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Abstract: Biomass-derived carbons are very attractive materials due to the possibility of tuning
their properties for different energy-related applications. Various pore sizes, conductivities and
the inherent presence of heteroatoms make them attractive for different electrochemical reactions,
including the implementation of electrochemical capacitors or fuel cell electrodes. This contribution
demonstrates how different biomass-derived carbons prepared from the same precursor of viscose
fibers can reach appreciable capacitances (up to 200 F g−1) or a high selectivity for the oxygen
reduction reaction (ORR). We find that a highly specific surface area and a large mesopore volume
dominate the capacitive response in both aqueous and non-aqueous electrolytic solutions. While the
oxygen reduction reaction activity is not dominated by the same factors at low ORR overpotentials,
these take the dominant role over surface chemistry at high ORR overpotentials. Due to the high
selectivity of the O2 reduction to peroxide and the appreciable specific capacitances, it is suggested
that activated carbon fibers derived from viscose fibers are an attractive and versatile material for
electrochemical energy conversion applications.

Keywords: biomass-derived carbons; capacitance; energy conversion; oxygen reduction reaction

1. Introduction

The emerging energy requirements of our society, combined with the predicted exhaus-
tion of fossil fuel reserves, necessitates the development of efficient energy conversion and
storage systems. Electrochemical power sources are at the front of this battle, providing dif-
ferent energy and power density ranges for various mobile and stationary applications [1].

The core of any electrochemical power source is the electrode material, and different
classes of materials are used in electrochemical capacitors, batteries, and fuel cells. Carbon
materials find application in all three types of electrochemical power sources, but have dif-
ferent roles. In electrochemical capacitors, carbons are, as a rule, the active materials, while
in batteries and fuel cells, they serve predominantly as conductive additives or catalyst
supports [2–4]. The family of carbon materials is vast and exceptionally rich, especially at
the nanoscale where nanocarbons exist in the 1D [5,6], 2D [7,8] or 3D form [9–11]. However,
while carbon materials can be made at almost atomic precision using sophisticated synthetic
routes, such materials are rather expensive and unsuitable for large-scale production.

Biomass-derived carbons are produced via the conversion of biomass using chemical
or thermal treatments [12–14]. During this conversion, the naturally occurring hetero
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elements from the biomass are frequently incorporated into the carbon structures, leading
to rich surface chemistry suitable for different electrochemical applications. Moreover,
some heteroatoms can be introduced into the structure by intentionally adding the source
of the given elements so that the desired properties, such as the chemical composition, can
be reached [15–17]. In addition, the pore size distribution and the specific surface area
can be effectively tuned using different chemical impregnation agents and temperature
treatments or using post-synthetic activation [15,18]. In this way, the physical and chemical
properties of biomass-derived carbons can be effectively controlled.

However, considering the practical application of carbons in electrochemical energy
conversion, it is still unclear which properties of the carbon materials rule their overall
performance [19,20]. The debate in the scientific community is very active and is typically
directed towards one of the many possible applications. For example, in terms of capacitive
applications, the most relevant factors influencing the response are: morphology, pore
structure, specific surface area, heteroatom doping, degree of graphitization, and the
presence of defects [21]. However, rather different, and sometimes opposing, claims
can be found in the literature regarding the role of pore size and structure, the presence
and the type of the heteroatoms (usually nitrogen, sulfur, phosphorus. and boron) [22],
specific surface area, and other parameters [23]. Moreover, it is not yet clear how the joint
effects of the different properties of these materials affect the overall performance for a
given application. However, considering the wide applicability of carbons [24,25] and the
attractive properties of biomass-derived carbons [26], such as the cost and the possibility to
upscale the synthesis, we believe that different applications of carbon materials should be
considered jointly.

In this contribution, we first demonstrate the synthesis of carbons derived from
viscose fibers. Using different impregnation agents and activation conditions, materials
with diverse chemical compositions and a wide range of specific surfaces were prepared.
Materials were tested as capacitor electrodes and oxygen reduction reaction (ORR) catalysts.
We show that the specific surface area, combined with a large fraction of mesopores, has
the dominant role in the capacitive response and the ORR activity of these carbon materials.
However, this only holds for high ORR overpotentials in the latter case, where the charge
transfer is much faster than the mass transfer, while the specific surface is not decisive for
the ORR onset potential.

2. Materials and Methods
2.1. Preparation of the ACFs

Viscose fibers (1.7 dtex, 38 mm, Lenzing AG, Lenzing, AUT) were dried overnight at
80 ◦C and then impregnated in a solution of either 4% diammonium hydrogen phosphate
(DAHP) or 12% ammonium sulfate (AS) in deionized water for 15 min. Sørensen formol
titration [27] was used to determine the fiber ammonium loading. Dried fibers (drying at
RT) were carbonized in a chamber furnace under a nitrogen atmosphere at Tcarb = 850 ◦C.
The heating rate was νcarb = 10.0 ◦C min−1 and an isothermal holding step of 20 min was
applied after the final temperature was reached. The carbonized fibers were activated in a
rotary kiln at Tact = 850 ◦C for Tact = 150–300 min in a CO2 flow of QCO2 = 22.5 dm3 h−1.
An overview of the samples and their preparation routes can be found in Table 1. Finally,
the prepared activated carbon fibers (ACFs) were ground using a mortar mill (RM 200,
Retsch GmbH, Haan, GER).

Table 1. Conditions of the sample preparation.

Sample Impregnation Agent Loading Tcarb/◦C νcarb/◦C min−1 Tact/◦C tact/min QCO2/dm3 h−1

P11 4% DAHP 0.61% P 850 10.0 - - -
S12 12% AS 2.33% S 850 10.0 - - -
P21 4% DAHP 0.61% P 850 10.0 850 150 22.5
S22 12% AS 2.33% S 850 10.0 850 150 22.5
S23 12% AS 2.33% S 850 10.0 850 300 22.5
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2.2. Materials Characterization

The morphology of the samples was investigated using Scanning Electron Microscopy
with Phenom ProX (Thermo Fisher Scientific, Waltham, MA, USA).

To determine the specific surface area and the textural structures, the obtained ACFs
were analyzed by N2 isothermal adsorption/desorption (77 K) on a gas sorption system
(Autosorb iQ, Quantachrome Instruments, Boynton Beach, FL, USA). Before the analysis,
samples were degassed for at least 2 h at 200 ◦C. The specific surface area and derived pore
size distribution (PSD) were calculated using the Brunauer–Emmett–Teller (BET) method
and the non-local density functional theory (NLDFT).

X-ray photoelectron spectroscopy (XPS) measurements were completed using a Theta
Probe XPS system (Thermo Fisher Scientific, Waltham, MA, USA) controlled by the Avan-
tage software package. The Avantage software was also used for data evaluation and the
chemical assessment of the recorded spectra. The XPS system is equipped with a dual
flood gun (FG02, Thermo Fisher Scientific, Waltham, MA, USA) providing a beam of low
energy electrons (2 eV) and low energy Ar-ions simultaneously to suppress the negative
effects caused by surface charging. A monochromated Al-Kα X-ray source (1486.6 eV) was
used and a spot size of 400 mm in diameter was used for the X-ray beam on the sample
surface. The hemispherical analyzer of the system was operated in the CAE mode (constant
analyzer energy) with a pass energy of 200 eV for the survey spectra and 20 eV for the high
resolution (HR) spectra. For data evaluation, a Shirley-type background was subtracted
from the photoelectron peaks. Elemental concentrations were determined from the peak
areas, taking into account the instrument transmission function at the different pass ener-
gies, the relative sensitivity factors of the elements (based on calculations by Scofield [28]),
and the different inelastic mean free paths of electrons at different kinetic energies (based
on the TPP-2M method [28]). The HR spectra were fitted using a Gaussian–Lorentzian
product function with a mixing parameter of 0.3. The full width at half maximum (FWHM)
parameter was constrained to an interval between 1 and 2 eV.

Electrical resistivity measurements were performed across the fabricated electrodes
(see Section 2.3) using a 4-point probe method. A cylindrical measuring head (SDKR-13,
Nagy Instruments, Gäufelden, GER) holding 4 Rhodium-plated steel needles with a tip
radius of 0.25 mm and in-line spacing of 1.25 mm was used. A sourcemeter (Keithley 2410,
Tektronix GmbH, Cologne, GER) and a multimeter (Keithley 2750 Solon, Tektronix GmbH,
Cologne, GER) were used for sourcing the current and measuring the potential drop,
respectively. The applied current was varied between 0 and 3 mA in 0.1 mA steps. Then,
the resistivity was calculated from the linear I–V dependence.

2.3. Electrode Preparation for Electrochemical Measurements

For electrochemical measurements in aqueous electrolytes, the ACFs were first ground
in a mortar mill. Then, 5.0 mg of the selected carbon sample was suspended in 1 cm3

of 40 v/v% ethanol/water solution and homogenized for 15 min in an ultrasonic bath.
The prepared catalytic ink was drop-casted onto the glassy carbon (GC) disk electrode
(cross-section surface 0.196 cm2) and dried under N2 flow. The overall loading of the ACFs
was 250 µg cm−2 per geometric surface area. Upon drying, the surface of the thin film
was covered with 10 µL of 0.05 wt.% Nafion in ethanol to ensure its integrity during the
electrochemical testing. The solvent was removed by evaporation.

For electrochemical measurements in a non-aqueous solution, the electrodes were
prepared as follows. The prepared ACFs were ground using a mortar mill. Then, 3 wt.%
polytetrafluoroethylene (PTFE) and 5 wt.% carbon black were added and the mixture was
ground again for 15 min to obtain a kneadable dough. This dough was rolled out using
a sheet metal roller to a thickness of 90–100 µm and circular electrodes with a radius of
1 cm were punched out. The prepared electrodes were dried in a vacuum for 1 h at 100 ◦C
before being assembled for the measurements.
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2.4. Electrochemical Measurements

Cyclic voltammetry (CV) was used to investigate the electrocatalytic and capacitive
properties of doped carbons in aqueous solutions. A conventional one compartment three-
electrode electrochemical cell, with a graphite rod as a counter electrode [29] and a saturated
calomel electrode (SCE) as a reference electrode, was used. The electrode potentials were
then recalculated to the Standard Hydrogen Electrode (SHE) scale (ESCE = 0.241 V vs. SHE).
The capacitive performance was assessed in 3 mol dm−3 KOH solution and 2 mol dm−3

H2SO4 solution. A gentle gas flow of N2 was kept just beneath the electrolyte surface to
remove dissolved oxygen during capacitive measurements.

CV was also used to assess the capacitive properties of the prepared ACFs in the
non-aqueous solution. Measurements were completed using a Vertex.One-potentiostat
(Ivium Technologies B.V., Eindhoven, NL) at room temperature. The CV curves of the
samples were measured with a scan rate of 20 mV s−1 in the voltage window 0.0–2.0 V.
The test setup consisted of two ACF electrodes soaked with the electrolyte (1.8 M triethyl
methyl ammonium tetrafluoroborate (TEMA BF4) in propylene carbonate (PC). A separator
foil was inserted between the electrodes to prevent short circuit. Two carbon-coated foils
were used as current collectors.

Gravimetric capacitances (in F g−1) were evaluated using the following equation:

C =

∫
I dV

m ∆V v
(1)

where I (A) is the current, ∆V (V) is the potential window, v (mV s−1) is the scan rate, and
m (g) is the total mass of the active material.

Electrocatalytic activity toward the ORR was investigated in oxygen saturated in
0.1 mol dm−3 KOH aqueous solution using rotating disk electrode (RDE) voltammetry. Mea-
surements were completed using a Vertex.One-potentiostat (Ivium Technologies B.V., NL)
with a Pine rotator (Pine research USA). The ORR was tested in an O2-satured solution
(purity 99.9995 vol.%) at room temperature. The measured currents were normalized to
the geometrical cross-section area of the supporting GC disk.

To analyze the selectivity of the ORR process, RDE curves were processed using the
Koutecky–Levich (KL) analysis [30,31]. Considering that the measured current is influenced
by both electron and mass transfer (which are consecutive processes), the current (j(E)) can
be presented as:

1
j(E)

=
1

jk(E)
+

1
jd(ω)

=
1

jk(E)
− 1

B(E)ω
1
2

(2)

where jk(E) is the kinetic current and jd(E) is the diffusion current. The latter depends
on the electrode rotation rate, the diffusion coefficient, and the concentration of O2 and
contains the number of electrons exchanged per O2 molecule (n). This number depends on
the electrode potential, so the diffusion current is also a function of the electrode potential.
If all the other constants are known, the KL analysis allows the determination of the kinetic
current and n; the latter gives the information about the selectivity of O2 reduction to
peroxide or OH−.

3. Results
3.1. Physical and Chemical Properties of the Prepared CFs
3.1.1. Morphology

All the samples had the same fibrous morphology. The carbon fibers were approx.
10 µm in diameter and, upon grinding, their length was typically around 200 µm. However,
some longer fibers, as well as smaller debris, were present in all the samples. The low
magnification SEM images of the samples are presented in Figure 1. We note that the
surface of the fibers looks very smooth, even at high magnifications, showing no particular
features, in line with previous findings [15].
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Figure 1. SEM images of the prepared CFs: (a) sample S12; (b) sample S22; (c) sample S23; (d) sample P11; (e) sample P21.

3.1.2. Textural Properties

The prepared porous carbon fibers produced from viscose were further investigated
by nitrogen adsorption isotherms at 77 K. As shown in Figure 1, all samples displayed
a sharp rise of the N2 isotherm at the low-pressure range (p/p0 < 0.01), which indicates
the existence of a significant amount of micropores [32]. These observations were further
confirmed by the PSD plot derived by NLDFT (Figure 2). The PSD of the carbonized fibers
P11 and S12 show a similar pattern with a high pore volume < 1 nm diameter. Moreover,
the specific surface area, the total pore volume, and the average pore width, shown in
Table 2, are almost identical.

The PSD plots of the activated fibers, shown in Figure 2, show larger deviations. The
DAHP-impregnated sample had a relatively large pore volume between 1 and 2.5 nm. The
specific surface area of 2245 m2 g−1 is very high, as is the total pore volume of 0.88 cm3 g−1.
The activated fibers, which were previously impregnated with AS, showed a lower pore
volume. Doubling the activation time decreased the specific surface area from 667 m2 g−1

to 535 m2 g−1 and the total pore volume from 0.26 to 0.22 cm3 g−1. The average pore width
(d) was also reduced from 0.75 nm to 0.50 nm.
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Figure 2. The results of the N2 adsorption analysis: (a) Nitrogen adsorption isotherms of the ground fibers; (b) PSD of the
carbonized fibers derived from the nitrogen adsorption isotherms by NLDFT; (c) PSD of the carbonized and activated fibers
derived from the nitrogen adsorption isotherms by NLDFT.

Table 2. The results of the analysis of N2 adsorption.

Sample SBET
a/m2 g−1 Vtotal

b/cm3 g−1 Dp
c/nm

P11 292 0.15 0.79
S12 252 0.13 0.82
P21 2245 0.88 1.41
S22 667 0.26 0.75
S23 535 0.22 0.50

a Specific surface area estimated using the BET method; b Total pore volume calculated using the NLDFT method;
c Average pore width calculated using the NLDFT method.

3.1.3. XPS Analysis

XPS was employed to investigate the elemental composition of the fibers (Table 3).
DAHP treatment leads to detectable amounts of phosphorus (1 at.% to 2 at.%), even after
activation. The higher phosphorus concentration in the ground fibers could point towards
an increased phosphorus concentration in the fiber bulk. AS-impregnated fibers showed
no sulfur but significant amounts of nitrogen (Figure 3a). As depicted in Figure 3b for
sample S22 and summarized for all samples in Table 3, the chemical analysis of the C1s
spectrum revealed the presence of aliphatic/aromatic CH3/CH2/CH such as carbons (peak
at 285.0 eV), carbon bonded with nitrogen (286.0 eV), carbon bound in hydroxyl or/and
ether groups (286.5 eV), C in the carbonyl group (287.9 eV), and C in the carboxyl group
(289.5 eV). A weak peak found at 291.4 eV represents the π-π* shake-up satellite, which
indicates the aromatic/graphitic character of the carbon material [33]. The N1s spectra
of the nitrogen-containing samples showed nitrogen to be in two bonding motives of the
pyridine (CN2, peak at 398.8 eV) and graphitic (CN3, 401.2 eV) ones (Table 3). The HR
O1s spectra revealed two peaks–the one found at 533.4 eV is attributed to the C-O parts
of hydroxyl, ether or/and carboxyl functionalities. The peak at the lower BE of 531.7 eV
corresponds to the C=O parts of carboxyl and the carbonyl groups.

Doubling the activation time for AS-impregnated fibers slightly decreased the oxygen
and nitrogen concentrations but had no visible effect on the carbon chemistry, as illustrated
by the overlaid HR C1s spectra in Figure 3c.
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Table 3. Elemental and chemical composition of the prepared CFs from the XPS analysis.

Sample

Elemental Concentration/at. %
Survey (Total)/HR

C O N
P F NaC-C

C-H C-N C-O C=O O-C=O O-C
O-P

O=C
O=P NC2 NC3

P11 86.6 9.8 - 1.9 0.8 0.977.1 - 6.1 1.9 1.5 5.2 4.6 - -

S12 91.1 5.8 3.1 - - -74.4 7.4 5.3 1.9 2.1 3.0 2.8 1.3 1.8

P21 88.9 8.6 1.5 1.0 - -73.3 3.3 6.9 3.4 2.0 5.3 3.3 0.6 0.9

S22 87.5 9 3.5 - - -68.0 6.0 6.8 4.4 2.3 5.2 3.8 1.3 2.2

S23 88.3 7.6 3.2 - 0.9 -67.2 7.5 6.3 4.5 2.8 4.6 3.0 1.5 1.7
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3.1.4. Electrical Resistivity

Electrical resistivity is crucial for good electrochemical performance as the material
serves both as an active electrode material and a current collector; otherwise, significant
energy losses and unnecessary self-heating can be expected if the inner resistance is too
high. The results of the measurements of the electrical resistivity are shown in Table 4. The
measurements were only carried out for the activated samples (P21, S22, and S23). Among
these samples, the lowest resistivity was observed for the P21 sample, which contains
P, in addition to C, O, and N. The lower resistivity for this sample could be due to the
doping of the carbon network upon the incorporation of N and P atoms into the carbon
structure [34,35] giving a combined effect and reducing resistivity in this way.

Table 4. Electrical resistivity (ρ) of the activated samples.

Sample ρ/Ω cm

P21 3.1
S22 59.9
S23 84.0
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3.2. Electrochemical Measurements
Capacitive Properties

The capacitive properties were measured in an aqueous solution (KOH and H2SO4)
using CV. In addition, a series of measurements were performed in a non-aqueous solution
(TEMA BF4 in PC).

Table 5 summarizes the measured gravimetric capacitances in aqueous solutions.
In general, the capacitances measured in the KOH solution were larger than the ones
measured in the H2SO4 solution. The CF samples which were not activated showed lower
capacitances than the activated samples, particularly in the H2SO4 solution. The situation
was similar in the KOH solution, although the differences were somewhat smaller. At first
glance, there is a rough correlation between measured capacitance and the specific surface
area of the samples. Non-activated samples had the smallest capacitance, followed by the
activated samples with the intermediate specific surface area. The highest capacitances in
both aqueous solutions were recorded for the P21 sample, which had the highest specific
surface area among the studied samples (Table 2). Figure 4 presents the CV curves for the
sample P21.

Table 5. Gravimetric capacitances of the investigated samples in aqueous solution at different potential scan rates (given
in F g−1).

Scan Rate/mV s−1 KOH Solution H2SO4 Solution

S12 S22 S23 P11 P21 S12 S22 S23 P11 P21

10 73 84 102 56 205 14 50 72 5.7 155
20 36 67 100 51 187 7.6 42 78 4.2 152
50 16 52 95 45 161 3.6 34 83 3.0 140
100 10 41 80 36 133 2.3 27 73 2.1 122
200 6.9 32 72 25 100 1.6 22 68 1.5 97
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Figure 4. Cyclic voltammograms of P21 in KOH and H2SO4 solution at different potential scan rates.

Table 6 gives the measured capacitances of the investigated samples in a non-aqueous
solution (TEMA BF4 in PC), while Figure 5 compares the recorded cyclic voltammograms
of P21 and P11. The electrodes made from the carbonized fibers P11 and S12 showed
a low specific capacitance of 1.9 and 1.1 F g−1, respectively. The specific capacitances
of the activated AS-impregnated specimen were also low at 2–3 F g−1. The electrode,
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made of DAHP-impregnated activated fiber, had by far the highest specific capacitance of
127 F g−1. The electrical conductivity of 3.1 Ω cm was significantly better than that of the
other samples tested.

Table 6. Gravimetric capacitances of prepared CFs in 1.8 M TEMA BF4 in PC solution.

Sample C/F g−1

P11 1.9
S12 1.1
P21 127
S22 2.1
S23 2.9
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Figure 5. CV curves of samples P11 and P21 at the scan rate of 20 mV s−1 in TEMA BF4 in PC solution.

The recorded CV curves of the investigated CFs were processed using the method
of Dunn [36] to evaluate the contributions of capacitive and pseudofaradaic processes
in the overall capacitance. The results are presented in Table 7. The reported capacitive
contributions were evaluated in the indicated potential windows (averaged from −0.759
to −0.559 V in alkaline and between 0.241 and 0.491 V vs. SHE in acidic solution) as due
to the resistance of the studied materials, the fitting procedure was not accurate enough
at potentials close to the anodic and cathodic vertex potentials. It can be seen that the
capacitive component brings different contributions to the overall capacitance, and it is
clear that surface chemistry contributes significantly through the pseudofaradaic process
to the present surface functional groups.

Table 7. Capacitive current contribution in an alkaline solution averaged in the potential window
from −0.759 to −0.559 V, and in acidic solution averaged between 0.241 and 0.491 V vs. SHE. The
evaluation is completed for the sweep rate of 20 mV s−1 and given in %.

Sample KOH Solution H2SO4 Solution

P11 99 ± 3 47.5 ± 5.7
S12 52 ± 12 30 ± 10
P21 58.3 ± 6.8 65.6 ± 8.3
S22 17.8 ± 4.8 42.2 ± 3.2
S23 51.9 ± 8.6 76.8 ± 3.0

3.3. Oxygen Reduction Reaction Catalysis

The ORR was investigated in an alkaline solution (0.1 mol dm−3 KOH saturated
with O2). The obtained results show a large variety between the investigated samples in
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terms of the ORR activity (Figure 6a). Taking the ORR onset potential (Eonset) as a measure
of the catalytic activity (Table 8), the most active material was S23, with an ORR onset
potential of −0.41 V vs. SHE (Figure 6b). This result is very important, as S23 had a much
lower specific surface area than the P21 sample. It suggests that the ORR kinetics were not
crucially determined by the surface area, at least at low ORR overpotentials close to the
onset potential. Table 8 shows the evaluated kinetic currents and n at different electrode
potentials using Equation (2).
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(a) background-corrected RDE-CV curves at a common electrode rotation rate of 1200 rpm for all the samples (potential
scan rate 20 mV s−1); (b) RDE-LSV curves of the S23 sample at different electrode rotation rates.

Table 8. Kinetic parameters for ORR for the studied samples: onset potential (Eonset), number of electrons (n) consumed per
O2 molecule, and kinetic currents (jk).

S21 S22 S23 P11 P21

Eonset/V −0.25 −0.23 −0.20 −0.30 −0.21

E / V vs. SHE

n per O2 molecule

−0.059 2.1 2.3 1.8 - -
−0.159 2.2 2.1 1.8 - 1.9
−0.259 2.3 2.0 1.8 2.2 1.9
−0.359 2.6 2.1 2.1 2.2 1.9
−0.459 2.7 2.2 2.8 2.2 2.0
−0.559 2.1 2.5 3.0 2.0 2.2

jk/
mA cm−2

−0.059 0.64 0.93 3.22 0.03 0.62
−0.159 2.59 9.05 8.62 0.28 8.57
−0.259 5.23 22.5 12.3 1.02 64.9

4. Discussion

To briefly sum up, the studied samples have identical fibrous morphologies but quite
different specific surface areas. These results were achieved by using different impregnation
agents and activation procedures. Moreover, using different impregnation agents, it was
found that the chemical compositions were different. Nitrogen and phosphorus were
effectively incorporated into the carbon structures, but we noted that the presence of sulfur
was not confirmed using XPS. The highest specific surface area achieved was 2245 m2 g−1

for the sample impregnated with 4% DAHP and activated for 150 min, which was the
sample denoted as P21.

When capacitive properties are of interest, we can see that the specific surface area
played a dominant role among the studied samples. The sample P21 with the highest
specific surface area had the largest specific capacitance in any of the studied electrolytes,
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both aqueous and non-aqueous. In aqueous electrolytes, we can see that a significant
contribution of the pseudofaradaic process can be seen. For example, the sample P21
in the KOH solution (Table 7) showed that ~58% of its capacitance comes from double-
layer charging. Using the values of the measured capacitances and a usual value for
areal capacitance (20 µF cm−2), we can estimate that the surface of roughly 500 m2 g−1

was exposed to the electrolyte, so not the entire specific surface area. Overall, in the
non-aqueous electrolyte, the measured BET surfaces correlate with the calculated specific
capacitances. In addition, the samples P11, S12, S22, and S23 had the most pores with a
pore diameter of less than 1 nm. However, this pore volume is not accessible to the organic
electrolyte, which leads to a reduced specific capacitance [37]. The sample P21 had a large
pore volume with a pore diameter of 1–2.5 nm. The resulting surface can be used to form
Helmholtz double layers, thus achieving a comparatively high specific capacitance.

It is important to note that in an aqueous solution, the measured capacitances were
larger than in non-aqueous solutions, which is particularly important for practical ap-
plication. Namely, most of the studies of capacitive properties of different materials,
including carbons, are performed in aqueous solutions. However, commercially avail-
able electrochemical capacitors use, as a rule, non-aqueous electrolytes because higher
energy densities are achieved due to a wider potential window. Taking the values for
P21 at 20 mV s−1 (Tables 5 and 6), we estimated energy densities of 16.6 Wh kg−1 (KOH
solution), 17.1 Wh kg−1 (H2SO4 solution), and 71 Wh kg−1 (non-aqueous solution). At
first glance, these values are quite appreciable when a typical range of energy densities
of electrochemical capacitors is considered [38]. However, these values were evaluated
using only the mass of the active material, which is more or less usual practice in scientific
literature. These values would drop significantly for a realistic electrochemical device
when the masses of current collectors, separator, and casing were considered.

Considering the ORR, its activity can be estimated using several approaches. First,
one can take Eonset as the measure of electrocatalytic ORR activity. If this parameter is
used (Table 8), then it is clear that the specific surface is not the dominant factor for ORR
as the sample S23 had the highest Eonset. The reported onset potentials were quite high,
and the studied materials, except P11, stand side by side to other carbons reported in the
literature [22,39–41].

Considering the observed ORR selectivity, the studied materials all favored 2 e−

reduction of O2 to peroxide, making them rather attractive for direct electrochemical
peroxide generation [42]. However, another parameter, kinetic current, has to be taken
into account as well. We can see that when the cathode polarization increased, the kinetic
current rose, but at different rates. At −0.259 V vs. SHE (which is −0.5 V vs. SCE and
0.54 V vs. Reversible Hydrogen Electrode for pH = 13.5), the activated sample beat the
non-activated ones and the kinetic current roughly scaled to the specific surface. Mass
activities are easily obtained from kinetic currents by dividing the kinetic currents with
the catalyst loading (Figure 7). We can see that the sample P21 topped out with a mass
activity of ~250 A g−1, followed by the samples S22 and S23. Hence, we conclude that upon
reaching high cathodic polarization when the charge transfer rate is much higher than the
mass transfer, the specific surface takes the dominant role over the surface chemistry and
determines the overall ORR activity. For this reason, we believe that sample P21 would
be a perfect candidate for the electrochemical generation of peroxide, where diffusion
limitations are less pronounced compared to the RDE experiments.
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5. Conclusions

Using viscose fibers as a precursor, five carbon materials were produced. By employing
different impregnation agents and activation steps, the produced carbons resulted in
different chemical compositions (incorporating nitrogen or phosphorus, besides carbon
and oxygen) and specific surfaces ranging from 292 to 2245 m2 g−1. We found that the
capacitive properties of the studied materials were dominated by the specific surface–the
material with the largest specific surface and a large fraction of mesopores. In aqueous KOH
electrolytic solutions, capacitance tops at 205 F g−1, while in a H2SO4 solution capacitance
tops at 155 F g−1. Our analysis suggests that only a fraction of the surface is available
to the electrolyte for this material, and we expect that this is the external surface and the
surface of mesopores. Namely, in a non-aqueous solution, 1.8 M TEMA BF4 in PC, only
the material with a large fraction of mesopores displayed a high capacitance of 127 F g−1,
while the dominant microporous materials had capacitances below 3 F g−1. In addition, all
the materials were active for the oxygen reduction reaction in an alkaline KOH solution,
favoring 2 e− reduction to peroxide, and the specific surface area did not dominate the
ORR onset potential. However, at higher ORR overpotentials, the specific surface became
dominant, and the materials with higher specific surfaces displayed a higher mass activity
for O2 reduction to peroxide. Again, the highest mass activity was observed for the material
with the largest fraction of mesopores. Hence, we suggest that versatile, biomass-derived
carbons for energy conversion application can be effectively produced using strategies to
enhance the mesopore contribution while incorporating heteroatoms, such as nitrogen and
phosphorus, to improve the capacitive response through the pseudofaradaic processes and
increased electrical conductivity.
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