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Abstract: Carbon dots (CDs) are highly-emissive nanoparticles obtained through fast and cheap
syntheses. The understanding of CDs’ luminescence, however, is still far from being comprehensive.
The intense photoluminescence can have different origins: molecular mechanisms, oxidation of
polyaromatic graphene-like layers, and core-shell interactions of carbonaceous nanoparticles. The
citric acid (CA) is one of the most common precursors for CD preparation because of its high
biocompatibility, and this review is mainly focused on CA-based CDs. The different parameters that
control the synthesis, such as the temperature, the reaction time, and the choice of solvents, were
critically described. Particular attention was devoted to the CDs’ optical properties, such as tunable
emission and quantum yields, in light of functional applications. The survey of the literature allowed
correlating the preparation methods with the structures and the properties of CA-based CDs. Some
basic rules to fabricate highly luminescent nanoparticles were selected by the metanalysis of the
current literature in the field. In some cases, these findings can be generalized to other types of CDs
prepared via liquid phase.
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1. Introduction

Since the discovery of fluorescent carbon nanotubes fragments [1], carbon dots (CDs)
have been extensively studied as an emerging generation of optoelectronic materials.
The reason for such interest is due to both technological and basic science issues. The
tunable photoluminescence and the high quantum yield (QY) combined with low-cost
preparation [2–5] are undoubtedly attractive properties for material scientists looking for
new light-emitting nanostructures. As a metal-free optical material, CDs are also envi-
ronmentally friendly and represent a promising alternative to conventional metal-based
semiconductors and rare elements. CDs could, therefore, potentially provide outstanding
advantages in various fields, such as sensing [6,7], bioimaging [8], catalysis [9], lighting
and displaying [10,11], lasering [12–14], etc.

At the same time, CDs allow revolutionizing the actual perspective on the classical
chemistry classifications. CDs are 0-D emissive spheroidal carbon-based nanostructures
with a size smaller than 20 nm [2,5]. The CDs, in fact, stand in between organic (polymers)
and inorganic materials (black carbon), macromolecules, and nanoparticle, between bottom-
up (polycyclic aromatic compounds) and top-down synthesis (laser ablation of graphene,
etc.). However, it is still a challenge to understand the CDs’ correlation between nano-
structure and bright fluorescence [15].

The number of publications about CDs has rapidly increased in recent years (see
Figure 1a), reflecting the utmost simplicity in preparing the materials but also the galaxy of
slightly different results that small changes in the synthesis can produce. An abundance of
precursors, in fact, can be used for the preparation of CDs via bottom-up methods, ranging
from simple and natural molecules up to complex and expensive compounds [16]. Among

C 2021, 7, 2. https://dx.doi.org/10.3390/c7010002 https://www.mdpi.com/journal/carbon

https://www.mdpi.com/journal/carbon
https://www.mdpi.com
https://orcid.org/0000-0002-5099-8345
https://orcid.org/0000-0001-6901-8506
https://dx.doi.org/10.3390/c7010002
https://dx.doi.org/10.3390/c7010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/c7010002
https://www.mdpi.com/journal/carbon
https://www.mdpi.com/2311-5629/7/1/2?type=check_update&version=3


C 2021, 7, 2 2 of 16

them, citric acid (CA), a weak organic acid, is the most popular carbon precursor (see
Figure 1b) because of the biocompatibility and the low cost. CA-based CDs show both
photoluminescence from blue to red regions [17,18] and extremely high QYs (more than
80%) [6,19].
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erties, including temperature, reaction time, choice of solvents, etc. Moreover, we focused 
on the description of CDs’ optical performances and how to improve them. Furthermore, 
we summarized the theoretical models of CA-based CDs by comparing the different ap-
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Figure 1. (a) Publications since 2004 retrieved by searching “carbon dots” or “carbon nanodots”
or “graphene quantum dots” on Web of Science in November 2020; (b) publications since 2010 by
refining the obtained result with “citric acid”.

In this review, we focused on CDs obtained via CA as the main precursor with the
purpose to explore the chemistry behind the synthesis. Citric acid, among the various
precursors of CDs, is undoubtedly one of the most used, as the abundant scientific literature
on the topic demonstrates. Focusing on one precursor allows retrieving a series of data to
model the relationships between structure and properties. CA-based CDs can be considered
as one of the easiest dots to be obtained; this makes it easier to understand how and why
the synthesis affects the CDs properties.

We critically reviewed most of the synthesis parameters which affect the CDs proper-
ties, including temperature, reaction time, choice of solvents, etc. Moreover, we focused
on the description of CDs’ optical performances and how to improve them. Further-
more, we summarized the theoretical models of CA-based CDs by comparing the different
approaches which consider the dots as large molecules or functionalized nanoparticles.
Finally, we listed the new exciting applications which are foreseen in the near (bright)
future of the CDs.

2. Towards a Retro-Engineering of the CD Structure

The striking possibility of synthesizing such bright fluorescent nanoparticles using
simple protocols and cheap precursors is the reason for the broad interest in CDs. However,
everything comes at a cost. The multiple carbonization reactions which drive the formation
of the emitting nanoparticles are largely uncontrolled, and it appears to be difficult to
disentangle such a complex network of processes occurring during the CD formation.
Moreover, when hydrothermal, microwave treatment, or thermal degradation are used to
synthesize CDs, the chemical reactions which lead to the formation of the carbon nanopar-
ticles are very different from those which typically occur in organic chemistry. A careful
retro-engineering process is, therefore, at the basis of real CDs nanotechnology. Bottom-up
routes are effective methods to obtain high quality CDs with some organics as precursors.
CDs can be synthesized from CA via hydrothermal or solvothermal methods [20–22],
microwave treatments [23,24], thermal decomposition [25,26], etc. [27,28].

2.1. Carbonization Temperature vs. Optical Properties

It has been experimentally demonstrated that temperature is the determining factor
for the carbonization of organic matters when CDs are fabricated. Many researchers
have studied the influence of reaction temperature on the optical properties of CDs. We
summarized some results in Figure 2, according to the published literature [6,25,29–34].
Figure 2a–e show that the QY of the prepared CDs can usually reach a maximum when the
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hydrothermal temperature (HyT) is set in the range from ~150 to ~200 ◦C. The correlation
between QY and HyT is the main reason why 160, 180, or 200 ◦C are the typical values
selected for the preparation of CDs in many papers. This conclusion is not limited to
hydrothermal routes but can be somewhat generalized to other approaches, such as thermal
decomposition [25,33] in Figure 2f,g, and microwave treatment [34] in Figure 2h.
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Figure 2. Temperature vs. quantum yields of carbon dots (CDs) synthesized from citric acid (CA) by
(a–e) hydrothermal method, (f,g) thermal decomposition, and (h) microwave treatment. The data in
(a–h) are organized according to the results in Ref. [29], Ref. [30], Ref. [31], Ref. [32], Ref. [6], Ref. [33]
Ref. [25], and Ref. [34], respectively.

Wang et al. [35], Dhenadhayalan et al. [36], and Qu et al. [30] prepared CA-based
via thermal decomposition, microwave treatment (aqueous solution), and hydrothermal
method, respectively, and compared the optical properties of the products. CDs show simi-
lar absorption bands, maximum emission, and QY, suggesting that CDs synthesized from
the same raw materials possess similar optical features, even though different preparation
ways [37–43] are carried out if the reaction temperature is kept constant (Figure 3).

It is worth considering the reason for the relationship between temperature and fluo-
rescence intensity. A change of the morphology and the structure at a defined temperature
range appears as a reasonable hypothesis. Some researchers [44–47] have studied the mor-
phologies and the structural characterizations of CA-based CDs at different preparation
temperatures. The formation of CDs is divided into different steps: dehydration, polymer-
ization, aromatization, and carbonization. In some cases, transmission electron microscope
(TEM) analyses have revealed that CDs change the structure from cross-linked polymer-like
to individual nanoparticles when the temperature increases from 150 to 300 ◦C [48] (see
Figure 4a1–d1). Furthermore, X-ray photoelectron spectroscopy (XPS) characterization has
shown that the content of graphitic structure C–C/C=C in the CDs increases with the rise
of temperature (see Figure 4a2–d2).
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Figure 3. The optical properties of different CDs. CDs in (a1, Ref. [37]) and (a2, Ref. [38]) are synthesized from CA and
ammonia by microwave method and hydrothermal treatment, respectively. CDs in (b1, Ref. [39]) and (b2, Ref. [40]) are
synthesized from CA and ethylenediamine by microwave method and hydrothermal treatment, respectively. CDs in (c1,
Ref. [41]), (c2, Ref. [42]), and (c3, Ref. [43]) are synthesized from CA and diethylenetriamine by thermal decomposition and
hydrothermal treatment, respectively. Reproduced from Ref. [37–43] with permission of Copyright (2016, 2018) American
Chemical Society, Copyright (2015, 2016, 2018) Elsevier, Copyright (2013) Springer, and Copyright (2015) Nature Publishing
Group, respectively.
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Figure 4. (a1–d2, Ref. [48]) TEM images and high-resolution XPS spectra of C1s of CDs prepared
at different temperatures. (e–g, Ref. [49]) The high-resolution XPS spectra of C1s of CDs were
prepared with different reaction times. Adopted from Ref. [48,49] with permission of Copyright
(2018) American Chemical Society and Copyright (2018) Elsevier.
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In a general model, the CD is made of two key parts, a carbon graphitic core and an
amorphous carbon region [50–54] (see Figure 5a–e). A rise of temperature is responsible for
the growth of the core and a simultaneous reduction of the amorphous region (Figure 5f)
affecting the optical properties. At low temperatures, it is difficult to form a graphitic core,
where, therefore, polymeric-like CDs are usually obtained. The photoluminescence of these
CDs can be attributed to molecular-state emissive centers [36,48]. On the contrary, the
high reaction temperatures tend to fully carbonize the functional groups of the amorphous
surface. A larger size of the carbon core generally leads to a shift of photoluminescence
towards larger wavelengths because of a quantum confinement effect [55,56], where the
optical properties of CDs have shown a size-dependent effect. However, the carbonization
of surface groups generally leads to a QY decrease. The highest QY is, therefore, achieved
at an intermediate temperature range where core and shell structures coexist. It is necessary
to point out that there is no clear temperature boundary to strictly control the formation of
molecular-state and aromatic carbon-core domains. The coexistence of both results in multi-
type CD emissions, such as size- or excitation-dependent/independent luminescence.
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(2017) Nature Publishing Group, Copyright (2014) John Wiley and Son, and Copyright (2017) Elsevier,
respectively.

2.2. Reaction Time

The reaction time also affects the optical properties of the related CDs [18,23,25,30,57–59].
Figure 6 resumes the plots of QY vs. time measured from different CDs prepared by different
groups. Although the syntheses show some differences in terms of reagents and reaction tem-
peratures, the QY reaches a maximum in a time which depends on the reaction temperature
and then decreases progressively at longer reaction times. The chemical composition vs. the
reaction time shows relevant change, as shown in Figure 4e–g. In short, the rise of reaction
time also leads to increased carbonization, which promotes the growth of the carbon core.
This trend is similar to the changes occurring as a function of increasing temperatures so that
the schematic process shown in Figure 5f is still applicable for increasing reaction times.

2.3. Solvothermal vs. Hydrothermal Method

The selection of solvent is critical to determine the CDs’ properties. For example,
blue-emitting CDs were prepared by Zhai et al. [60] through a microwave treatment using
CA and ethylenediamine as the precursors and water as the solvent. The same precursors
dissolved in formamide, however, allowed preparation of red-emitting CDs [61] with a
~200 nm redshift with respect to the previous protocol. Formamide plays an important
role in several admixtures of reagents, enabling fine-tuning of the CDs luminescence. In a
typical hydrothermal synthesis, CA and urea form mainly blue-emissive CDs, with a minor
emission in the green range [62]. Hola et al. [17], however, obtained CDs with blue, green,
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and red emissions by simply replacing formamide instead of water during solvothermal
carbonization.
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Figure 6. Reaction time vs. quantum yields of CDs synthesized from CA by (a,c) hydrothermal
method and (b,d) thermal decomposition. The data in (a–d) are organized according to results in
Ref. [57], Ref. [25], Ref. [30], and Ref. [58], respectively.

Interestingly, the reaction temperature to synthesize CA-based CDs via hydrothermal
and solvothermal methods is significantly different. The example is shown in Figure 7.
Although the hydrothermal temperature can be typically set in a 150–300 ◦C range, for
instance, the maximum emission of the CDs prepared by this synthesis shows a small shift
of around 20 nm [6]. On the contrary, the temperature used for the solvothermal method
(dimethylformamide, DMF, as solvent) ranges from 140 to 200 ◦C. Still, it causes a larger
shift in the CDs emission, which can exceed 80 nm [63]. It is, therefore, clear that the use
of an organic solvent in the CDs synthesis promotes the carbonization process, leading to
major changes in the photophysical properties of the carbon nanoparticles.
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Figure 7. Reaction temperature vs. maximum emission of CDs synthesized from CA by (a) hydrother-
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respectively.

Once prepared, the CDs must then be carefully purified to achieve a narrow emission.
A lack of purification, in fact, could lead to heterogeneous results which can become very
difficult to rationalize. Pan et al. [23], for instance, prepared CDs with CA dissolved in
formamide and then dialyzed the products of reaction to separate the CDs with excitation-
dependent multicolor emission. On the other hand, another research group [61] which
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used the same materials and a similar method but a different purification process (solvent-
washing) measured an excitation-independent single red photoluminescence.

Kong et al. [64] prepared blue-emitting CDs by hydrothermal treatment with CA
and ethylenediamine as a precursor, coupled with dialysis purification. However, Wen
et al. [65] were capable of separating the products obtained by the same synthesis through
purification via column chromatography, achieving blue- and green- emissive CDs.

2.4. Nitrogen Sources

There are many other parameters in the CDs preparation that have a significant
impact on the properties of the products. The presence of a nitrogen source during the
CD synthesis has a pivotal role in controlling the emission, however, the reactivity of the
different nitrogen sources is not the same and should be carefully taken into consideration.
Reckmeier et al. [66] prepared different CDs synthesized from CA using hydrothermal
and ammonothermal approaches with aqueous ammonia and supercritical ammonia as
the nitrogen source, respectively. They found that the two kinds of CDs are remarkably
different in terms of both structure and fluorescence. On the other hand, Sharma et al. [67]
obtained CDs by thermal decomposition of CA and urea under N2 and air atmosphere,
respectively, however, the two CDs showed similar photophysical properties.

Nitrogen-doping is also a powerful method to increase the QY of CDs photolumi-
nescence. Table 1 compares the QYs of pure CA-based with nitrogen (N)-doped CDs.
Interestingly, the N-doping provides higher QY values when specific nitrogen sources are
used during the synthesis.

Table 1. The quantum yields of some CA-based CDs with different nitrogen (N) sources. QY: quantum yield.

Methods Nitrogen Sources Emission QYs Ref.

Hydrothermal method (200 ◦C, 8 h) Phenylalanine 413 nm 65% [20]

Microwave treatment (550 W, 7 min, aqueous solution) - 440 nm 7.2% [36]

Microwave treatment (700 W, 5 min, aqueous solution) Ethylenediamine 455 nm 41.3% [60]

Microwave treatment (700 W, 5 min, aqueous solution) Ammonia 450 nm 44.3% [37]

Hydrothermal method (200 ◦C, 5 h) - 451 nm 7.2% [6]

Hydrothermal method (180 ◦C, 4 h) Urea 440 nm 42.2% [62]

Hydrothermal method (200 ◦C, 5 h) Ethylenediamine 470 nm 60% [68]

Hydrothermal method (180 ◦C, 3 h) Dicyandiamide 452 nm 36.5% [69]

Hydrothermal method (200 ◦C, 4 h) L-cysteine 432 nm 75% [70]

Hydrothermal method (200 ◦C, 6 h) Tri(hydroxymethyl)
aminomethane 408 nm 75% [71]

Hydrothermal method (180 ◦C, 4 h) Thiourea 448 nm 73.1% [72]

Schneider and co-workers [73] studied the influence of three different nitrogen sources
on CA-based CDs: ethylenediamine, hexamethylenetetramine, and triethanolamine. As
shown in Figure 8a, ethylenediamine provides the highest QY enhancement, while tri-
ethanolamine does not affect the overall fluorescent intensity. Furthermore, when doping is
obtained by ethylenediamine, ethanolamine, and tris(hydroxylmethyl)aminomethane as ni-
trogen sources, the formation of graphitic nitrogen and the enrichment of hydroxyl-groups
allow forming CDs with remarkably high QY [44] (Figure 8b).
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3. Optical Properties of CA-Based CDs

N-source precursors allow modulating the photophysical properties of CDs in a wide
range of emissions. As shown in Table 2, the emission from CA-based CDs can be tuned from
the blue to the red with remarkable QYs (>90%). The QY, however, gradually reduces when
the characteristic emission is shifted towards higher wavelengths. According to the reports
in Table 2, the CA-based CDs can also exhibit near-infrared photoluminescence, especially
when synthesized in aprotic polar solvents, such as DMF and formamide [61,75,76].

Table 2. The preparation and optical properties of some CA-based CDs. DMF: dimethylformamide.

Methods Precursors
(Including CA) Emission QYs Ref.

Microwave treatment (700 W, 40 s, aqueous solution) L-cysteine 425 nm 78% [77]

Hydrothermal method (180 ◦C, 8 h) Diethylenetriamine 433 nm 98% [78]

Hydrothermal method (200 ◦C, 5 h) Ethylenediamine 445 nm 80.6% [6]

Microwave treatment (400 W, 80 min, 150 ◦C, aqueous solution) Ethylenediamine 445 nm 82.99% [34]

Hydrothermal method (160 ◦C, 4 h) Ethylenediamine 450 nm 94% [30]

Microwave treatment (800 W, 4 min, aqueous solution) L-cysteine, dextrin 495 nm 22% [79]

Hydrothermal method (190 ◦C, 2 h) Urea
455 nm 29%

[27]510 nm 30%

Thermal decomposition (170 ◦C, 70 min) Dicyandiamide 528 nm 73.12% [80]

Hydrothermal method (200 ◦C, 4 h) Ethylenediamine 530 nm 63.9% [65]

Hydrothermal method (200 ◦C, 12 h) Urea, ZnCl2 580 nm 51.2% [81]

Solvothermal method (180 ◦C, 4 h, formamide solution) Ethanediamine 627 nm 53% [75]

Microwave treatment (400 W, formamide solution) - 640 nm 22.9% [61]

Solvothermal method (160 ◦C, 6 h, DMF solution) Urea 760 nm 10% [76]

3.1. Multicolor Photoluminescence

Some specific syntheses allow preparing CA-based CDs with multicolor tunable
photoluminescence. This means that minor variations of the synthesis conditions lead to
different emissions. By controlling the solvothermal conditions, Miao et al. [63] prepared
multiple emissive CDs as shown in Figure 9. The shift of emission from the blue to the red
of the visible spectrum is related to the presence of the carboxylic groups and the increasing
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graphite content in the CDs (Figure 9d). Hola and his co-workers [17] prepared multicolor
emissive CDs via solvothermal treatment of CA and urea in a formamide solution. The
obtained products were further purified and separated by column chromatography into
four fractions showing emissions from blue to red. Herein, however, the redshift of
the photoluminescence was attributed to increasing graphitic nitrogen contents, as also
confirmed by time-dependent density functional theory (TD-DFT). Interestingly, all the
works focused on the multicolor photoluminescence of CDs agree in considering the
graphitic structure (derived from the carbonization) as a key factor to control the CDs’
multicolor emission.
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While the luminescence appears to be largely controlled by the degree of graphitization
of the CD structure, the mechanism controlling the fluorescence is still unclear. This
property seems to be affected by many other factors which induce a multicolor fluorescence.
Zhu et al. [82], for example, proved that the introduction of metal ions into CA-based CDs
structure prepared via magnetic hyperthermia approach leads to a multicolor-fluorescence
over a wide range of the visible spectrum. Moreover, some CDs exhibit a long fluorescence
lifetime, such as long afterglow performance. CDs fabricated via hydrothermal treatment of
CA, acrylamide, and urea exhibit room-temperature phosphorescence with a long lifetime
reaching up to 459 ms [83]. Boron is also an important doping agent in the development of
CDs featuring ultralong lifetime room temperature phosphorescence. Boron-doped CDs
exhibit bright yellow-green afterglow with a remarkable QY of 23.5% and a lifetime of
1.17 s [84].

3.2. Surface Modifications

Surface modification is, in general, an effective strategy to enhance CDs’ optical
performances. Usually, the CDs obtained by pyrolysis of CA show a weak fluorescence with
a short lifetime. In our previous work [59], it was found that the surface functionalization
with 3-aminopropyltriethoxysilane (APTES) reduces the CDs fluorescence quenching due
to the formation of a passivation layer. The 3-glycidyloxypropyltrimethoxysilane (GPTMS)
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is also a possible alternative to modify the surface via an epoxy-amine reaction [22]. In
addition to the native luminescence at 430 nm, the GPTMS-grafted CDs show a new
emission at 490 nm due to the polyethylene oxide species.

Liu et al. [85] prepared highly emissive solid-state CDs via one-step hydrothermal
method with CA as the carbon source and branched poly(ethylenimine) (b-PEI) as the
surface passivation agent. The introduction of b-PEI chains can prevent the collisions of
CD emissive centers, which further avoids the aggregation-induced quenching.

3.3. External Variables Controlling the Emission

The optical response of phosphors, including CDs, usually are temperature dependent.
Kalytchuk et al. [86] prepared nitrogen/sulfur-co-doped CDs by hydrothermal treatment
of CA and L-cysteine, which show temperature-dependent absorption, steady-state and
transient photoluminescence, and lifetime. The sensitivity to external temperature enables
the use of CDs as nano-thermometers featuring good sensitivity [87].

When CDs are used in solution, pH is also a pivotal parameter capable of tuning the
emission. CDs made of CA and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP)
have shown a reduction of the QYs from ≈ 40–50% to less than 9% when dissolved in an
aqueous solution of pH ≈ 1 and to 21% when the pH has been increased to 12 [88]. The
peculiar behavior of some CD’s fluorophores formed in situ during CDs carbonization,
such as citrazinic acid, has also been recently studied at extreme pH conditions [89,90]. The
same fluorophores dissolved in solution have also proved to drastically change their optical
properties as a function of the concentration undergoing a transition from monomer to
dimer [91]. Concentration-dependent emission is another feature of CDs, which is usually
compared with aggregation-induced emission. Wang et al. [37] synthesized a type of
concentration-dependent fluorescent CD by microwave treatment of CA and ammonia. The
photoluminescence shows a remarkable red-shift when the CDs’ concentration increases
from 0.78 to 10.42 mg mL−1 in an aqueous solution.

The abundant surface groups, e.g., –COOH, –NH2, and –OH, contribute to the high
solubility of CDs in water. Red-emitting CDs, however, are not prepared by hydrother-
mal treatment but rather via solvothermal routes employing DMF, ethanol, etc., as sol-
vents [18,63]. Red emitting CDs typically have a low solubility in water with lower
QYs [61,75,76]. For example, the 53% QY of red CDs in EtOH drops to 24% when dispersed
in water [75].

4. Optical Applications

The excellent optical properties make CDs a promising material to be used in many
potential applications, as resumed in Figure 10. The strong absorption endowed by the CDs
could be efficiently applied to ultraviolet shielding devices [92]. It is also widely recognized
that CDs boost the photocatalytic reactions. CD-based photocatalysts also work well in
the near-infrared region where up-conversion is observed [93,94]. CDs-based devices are
expected to replace toxic compounds or rare elements in monitors and fluorescent bulbs
even if, at the moment, they lack the efficiency requested in the red region. The state of the
art for CA-based CDs is multicolor emission with QYs exceeding 50% in the red [65,75,77].

The surface functionalization has already proved to further enhance the CD’s op-
tical properties. Organosilane-linked CDs [95,96], for instance, show both down and
up-conversion photoluminescence and exhibit significant multi-photon absorption at room
temperature [97]. Although multiphoton excited fluorescence is an emerging research
topic, however, it is clear that specifically designed CDs could provide dramatic advances
in cutting-edge optical applications such as infrared light detectors, microcavity lasers, etc.
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CDs are sensitive to environment changes, such as pH, ions strength, and temperature,
which set the conditions for CDs-based optical sensors. For example, CDs with hydroxyl
and carboxyl groups on their surface have shown to work well as pH sensors [98]. Cur-
rently, CDs have been extensively used to detect iron (III) due to a strong coordination
interaction between Fe3+ and the phenolic groups of CDs [6]. Finally, the nontoxicity and
the biocompatibility make CDs ideal nanomaterials to develop innovative bioimaging tech-
niques [43,99], biosensors [100], drug-delivery carriers [101], and nano-based antioxidant
formulations [102,103].

In the future, new and effective technologies are required for low-cost production of
high-quantity CDs.

5. Summary and Outlook

The general trends retrieved from the studies on CA-based CDs can be easily extended
to a larger variety of CDs. CDs prepared from folic acid, for instance, show a variable QY
which is related to the reaction temperature and has a maximum of around 240 ◦C [104]. This
finding agrees with the correlation between QY and reaction temperature of CA-based CDs.

The choice of the solvent in a solvothermal synthesis is also generally affecting the
optical properties and the QY of the products, even for CDs not based on CA. Para-
phenylenediamine-based CDs synthesized in water, for instance, show two characteristic
emissions, one at 600 nm (red) and a second one at 400 nm (blue). If the reaction solvent is
replaced with ethanol, DMF, cyclohexane, or toluene, the red emission increases in intensity,
while the blue one decreases [105].

Finally, the increase of graphitic carbon domains generally causes a redshift of photolu-
minescence in the CDs, although the same effect can be also attributed to other parameters
(such as the graphitic nitrogen), especially for CDs not based on CA [106].

Although there is large variability in chemical composition and structure of the
different CDs, the large number of works published thus far allows identifying some
general trends and common phenomena in the preparation and the optical performances
of the CDs.
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The carbonization temperature is a key factor for controlling the growth of the carbon
core and the density of surface groups in the CDs systems. A carbon core is usually obtained
at high temperature, while the surface groups reduce as a function of the temperatures. An
intermediate temperature (150–200 ◦C for CA-based CDs), therefore, should be considered
to maximize the QY.

Reaction time plays a role similar to the reaction temperature in the CDs’ synthesis.
Extending the carbonization for longer times enhances the degree of carbonization and
reduces the functional groups on the surface. In the quest of CDs with high QYs, it is,
therefore, of paramount importance to optimize the reaction time to achieve a compro-
mise between the core formation and the chemical composition of the surface. When
a solvothermal approach is used, the choice of the solvent affects the CDs fluorescence.
Generally speaking, the solvents can also serve as nitrogen sources towards doping of the
CDs’ structure.

CA-based CDs show multicolor fluorescence. However, the maximum of the emission
is shifted towards longer wavelengths when organic, apolar, and N-containing solvents are
used instead of water during the solvothermal synthesis. The nitrogen-doping dramatically
contributes to enhancing the QY. This effect, however, depends on the chemical composition
of the reagents used for doping. It has been found that, in general, primary amines allows
increasing the QY more than secondary and tertiary amines NH2- > –NH– > N≡.

Although the machinery of CD fluorescence is still mostly unexplored, it seems that
both amorphous and graphitic carbon atoms could contribute to this effect. The size of
the carbon core also influences the emission due to the quantum confinement effect by red
shifting the fluorescence redshift.

Concerning the technological advancements, although the CDs show a set of promis-
ing features, full optimization of the photophysical properties is required to promote the
development of innovative functional devices.
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