Electronic - Supplementary Materials

C Journal of Carbon Research

Characterization of molecular spacer enhanced nanostructured carbons for electrical energy storage

Justin A. Zuczek,^a Matthew Bonfield,^a Nesreen Elathram,^a William R. Hixson,^a Terawit Kongruengkit^a, James B. Mitchell,^a Nickolas Zelenka,^a Leonid D. Popov,^b Andrey Morozov^b, Igor N. Shcherbakov,^b and J. C. Poler^{a†}

^b Chair of Physical and Colloid Chemistry, Southern Federal University, Rostov on Don, Russian Federation.

^{a†} Corresponding Author: Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC Fax: (704) 687-0960; Tel: (704) 687-8289; E-mail: jcpoler@uncc.edu

LIST OF ABBREVIATIONS

+2Cu2	4-(<i>tert</i> -butyl)-2,6-bis((2-(phthalazin-1-yl)hydrazono)methyl) phenol(m ₂ -methoxo) dicopper(II)-chloride
+2Cu2FcOH	biscopper [4- <i>tert</i> -butyl-2,6-diformylphenol bis-ferrocenoylhydrazone hydroxide]-(NO3)2
+2Ru2	[Cl(2,20;60,200-terpyridine)Ru(tetrapyrido-[3,2-a:20,30 c:300,200h:200,300j]phenazine)Ru(2,20;60,200-terpyridine)Cl]-(PF6)2
+2Zn2	4-(<i>tert</i> -butyl)-2,6-bis((2-(phthalazin-1-yl)hydrazono)methyl) phenol(m ₂ -methoxo) dizinc(II)-acetate
+2Zn2Ac	4-(<i>tert</i> -butyl)-2,6-bis((2-(phthalazin-1-yl)hydrazono)methyl) phenol (m ₂ -methoxo acetate) dizinc(II)-acetate
AcFc	acetylferrocene
AFM	atomic force microscopy
Ag/AgNO ₃	silver/silver nitrate

^a Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC

AIC	Akaike's information criterion		
ATR FT-IR	attenuated total reflection Fourier-transform infrared spectroscopy		
CCC	critical coagulation concentration		
CE	counter electrode		
CHI3	iodoform		
CNI	carbon nanotechnologies inc. SWCNTs		
CNTs	carbon nanotubes		
Cu2FcCl3	biscopper [4-tert-butyl-2,6-diformylphenol bis-ferrocenoylhydrazone trichloride]		
Cu2FcOH	biscopper [4-tert-butyl-2,6-diformylphenol bis-ferrocenoylhydrazone hydroxide]		
Cu(NO ₃) ₂	copper (ii) nitrate		
Cs	specific capacitance		
CV	cyclic voltammetry		
DFT	density functional theory		
DLA	diffusion limited aggregation		
DMF	N,N-dimethylformamide		
DMSO	dimethyl sulfoxide		
Ds	dispersion stability		
EDL	electrical double layer		
EDLC	electrical double layer capacitor		
EDX	energy dispersive x-ray spectroscopy		
EELS	electron energy loss spectroscopy		
EIS	electrochemical impedance spectroscopy		
EtOH	ethanol		
GCD	galvanostatic charge-discharge		
HCl	hydrochloric acid		
HiPco	high pressure carbon monoxide		
НОМО	highest occupied molecular orbital		
IASS	ion-accessible surface site		

ILCT	ion-ligand charge transfer
IPA	isopropyl alcohol
ITO	indium tin oxide
LUMO	lowest unoccupied molecular orbital
MeCN	acetonitrile
MeOH	methanol
MLCT	metal-ligand charge transfer
MOF	metal organic framework
MS	mass spectrometry
MWCNTs	multi-walled carbon nanotubes
NaBr	sodium bromide
NaOH	sodium hydroxide
NI	NanoIntegris SWCNTs
NMP	N-methyl-2-pyrrolidone
PPr	polypropylene
PTFE	polytetrafluoroethylene
RBF	round bottom flask
RE	reference electrode
RLA	reaction limited aggregation
RMS	root mean squared
SC	supercapacitor
SHE	standard hydrogen electrode
SSA	specific surface area
SWCNTs	single-walled carbon nanotubes
TBATFB	tetrabutylammonium tetrafluoroborate
^t Bu	tert-butyl
TD-DFT	time dependent density functional theory
TsOH	p-toluene sulfonic acid
	p-tolucile suitoine delu

UV-Vis-NIR ultraviolet-visible-near infrared

WE working electrode

Molecular Spacers

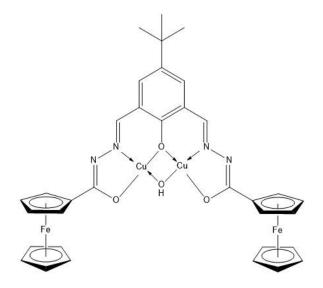


Figure S1: Confirmed structure of Cu2FcOH. Ferrocene ligands provide redox sites, aromaticity provides binding to SWCNTs, and 'Bu provides steric bulk.

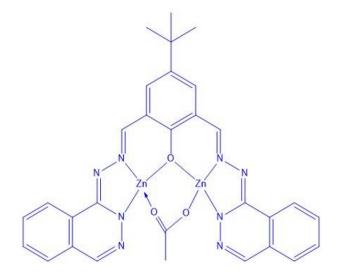


Figure S2: Structure of +2Zn2Ac. Added aromaticity should provide strong binding to SWCNTs, and the ^tBu provides steric bulk.

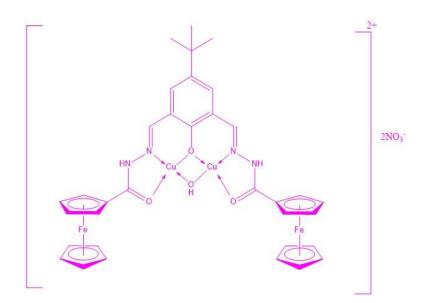


Figure S3: Structure of +2Cu2FcOH. Ferrocene ligands provide redox sites, aromaticity provides binding to SWCNTs, and ^tBu provides steric bulk. The dication overall charge should provide stronger binding via electrostatic interactions compared to Cu2FcOH.

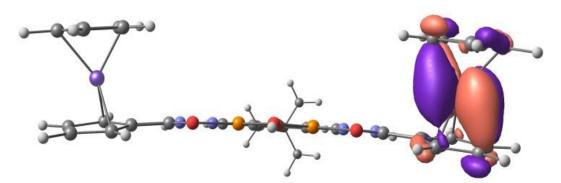


Figure S4: Calculated HOMO for +2Cu2FcOH looking down the Z-axis.

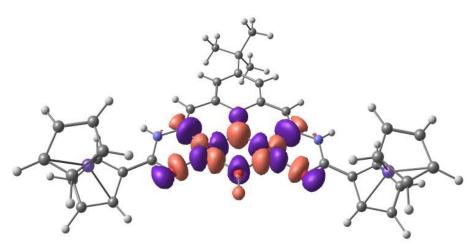


Figure S5: Calculated LUMO for +2Cu2FcOH.

		Energy (eV)
αΗΟΜΟ	Ferrocene ligand	-0.3764
αΗΟΜΟ	Second ferrocene ligand	-0.3759
βΗΟΜΟ	Ferrocene ligand	-0.3763
βΗΟΜΟ	Second ferrocene ligand	-0.3758
αLUMO	Copper and bridge	-0.2871
αLUMO	Copper and bridge	-0.2801
βLUMO	Copper and bridge	-0.3282
βLUMO	Copper and bridge	-0.3055

Table S1: Calculated HOMO and LUMO energies for +2Cu2FcOH. ΔV of 0.09 V measured between HOMO and LUMO (α). For the ligand, measured energy difference was 3.8 V, a 97.6% decrease. Optical transitions from absorption spectroscopy between the HOMO and LUMO would be unmeasurable.

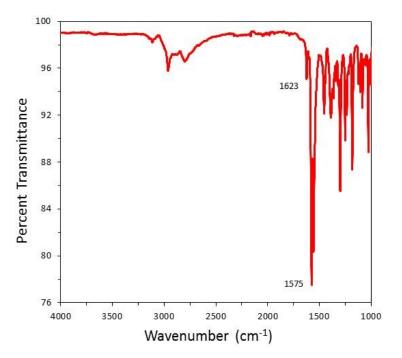


Figure S6: IR spectra of Cu2FcCl3. -C=O (1623 cm⁻¹), -C=N (1575 cm⁻¹). Ferrocene vibrates around 480 cm⁻¹.

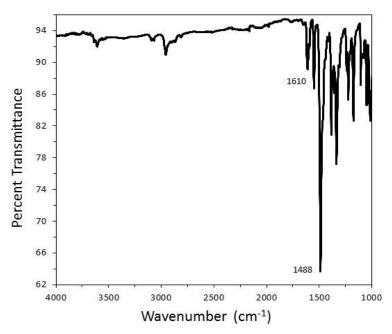


Figure S7: IR spectra of Cu2FcOH. -C=N (1610 cm⁻¹), -C=C (1488 cm⁻¹). Ferrocene vibrates around 480 cm⁻¹.

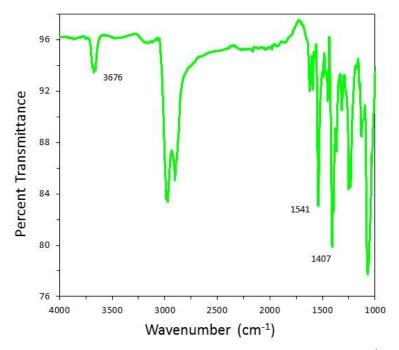


Figure S8: IR spectra of +2Cu2. Unidentified (3676 cm⁻¹), - C=N (1541 cm⁻¹), -C=C (1407 cm⁻¹).

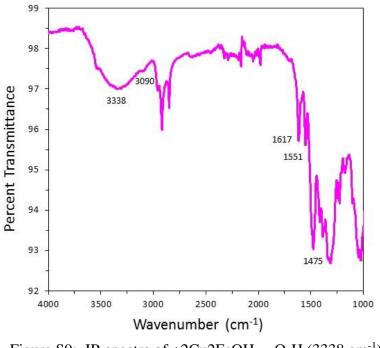


Figure S9: IR spectra of +2Cu2FcOH. -O-H (3338 cm⁻¹), -N-H (3090 cm⁻¹), -C=O (1617 cm⁻¹), -C=N (1551 cm⁻¹), -C=C (1475 cm⁻¹). Ferrocene vibrates around 480 cm⁻¹.

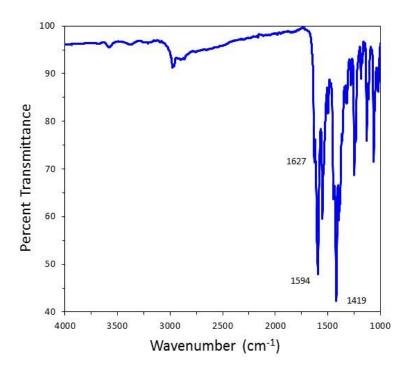


Figure S10: IR spectra of +2Zn2Ac. -C=O (1627 cm⁻¹), -C=N (1594 cm⁻¹), -C=C (1419 cm⁻¹).

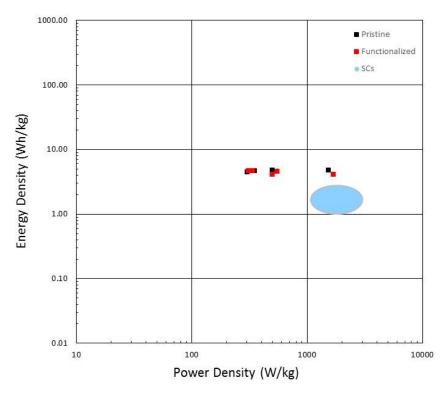


Figure S11: Ragone plot plotting energy density as a function of power density. Pristine and functionalized films are compared to commercially available supercapacitors. Energy density is not lost as power density is increased.

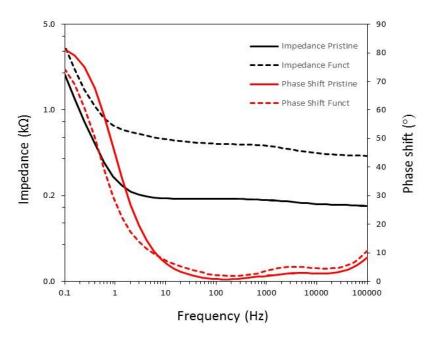


Figure S12A: EIS of pristine and functionalized SWCNTs with 20.2 and 20.4 μ g of CNTs, respectively. The operating potential was 1 V with a current amplitude of 5 mV. Impedance through the functionalized film (420 Ω) was larger than pristine (250 Ω).

For EIS, the average measured impedance of pristine SWCNTs was calculated as $260 \pm 50 \Omega$ at 1 V. As the frequency increased, the impedance of the system decreased. The functionalized film shows much larger impedance than the pristine film (660 vs. 190 Ω at 100 Hz). Working hypotheses are that molecular spacers (even at low concentration) are prohibiting current transport, or the uneven surface morphology of the film creates greater impedance. On average, measured at 1 V, the impedance for pristine CNTs was $250 \pm 50 \Omega$. For functionalized, $420 \pm 30 \Omega$ was measured. Using a 95% confidence interval, the films are statistically different. The higher impedance through functionalized films compared to pristine films could also suggest molecular spacer intercalation between CNTs. If CNTs are more spread out, current wouldn't flow as easily resulting in an increase in resistance/impedance.

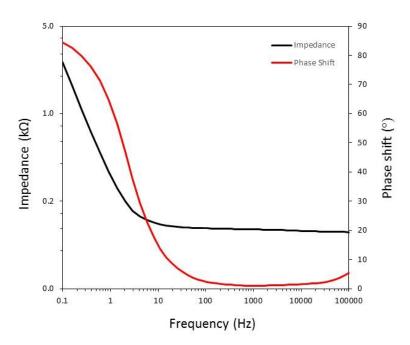


Figure S12B: EIS of pristine SWCNTs at 0 V with an amplitude of 5 mV. Average impedance for three films was calculated to be $260 \pm 50 \Omega$. Reactance of the capacitive like behavior of SWCNTs shows a larger impedance at lower frequency.

Figure S13 – components to 13 mm syringe filter

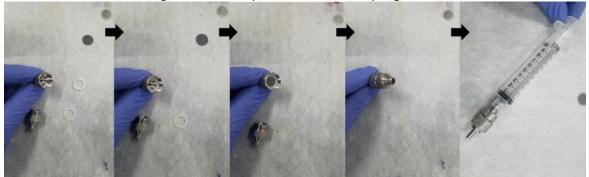
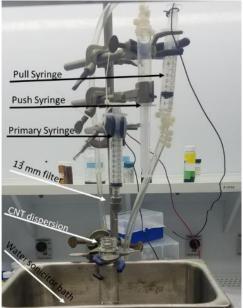
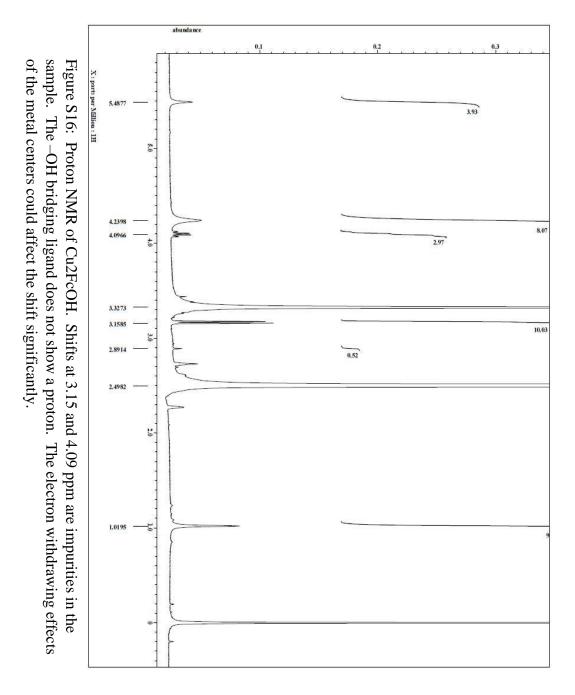
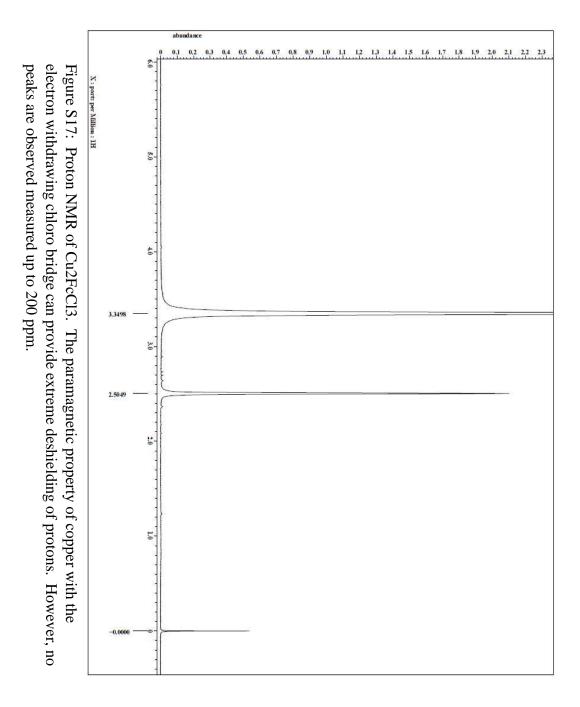
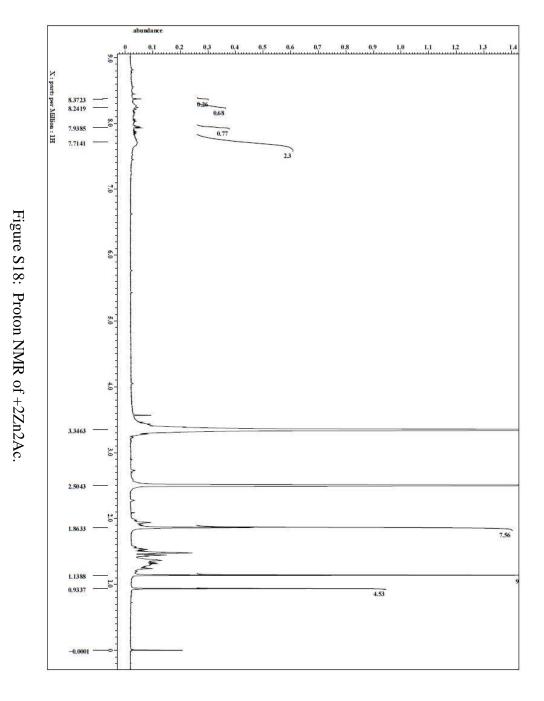
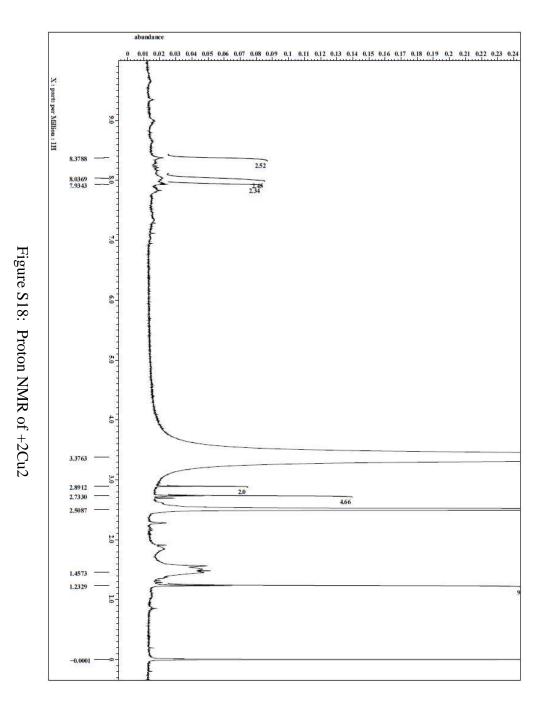
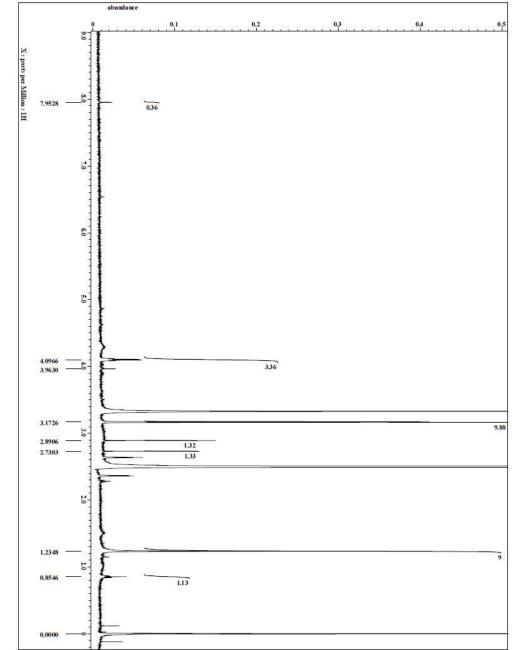


Figure S14 – 13 mm syringe assembly


Figure S15 – Parts on auto cycle filter



17 of 21

expected due to the same structure minus a protonated nitrogen. Figure S19: Proton NMR of +2Cu2FcOH. This shows a similar spectra to Cu2FcOH, which is

Electrical Characterization Equations:

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

where C is capacitance in Farads, ε_0 is the dielectric constant of free space in vacuum, ε_r is the dielectric constant of the solvent in F m⁻¹, A is the surface area of the material in m², and d is the distance between electrical double layer and ion interface in m.

$$C = \frac{Q}{V}$$

where the capacitance in Farads is equal to the charge stored, Q divided by the potential at which the parallel-plate capacitor is maintained, V

Using GCD data we analyze C using the time derivative of Q = CV such that:

$$C = \frac{\frac{dQ}{dt}}{\frac{dV}{dt}}$$

Since ${dQ}/{dt} = I$ the constant current and ${dV}/{dt}$ is measured from the experimental slope of the discharge curve. C_s = C/m where m is the mass of the active material in the working electrode.

Specific energy is calculated from the know equation $E_s = \frac{C_s \cdot (\Delta V)^2}{2}$ where ΔV is measured over the linear portion of discharge curve.

Specific power is calculated from the specific energy and the Δt measured during the discharge:

$$P_s = \frac{E_s}{\Delta t}$$

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).