 cm−1).
The main features at high frequencies of the infrared spectrum of NaPA, consisting of
three absorption bands at 2960, 2920, and 2850 cm−1, which can be assigned [37,38] to the
C–H asymmetric and symmetric stretching vibrations of the (–CH2–) groups, of repeating
polymeric unit. The same spectrum also exhibits two strong absorption maxima at around
1586 cm−1 and 1720 cm−1. The first band could be assigned to the asymmetric stretching
vibrations of –COO− units, close to aromatic carbon rings, suggesting the presence of
carboxylate groups, whereas the second band to the C=O stretching modes of protonated
carboxylate groups which form cyclic dimers [39–43]. Furthermore, the band at 1450 cm−1

is attributed to symmetric stretching of –COO− carbonyl, the band at 1165 cm−1 to C–O
stretching vibrations, whereas the bands at 785 cm−1 and 855 cm−1 can be assigned to
aromatic C–H out-of-plane bending vibrations [44–49].
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On the other hand, the infrared spectrum of sodium polyacrylate precursor after
calcination (Figure 1 NaPA@C), exhibited two strong absorption bands at 1640 cm−1 and
1400 cm−1 and a significant number of weaker and sharper peaks at lower frequencies,
i.e., 1006 cm−1, 985 cm−1, 830 cm−1, and 704 cm−1. All these bands could be attributed to
KHCO3 and K2CO3, [50,51] which were formed during pyrolysis and decomposition of
NaPA, in the presence of KOH activating agent. In fact, when KOH is used as chemical
activator, several reactions may occur [52,53] such as:

6KOH + CO2 → K2CO3 +H2O ↑ (1)

or
KOH + CO2 → KHCO3 (2)

(carbonate or bicarbonate formation).
These compounds, are decomposed at higher temperatures according to reactions:

2KHCO3 → K2CO3 + CO2 ↑+ H2↑ (3)

K2CO3 → K2O + CO2 ↑ (4)

(carbonate or bicarbonate decomposition).
Furthermore, the spectrum (Figure 1 (a)) of untreated magnetic carbon derivative

NaPA@MAC, is characteristic of carbon materials. In particular, the bands at 1590 cm–1 and
1165 cm–1 could be assigned to the stretching vibrations of –COO− units close to aromatic
carbon rings and/or C−H bonds in aromatic carbon rings, respectively. The last one also
was due to C–O single bonds, such as those in ethers, phenols, acids, and esters, while the
broad band around 1085 cm–1 corresponds to the alcoholic C–O stretching vibration mode.
The absorption at ~1420 cm–1 corresponds to C–H bending and stretching vibration modes
of –CH2 groups. The formation of iron nanoparticles on carbon surfaces was also indicative
from the spectrum of NaPA@MAC. For instance, at low frequency region (745–500 cm−1),
two broad bands observed at 650 cm−1 and 487 cm−1, which were probably originated from
Fe–O and Fe–C vibrations of the formed Fe3C, oxidized iron and iron oxide nanoparticles.
In fact, iron carbide (Fe3C), oxide shell of zero valent iron (Fe0), magnetite (Fe3O4) and
maghemite (γ-Fe2O3), exhibit bands in the frequency range 650–450 cm−1, which could be
assigned to the Fe–O and Fe–C stretching modes in their nanostructures [29,54,55]. Thus,
the formation of such iron magnetic phases could be clearly suggested.

The spectrum of NaPA@MAC, after treatment with the 48 ppm Cr(VI) solution for 24 h
is shown in Figure 1. The spectrum NaPA@MAC (b) exhibits strong absorption bands at
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3420 cm−1 and 1630 cm−1 which were assigned to vibrations of adsorbed water molecules
and two weak, in intensity, bands at 1410 cm−1 and 1085 cm−1, due to C–O stretching and
COO- carbonyl stretching vibrations, respectively. According to literature [56], after Cr6+

was absorbed by porous carbons, the infrared absorbance was significantly decreased at
around 1480 cm–1. The proposed mechanism involves surface electron-donor groups of
the adsorber such as carbonyls, hydroxyl, and aromatic π-conjugated systems to provide
electrons to Cr6+ because of the strong affinities for Cr6+ under acidic conditions [57,58].
However, no significant differences in the frequency range 4000–1000 cm−1 could be
observed between the spectra of NaPA@MAC carbon prior and after Cr6+ sorption, which
suggested limited sorption of Cr6+ by the surface groups of magnetic carbon. In contrast,
the spectrum of NaPA@MAC after Cr6+ sorption showed a significant increase in absorption
at frequencies < 700 cm−1, indicative of the oxidation of zero-valent iron nanoparticles.
Generally, the Cr6+ removal process by nZVI, involved initially the adsorption of hexavalent
chromium anionic species on the active sites, and subsequently the stabilization and
reduction, resulting in their precipitation on nZVI as Cr3+-hydroxides and/or mixed
Fe3+/Cr3+-(oxy)hydroxides [59].

Figure 2 presents the powder XRD patterns within the 2θ range of 10–70◦, of NaPA
and NaPA@MAC samples. The X-ray diffraction pattern of NaPA carbon exhibited a very
broad diffraction profile at low scattering angles (2θ < 30 ◦), that along with the absence
of sharp peaks in the whole pattern, revealed a predominantly amorphous structure of
the sample.

On the other hand, the pattern of the NaPA@MAC exhibited several sharp and intense
diffraction peaks, which suggested the formation of crystalline phases. Thus, the very
intense well-defined peak at 44.8◦ and the weaker peak at 65.1◦ were assigned to reflections
(110) and (200) of a-Fe crystalline phase, respectively (JCPD files no. 04-007-9753). From the
full width at the half maximum (FWHM) of the more intense peak, at 44.8◦, the average size
of the zero-valent iron nanoparticles was estimated to be ~40 nm, using Scherrer’s equation.
In addition, on the same background there were also several weak peaks at 2θ, 37.8◦, 39.9◦,
40.8◦, 43.0◦, 43.8◦, 45.9◦, 48.7◦, 49.3◦, 52.0◦, 57.0◦, 58.1◦, and 30.2◦, 35.5◦, 62.7◦, probably
corresponding to the crystalline phase of cementite (Fe3C), (JCPD files no. 00-035-0772) and
γ-Fe2O3 or Fe3O4 [JCPDS files no. 00-039-1346 and 01-086-1344], respectively, formed after
pyrolysis in an inert atmosphere of ferric acetate-decorated NaPA sample [60]. The average
size of Fe3C nanoparticles was also estimated to be ~35 nm using Scherrer’s equation.
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Figure 3 shows the DTA/TG curves for the NaPA@C and NaPA@MAC samples.
The DTA curves for both samples show several endothermic peaks at low temperatures
(<200 ◦C), which could be attributed to the evaporation of adsorbed water and to the
decomposition of potassium bicarbonate species formed during the pyrolysis of NaPA.
Furthermore, the two curves also exhibited exothermic peaks between 370 and 420 ◦C, due
to the partial combustion of the carbon matrix and endothermic peaks at ~750 ◦C, which
could be assigned to K2CO3 decomposition.
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The TGA curves for NaPA@C and NaPA@MAC samples are also shown in Figure 3,
which illustrates the occurrence of three weight loss steps. These TG steps were correlated
with the mass loss during heating of samples, and were attributed to processes such as
dehydration, combustion, and decomposition. The NaPA@C sample showed a steep weight
loss of nearly 62% between 25 ◦C and 900 ◦C due to the above-referred processes, whereas
in the case of the NaPA@MAC, the TGA curve showed lower weight loss of about 28% for
the same temperature range, that was attributed to the presence of thermal stable phase of
Fe3C, ZVI and magnetic iron oxides.

3.2. Textural, Surface, Morphological and Magnetic Properties

Figure 4 shows the transmission electron microscopy (TEM) bright field images of
the NaPA@MAC hybrid in order to elucidate the morphology and arrangement of the
nanophases. As shown in these images, nanoparticles (quasi-spherical in shape) with
sizes between 3 and 8 nm, seems to be homogeneously dispersed on hybrid surfaces
(Figure 4a,b). However, careful observation of the hybrid surfaces, revealed that some
nanoparticles were accumulated in larger clusters ~40–50 nm in size (Figure 4c). It should
be noted, that nanoparticles such as iron (Fe0) and cementite (Fe3C) due to their large
energy densities, appeared with darker contrast in comparison to their adjacent phase of
carbon or iron oxide nanoparticles [61–63]. Electron diffraction patterns of selected areas
in the TEM images would have been a possibility to distinguish the three different forms
of iron (zero valent iron, F3C and iron oxide nanoparticles) but that has been exclusively
studied and verified by XRD patterns and 57Fe Mössbauer spectroscopy.
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According to the Figure 5a, it is obvious that the NaPA@MAC material exhibits a sharp
knee in the low-pressure range (i.e., P/P0 < 0.01) indicates the presence of microporosity
(Dmicropore ≤ 2 nm). Moreover, it is obvious from the same figure that the NaPA@C
prepared without iron magnetic particles exhibits a hysteresis loop with almost zero
adsorbed nitrogen during nitrogen porosimetry measurements. This means practically
zero pore specific surface area. In the first case, the knee is up to 110 cm3 STP/g while the
overall adsorbed volume is up to 440 cm3 STP /g which corresponds to a percentage of
25%. Figure 5b illuminates the low relative pressure region (micropore region) for the case
of magnetic material and presents the goodness of fitting of the experimental data by the
CPSM model [64,65]. The micropore volume fraction predicted by the CPSM model fitting
on the overall hysteresis loop is 21.4% while the Dubibbin–Raduskevitch (D–R) method [66]
predicts a micropore volume fraction of 32.2%. More specifically, as it is reported in Table 1,
according to the CPSM model [64,65] the micropore volume is 0.146 cm3/g and according
to the Dubinnin–Raduskevitch (D–R) method [66] the micropore volume is 0.220 cm3/g.
The pore volume distribution (Figure 5c), provided by the application of the CPSM and
the DFT model [67] on the magnetic material experimental data, indicates the presence
of two separated groups of pores, one with mean pore diameter around D = 1.70 nm and
D = 1.67 nm, and one with mean pore diameter around D = 2.90 nm and D = 2.52 nm for the
CPSM and the DFT model, respectively. Furthermore, it is obvious from the same figure
that pore diameters are extended beyond the size of 5 nm and this observation is supported
by both the CPSM and the DFT model. On the other hand, the pore number distribution
(pore population distribution) (Figure 5d) provided by the CPSM model indicates that 63%
of pores are in the micropore region (D ≤ 2.0 nm). The perfect simulation of the nitrogen
porosimetry process by the CPSM model also provides results for specific surface area
values as follows, SBET = 611 m2/g, SLangmuir = 796 m2/g, and SCPSM = 729 m2/g (Table 2).
The presence of microporosity introduces the pore curvature effect on specific surface area
calculations [68] which means that the CPSM model predictions, which are between the
BET and Langmuir predictions, are more realistic.

Table 1. Pore structure characterization results derived from Dubinnin–Raduskevitch (D-R) method,
DFT model, and the simulation of the overall N2 adsorption–desorption hysteresis loop by
CPSM model.

Sample Code
Vpore

(cm3/g)
VD-R

micro
(cm3/g)

VCPSM
micro

(% cm3/g)
DCPSM

Nmean
(nm)

DCPSM
Vmean

(nm)
DDFT

Vmean
(nm)

NaPA@MAC 0.682 0.220 0.146 1.69 1.70, 2.90 1.67, 2.52, 5.01

Table 2. Specific Surface Area (SSA) estimation derived from the classic models BET and Langmuir
as well as from the CPSM model.

Sample Code
SgBET
(m2/g)

CBET
SgLang.
(m2/g)

CLang.
SCPSM
(m2/g)

NaPA@MAC 611 372 796 55 729
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Figure 5. Simulation and results of nitrogen porosimetry experimental data for NaPA@MAC and NaPA@C materials. CPSM
model fitting (continuous line) over all the experimental adsorption (black points) and desorption (white points) data (a)
higher relative pressure hysteresis loop for the material prepared with NaPA@MAC and without magnetic iron particles
NaPA@C (b) lower relative pressure hysteresis loop for NaPA@MAC. (c) Pore volume distribution according to the DFT
(black points) and to the CPSM (black line) for NaPA@MAC. (d) Pore number (population) distribution according to the
CPSM model for NaPA@MAC.

The room temperature 57Fe Mössbauer spectrum of NaPA@MAC is presented in
Figure 6 and shows a combination of several magnetically split components (sextets). In
particular, a set of four clearly magnetically resolved sextets and a broad magnetically
split contribution were used to fit this spectrum adequately. The resulting Mössbauer
parameters values for these components are listed in Table 3. From these values it is
clear that the two major contributions (regarding their absorption areas) correspond to a
metallic α-Fe and a carbide Fe3C phase and the two minor clearly resolved sextets with
large hyperfine magnetic field (Bhf) values to the mixed valence iron spinel oxide magnetite
(Fe3O4) phase [69]. The fifth broad component presents Mössbauer parameters values
that are characteristic of an assembly of superparamagnetic (SPM) magnetite or oxidized
magnetite (Fe3−xO4) nanoparticles phase.
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Table 3. 57Fe Mössbauer hyperfine parameters resulting from the best fits of the corresponding
spectrum of NaPA@MAC sample recorded at 300 K. IS is the isomer shift (given relative to α-Fe at
300 K), Γ/2 is the half line-width, 2ε is the quadrupole shift, Bhf is the central value of the hyperfine
magnetic field, ∆Bhf is the spreading of Bhf, and Area is the relative spectral absorption area of each
component used to fit the spectrum. Typical errors are ±0.02 mm/s for IS, Γ/2, and 2ε, ±3 kOe for
Bhf and ±5% for Area.

Component (Color) IS
(mm/s)

Γ/2
(mm/s)

2ε
(mm/s)

Bhf
(kOe)

∆Bhf
(kOe)

Area
(%)

α-Fe (red) 0.00 0.14 0.01 331 4 39
Fe3C (blue) 0.20 0.14 0.03 211 7 34

Fe3+ (Fe3O4) (green) 0.28 0.17 0.00 491 0 2
Fe2.5+ (Fe3O4) (olive) 0.67 0.21 0.00 462 0 3

SPM Fe3O4/Fe3−xO4 (orange) 0.34 0.14 0.01 290 72 22

Figure 7 presents the M vs H loop measurements of the NaPA@MAC sample collected
at room temperature. The clear ferromagnetic characteristics of this loop reflect the con-
tributions from the ferromagnetic (α-Fe, Fe3C) and ferrimagnetic (Fe3O4) phases present
in the sample [70,71]. In particular, the saturation magnetization of ~47 Am2/kg reflects
the hybrid nature of the sample, while the coercivity of ~14 mT the contribution of the
nanostructured nature of the magnetic phases in the sample.

3.3. Sorption Kinetic Study for Cr6+ Removal from Aqueous Solution

Figure 8a shows that for pH values in the range 1–3 (acidic environment), 100% of
the Cr(VI) amount in a 7.18 ppm solution was adsorbed by the NaPA@MAC material
after 24 h and for temperature T = 23 ◦C. Furthermore, for pH values in the range of
4.5–6.5, the % Cr(VI) adsorbed amount almost reaches the value of 0%. For this reason,
experiments for the estimation of maximum adsorption capacity, and for the effect of the
initial Cr(VI) concentration on this capacity, were carried out at pH = 3 and T = 23 ◦C
for 24 h with different initial Cr(VI) concentrations. It is obvious from Figure 8b that for
Cinit = 143 mgCr(VI)/gAC (i.e. 25.72 ppm) the experimental maximum adsorbed amount
after 24 h of the adsorption process is qmax(24 h) = 55.3 mgCr(VI)/gAC while for
Cinit = 298 mgCr(VI)/gAC (i.e., 53.67 ppm) the experimental maximum adsorbed amount
after 24 h of the adsorption process is qmax(24 h) = 92 mgCr(VI)/gAC. This means that the
maximum adsorption capacity is strongly ruled by the initial Cr(VI) concentration at least
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for a value of Cinit ≤ 53 ppm. The trend of this graph (i.e. Figure 8b) shows that for higher
Cr(VI) initial concentration a higher maximum adsorption capacity will be achieved.
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magnification focused on the loop’s center to reveal the coercive characteristics.

A kinetic experiment with initial Cr(VI) concentration of 7.18 ppm, was carried out at
pH = 3 and T = 23 ◦C for 24 h. Measurements were carried out for both material prepared
with and without magnetic iron particles. In the case that magnetic iron particles weren’t
used, Figure 9b, the total adsorbed Cr(VI) amount is zero. This is expected according to
Figure 5a because of the zero-pore specific surface area. Pseudo First Order kinetic model
(PFO), Pseudo Second Order kinetic model (PSO), and Diffusion–Chemisorption kinetic
model (DC) were tested on material prepared using magnetic iron particles, to resort to the
most suitable mechanism of adsorption [72]. Results are reported in Table 4.
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Figure 9. A 24h experiment for the kinetic behavior of Cr(VI) removal via adsorption on (a)
NaPA@MAC and (b) NaPA@C, at pH = 3, T = 23 ◦C and for Cinit = 7.18 ppm Cr(VI). Best fit of
three kinetic models on adsorption process experimental data for the case (a).

Table 4. R2, correlation coefficient values, k specific reaction rate values, and qe adsorbed amount at
the equilibrium stage, which are provided by Levenberg–Marquardt Least-Square fitting algorithm
upon the NaPA@MAC kinetic experimental dataset.

NaPA@MAC (7.18 ppm) PFO PSO DC

R2 0.9249 0.9657 0.9136
k 0.3119 0.0095 20.41
qe 35.25 40.43 61.27

It is obvious from Figure 9, that after 24 h, the NaPA@MAC material tend to vanish the
Cr(VI) at this initial concentration (i.e. 39.9 mgCr(VI)/gAC). Furthermore, as it is shown in
Table 4 the Cr(VI) adsorbed amount at the equilibrium stage (i.e. after infinite time, when
the solid material will be saturated), is estimated to be over 61 mgCr(VI)/gAC according
to the Diffusion–Chemisorption (DC) model and over 40 mgCr(VI)/gAC according to the
pseudo second order (PSO) model. The R2 parameter of the Levenberg–Marquardt Least-
Square fitting algorithm which are also presented in Table 4 was the tool for the evaluation
of such models in our case. The R2 of the Pseudo First Order (PFO) model and of the
Diffusion–Chemisorption (DC) model falls off. This means that for Cinit = 7.18 ppm (a low
initial concentration), the occupation by Cr(VI) or other elements of the unoccupied sites in
the pores is not the controlling stage (PFO mechanism [72]). Before the Cr(VI) consumed
totally, saturation or transient phenomenon starts. A high percentage of the active sites
of the pore surface were occupied quickly during initial time moments, but when this
initial time pass, phenomena such as transient adsorption, chemisorption, Van der Waals
bonding, ion exchange, reaction, etc., start to exist in pores. One of the basic principles of
the PSO model is that chemisorption phenomena are the controlling mechanism [72]. To
check out if the PSO is the only biosorption active rate limiting mechanism we fitted the
experimental data using the Diffusion–Chemisorption (DC) model [72]. According to the
R2 values which are presented in Table 4 this model exhibits a not so good fitting capability
compared to this of the PSO model.

According to all of the above-mentioned points, neither the collision of the adsorbed
molecules with the unoccupied pore surface sites nor the diffusion through pores are
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the only controlling mechanism [73]. For this reason, the Pseudo Second Order (PSO)
model seems to be the most appropriate for the kinetic study of this work. This model
indicates a more complex mechanism involving both the above-mentioned controlling
stages plus a surface bonding process which occurs on the pore surface sites and may
be a reaction on the surface of pores. Furthermore, according to this model, the state of
the adsorbate, i.e., liquid or gas, and the pore size distribution of the activated carbon
are strongly interactive [74]. In the case of liquid media as an adsorbate (our case), the
existence of micropores in combination with the existence of meso and macro pores is
more effective for such adsorption processes [73]. In our case, according to the CPSM
model [64,65], and according to the results presented in Figure 5d, the NaPA@MAC exhibits
a population of approximately 37% macro–meso pores which contributes to the relatively
quick intraparticle diffusion and a population of approximately 63% micropores which
contributes to the relatively slow diffusion and transient adsorption, the surface bonding,
the chemisorption, and the surface reactions [73].

Finally, Table 5 presents a comparison between the adsorption capacities of various ad-
sorbents reported in the literature for the removal of Cr(VI). It is observed that NaPA@MAC
has higher or comparable adsorption efficiency than other activated carbons, magnetic
activated carbon hybrids or bare iron-based nanoparticles.

Table 5. Adsorption capacities (qm) of Cr(VI) on NaPA@MAC and other adsorbents reported in
the literature.

pH qm (mg/g) Ref.

AC_fiber/nZVI 3 91.5 [75]

AC(Filtrasorb-400)/nZVI 4 25 [76]

AC/nZVI 5 24 [77]

AC-tires 2 58.5 [78]

nZVI-MAC 4 66 [79]

AC-tires waste/magnetic iron oxides 2 49.3 [80]

Corn cob-derived magnetic AC 2 57 [81]

PAC-Fe0/Ag 3 100 [82]

nZVI–Fe3O4 nanocomposites 3 100 [83]

Maghemite nanoparticles 2.5 19.4 [84]

δ-FeOOH-coated γ-Fe2O3 2.5 25.8 [84]

Powdered AC 4 46.9 [85]

AC Hevea brasiliensis (rubberwood) sawdust 2 44.05 [86]

AC coconut tree sawdust 3 3.46 [87]

AC longan seed 3 35.02 [88]

AC Casuarina equisetifolia leaves 3 17.2 [89]

AC-Poseidonia Oceanica 3 120 [90]

AC-spent coffee 3 109 [91]

Fe/Fe3C nanoparticles 3 100 [92]

AC/Fe-Fe3O4 2–6 165–73 [93]

NaPA@MAC 3 90 This work
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4. Conclusions

A porous carbon magnetic hybrid (NaPA@MAC) comprised of magnetic iron species
such as Fe0, Fe3C, magnetite and/or maghemite nanoparticles immobilized onto a porous
carbon has been prepared, characterized, and tested for Cr(VI) treatment. The porous
carbon phase was derived from the pyrolysis of sodium polyacrylate, a superabsorbent
polymer used in disposable diapers. The development of nanoparticles was based on the
affinity of acetic acid vapors to react with the dispersed iron cations in the supporting
phase to first form iron acetate precursor species which further produce the magnetic
nanoparticles upon pyrolysis. FT-IR, XRD, and TEM measurements revealed the formation
of dispersed magnetic iron and iron-bearing nanoparticles on porous carbon surfaces,
which exhibit typical surface chemistry of activated carbon materials. The major part
of Fe0 and Fe3C nanoparticles were homogeneously dispersed on the hybrid surfaces
(with mean particle size ~6 nm) or they were accumulated in larger clusters of ~40–50 nm
in size. Magnetization (M) vs magnetizing field (H) loop measurements showed a clear
ferromagnetic behavior of the hybrid with a saturation magnetization of ~47 Am2/kg,
originated from the contributions from the ferromagnetic (Fe0, Fe3C) and ferrimagnetic
(Fe3O4) phases present in the sample. Using various models and methods the surface area
of magnetic hybrid was calculated to be between 611 and 796 m2/g, the total pore volume
~0.68 cm3/g, whereas the micropore volume was calculated at about ~0.220 cm3/g. Pore
size distribution analysis of the hybrid, indicated the presence of two separated groups
of pores, one with a mean diameter around 1.70 nm, and one with a diameter ~2.90 nm,
respectively. The adsorption kinetics data were fitted with the pseudo second-order model
which seems to be the most appropriate for the kinetic study of this work. Due to the
specific surface properties of NaPA@MAC and synergic effects of both counterparts, the
material exhibits extremely high efficiency for Cr(VI) removal which at pH equals 3 and
after 24 h of the adsorption process was ~92 mg/g whereas the 100% of Cr(VI) amount was
adsorbed by the hybrid when the chromium initial concentration was 7.18 ppm.
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