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Abstract: Multifunctional fiber-reinforced composites play a significant role in advanced aerospace and
military applications due to their high strength and toughness resulting in superior damage tolerance.
However, early detection of structural changes prior to visible damage is critical for extending the
lifetime of the part. MXenes, an emerging class of two-dimensional (2D) nanomaterials, possess
hydrophilic surfaces, high electrical conductivity and mechanical properties that can potentially
be used to identify damage within fiber-reinforced composites. In this work, conductive Ti3C2Tx

MXene flakes were successfully transferred onto insulating glass fibers via oxygen plasma treatment
improving adhesion. Increasing plasma treatment power, time and coating layers lead to a decrease in
electrical resistance of MXene-coated fibers. Optimized uniformity was achieved using an alternating
coating approach with smaller flakes helping initiate and facilitate adhesion of larger flakes. Tensile
testing with in-situ electrical resistance tracking showed resistances as low as 1.8 kΩ for small-large
flake-coated fiber bundles before the break. Increased resistance was observed during testing, but due
to good adhesion between the fiber and MXene, most connective pathways within fiber bundles
remained intact until fiber bundles were completely separated. These results demonstrate a potential
use of MXene-coated glass fibers in damage-sensing polymer-matrix composites.

Keywords: MXenes; damage-sensing composites; multifunctional polymer composites; glass fiber
coatings; fiber reinforced composites

1. Introduction

Fiber-reinforced composite systems play a significant role in modern structural designs found in
aerospace and military applications due to their high mechanical strength and lightweight properties.
Over the last four decades, aircraft designs have seen a 50% increase in the use of composite materials
resulting in a growing need for better understanding of various types of damage to these parts as
well as methods for monitoring them [1]. However, common defects that arise during manufacturing,
such as porosity or voids within the polymer matrix, can be caused by non-optimal curing parameters
or inclusion of foreign bodies such as leftover backing film or greasy finger marks [2]. Structural parts
already in-service suffer from defects arising from normal operational wear or unexpected events such
as impact from foreign objects resulting in delamination (separation of layers within the laminate
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structure), matrix cracking, fiber-matrix debonding and fiber breakage leading to significant loss in
mechanical properties [3–6]. As a result, predicting damage to a part prior to mechanical failure is
needed to optimize the life of the composite and avoid a catastrophic failure in service [7]. Previous
works have explored incorporating nanomaterials as additional fillers to take advantage of their ability
to improve interfacial strength as well as damage-sensing capabilities [7–12]. Gao et al. showed that
coating glass fibers with multiwalled carbon nanotubes (MWCNTs) produced semiconducting glass
fibers with resistances ranging from 104 to 107 Ω [13]. Additionally, further studies by Gao’s group
showed full dispersion of carbon nanotubes (CNTs) into woven glass fiber/epoxy composites and
successful monitoring of changes in electrical resistance during repeated impact tests showing upwards
of 1600% change in resistance with increasing damage area [14]. However, due to the inert nature of
the surface of CNTs and MWCNTs, additional steps must be taken to disperse them into polymer
systems or attach them to glass fiber surfaces.

Graphene, the two-dimensional (2D) material that was isolated in 2004, has also been implemented
into polymer composites systems owing to its high mechanical and electrical properties [15,16].
Wang et. al. showed that the addition of 0.5 wt.% graphene to glass fiber-epoxy composites improved
both the impact modulus and flexural modulus of the overall composite; however, electrical properties
were not reported [17]. A later study showed that interlaminar shear strength can be improved
from 25.6 to 36.23 MPa by varying solution concentration of graphene oxide and by covalently
bonding graphene oxide onto amine-functionalized glass fiber surfaces for solution concentrations
of 1.5 mg/mL [18]. The use of graphene for damage-monitoring has also been extended to carbon
fiber-reinforced composites. Du et al. successfully introduced thermally reduced graphene sheets into
carbon fiber-reinforced epoxy laminates with normalized resistance change. In this study, resistance
increased monotonously with crack growth within the samples [19]. Graphene derivatives have
provided an easier route for incorporating carbon-based nanomaterials into both polymer-matrix and
fiber-reinforced polymer systems. However, graphene derivatives have significantly lower electrical
conductivity compared to pristine graphene, thus creating limitations [20].

MXenes have emerged as 2D alternatives to graphene for use in composite systems with over
30 different synthesized stoichiometric compositions to date [21–23]. Derived from MAX phases,
MXene’s structure is Mn+1XnTx, where M is an early transition metal such as Ti, V, Nb, and Mo, X is
carbon and/or nitrogen, n is equal to 1–4. Tx represents surface functional groups such as -O, -OH,
or -F [24,25] resulting from wet chemical synthesis and making the surface of MXene hydrophilic.
Ti3C2Tx MXene possesses electrical conductivities upwards of 10,000 S/cm and the highest Young’s
modulus, 330 GPa, for solution processed 2D materials [26–28]. Due to the oxygen containing functional
groups, MXenes can be easily dispersed into polar organic solvents and mixed with a variety of
polymers [29–33]. Previous studies have shown the potential of MXene composites for achieving
outstanding electromagnetic interference (EMI) shielding, gas and water separation membranes and
flexible electrodes [34–37]. However, there are limited studies examining MXenes in fiber-reinforced
composites. A recent study introduced MXenes into carbon-fiber composites for improved wettability
between carbon fibers and the surrounding epoxy matrix [38]. However, the unique combination of
electrical and mechanical properties of MXenes was not fully utilized in this work. There are no reports
on glass fibers coated with MXene or use of MXenes in manufacturing damage-sensing composites.

Here, we present the first study of manufacturing electrically-conductive glass fibers through a
simple dip-coating process using a colloidal solution of Ti3C2Tx MXene. MXene sheets were attached
to surface-treated glass fibers providing a uniform coating and transferring electronic properties of
Ti3C2Tx to the insulating fibers. Electrical resistance monitoring was performed in-situ with tensile
measurements on fiber bundles to assess potential tracking of mechanical failure in epoxy composites.
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2. Materials and Methods

2.1. Synthesis of Ti3C2Tx MXene

Ti3C2Tx MXene was prepared by etching Ti3AlC2 MAX phase powder (Carbon-Ukraine, Kyiv,
Ukraine) [24,39]. First, 2 g of lithium fluoride (LiF, Alfa Aesar, Haverhill, Massachusetts, USA) was
dissolved in 20 mL of 9M hydrochloric acid (HCl, Fisher Chemical, Waltham, Massachusetts, USA)
solution and stirred for 5 min at room temperature. Next, 2 g of Ti3AlC2 MAX powder was added
slowly over 10 min to the HCl-LiF solution and the reaction was stirred for 24 h at 35 ◦C. The etched
mixture was then washed several times with deionized (DI) water by centrifugation at 3500 rpm until
pH 6–7 was reached. To obtain large Ti3C2Tx flakes, additional washes were performed past reaching
neutral pH and the dark supernatant containing large, delaminated Ti3C2Tx was collected. For smaller
flakes, the washed sediment was redispersed into 20–30 mL of DI and bath sonicated for 30 min under
Ar bubbling followed by centrifugation at 3500 rpm for 1 h. The dark supernatant containing small
delaminated flakes was then collected. Sonication yielded small flakes with lateral sizes of 105–795 nm
and 1–5 µm for larger flakes. Flake size measurements were taken from 15–20 images collected via
transmission electron microscopy and averaged. Freestanding films were prepared from solutions
containing small and large flakes via vacuum-assisted filtration and the electrical conductivity of the
films was measured using a 4-point probe setup (Jandel ResTest).

2.2. Surface Treatment of S-Glass Fibers

To improve MXene flake adhesion and electrical properties of glass fibers, fiber surfaces were
chemically treated and exposed to oxygen plasma. As-received S-glass fibers (provided by Army
Research Laboratory, Aberdeen Proving Ground, MD, USA) were heat treated at 600 ◦C for 1 h
in a box furnace (MTI KSL 1100X) to remove any residual coating on fibers from the commercial
manufacturing process. Next, fibers were treated with 3:1 weight ratio of sulfuric acid and hydrogen
peroxide (Piranha) solution for 10 min followed by washing with DI water 5 times until neutral pH
was reached. Glass fibers were then exposed to oxygen plasma treatment (Tergeo Plus, PIE Scientific,
San Francisco, CA, USA) at 50 and 150 W power for different durations (0.5, 2 and 5 min). For in-situ
resistance testing, only samples treated with 50 W power for 5 min were used due to lowest electrical
resistance properties.

2.3. Dip Coating of Glass Fibers with MXene

To coat the glass fibers with MXene, 10 mL of aqueous Ti3C2Tx MXene solution (3–5 mg/mL) was
poured into a plastic weighing boat (10 cm diameter). Next, surface treated glass fiber bundles were
dipped into a MXene solution containing large flakes for 5 min followed by drying in air for 5 min.
This process was repeated with varying number of dips from 5 to 20 and 50 and electrical resistances
were measured. Fibers coated with large flakes (LF) were dried at 200 ◦C for about 15 h under vacuum
to remove water and ensure full adhesion of MXene flakes to glass fiber surface.

An alternative coating method was explored utilizing alternating coatings of small and large
MXene flakes for improved coverage and electrical resistance. For this process, surface treated glass
fibers were dip-coated in MXene solution of small flakes for 5 min then allowed to dry (5 min). Next,
the fibers were dipped into a large flake solution following the same process to obtain an inner coating
of small flakes secured by larger flakes. This small-large flake (SLF) coating procedure was repeated
5 times for each coating of small and large flakes. Lastly, SLF-coated fibers were dried at 200 ◦C
for about 15 h under vacuum to remove water and ensure full adhesion of MXene flakes to glass
fiber surface.

2.4. Tensile and In-Situ Electrical Resistance Measurements

Ti3C2Tx-coated fiber bundles were cut into uniform lengths of 3 cm and diameters of 0.5 mm.
Paper tensile frames (length 2 cm × width 1.5 cm) were prepared with copper tape at the ends for
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electrical measurements. Fibers were mounted onto the frames using conductive silver paste and
allowed to dry in air at room temperature for 2 h. Preliminary resistance measurements were taken
prior to testing to ensure that conductive pathways were not disrupted during mounting. Samples
were loaded into a tensile tester (Instron 3365) and connected to a digital multimeter (Keysight 34461A
digital multimeter) for measuring electrical resistance. The electrical resistance was allowed to stabilize
for 1 min before starting the tensile test. Tensile testing was performed at a rate of 1 mm/min using a
100 N load cell. The resistance of the fiber bundle was tracked until the break point and/or till the limit
of the resistance tracking was reached.

2.5. Characterization

Images of small and large flakes were collected using a transmission electron microscope (TEM,
JEOL 2100) using an accelerating voltage of 200 kV. MXene solutions were drop-casted onto 3 mm
diameter lacey carbon TEM grids for analysis. Surface morphologies of glass fibers and MXene-coated
fibers were observed with a scanning electron microscope (SEM) (Zeiss Supra 50 VP). Samples were
sputter-coated with platinum/palladium for 40 s prior to imaging. Raman spectra were recorded with
a Renishaw InVia microscope in an inverted reflection mode (Gloucestershire, UK), equipped with a
63x (NA = 0.7) objective. The laser line used was 785 nm (solid state diode laser) with a 1200 line/mm
grating. Spectra were collected with 5% laser (1.6 mW/cm2) power during 120 s.

3. Results and Discussion

A schematic of the surface treatment and dip-coating processes of glass fibers is shown in Figure 1.
For best adhesion, oxygen plasma were utilized to create a hydrophilic surface after removal of residual
sizing from manufacturing. Coating processes were repeated until uniform MXene coatings were
obtained along the entire length of the fibers. In the SLF coating method, the use of small flakes also
creates an initiation layer for larger flakes as well as ensuring complete coverage of fiber surfaces within
dip-coated bundles. Removal of excess water molecules from between MXene flakes was achieved
through simple heating under vacuum.
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flake size, films were made from small and large flakes using vacuum-assisted filtration and their 
Raman spectra were recorded (Figure 2a). The characteristic Ti3C2Tx peaks can be seen in the region 
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[40], which indicate no observable oxidation or degradation happened during the sonication and 
coating process. The peak at 123 cm−1 is a typical resonant Ti3C2Tx peak and the distinct peak at 202 

Figure 1. Schematic of the dip-coating process for coating Ti3C2Tx MXene onto glass fibers.
Before dip-coating, fibers were treated with oxygen plasma to add a hydrophilic layer for improved
adhesion. Fiber bundles were coated with MXene solutions using two methods: (1) large flakes only
and (2) alternating small flake-large flake approach using separate solutions of small and large MXene
flakes. Optical image of small-large flake (SLF)-coated fiber bundle post heat treatment.

Electrical properties of the MXene-coated fibers were directly related to the flake size, coating
uniformity, electrical conductivity and adhesion to fiber surface. To evaluate the effects of MXene
flake size, films were made from small and large flakes using vacuum-assisted filtration and their
Raman spectra were recorded (Figure 2a). The characteristic Ti3C2Tx peaks can be seen in the region
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between 100 and 800 cm−1. Both spectra agree with previously reported Raman spectra for Ti3C2Tx [40],
which indicate no observable oxidation or degradation happened during the sonication and coating
process. The peak at 123 cm−1 is a typical resonant Ti3C2Tx peak and the distinct peak at 202 cm−1 is
attributed to out-of-plane vibrations of Ti, C and surface groups’ atoms. Peaks found in the range of
200–210 cm−1 typically correspond to A1g vibrations of Ti, C and O atoms in Ti3C2O2 and Ti3C2O(OH).
Eg and A1g vibration modes for OH group at 268–286 cm−1 and 504–520 cm−1, respectively, confirm the
presence of hydroxyl functionalities on the MXene surface [41]. For both large (no sonication) and small
(sonicated) Ti3C2Tx flakes, oxygen (O) and OH terminations provide the hydrophilic properties needed
for improved adhesion to the treated glass fiber surface. In the case of small flakes, the out-of-plane
peak related to vibrations of Ti, C and surface groups atoms is less prominent, which could be related
to increased defects in the film made of smaller flakes. Corresponding TEM images (Figure 2b,c)
show varying lateral flake sizes of both small and large flakes and diffraction patterns. Larger flakes
were observed to have electrical conductivity of ~3500 S/cm when freestanding films were prepared,
while smaller flakes showed conductivity of 2200 S/cm in a film. Prior studies have shown a direct
relationship between MXene flake size and electronic properties of resultant films [42].
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Figure 2. Raman spectra (a) and TEM images of single MXene flakes of different sizes (b,c). Large Ti3C2Tx

flakes (b) were collected post-etching and smaller flakes (c) were produced using bath sonication.
Insets show selected area diffraction patterns for single-crystal MXene flakes.

After dip-coating and drying fiber bundles, Raman spectra were collected to assess the uniformity
of the MXene coating. For each fiber bundle, three different locations were investigated, and Raman
spectra were collected every 1 µm over a 10 µm distance. Figure 3a shows averaged spectra for
both 5-dip LF and SLF-coated fibers. Presence of Ti3C2Tx peaks are observed for all dip-coated fiber
bundles with small shifts to lower wavenumbers. Additionally, SLF coating method exhibited an
increase in intensity of MXene resonance peak as well as A1g (Ti, C, Tx) peaks corresponding to highly
aligned MXene flakes on the fiber surface. SEM images of fiber surfaces revealed good adhesion
and coating of Ti3C2Tx for both LF MXene coating methods (Figure 3b). MXene flakes can be seen
covering entire length of fibers with no glass surface visible. Best MXene coatings were obtained after
high-temperature heat treatment and Piranha solution removing possible sizing from manufacturing.
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fibers and dried MXene-coated fibers (b).

To assess extent of coating uniformity and its effect on electronic properties, glass fibers were
surface treated with varying oxygen plasma treatment parameters. The addition of an oxygen-rich
hydrophilic layer to glass fibers allows for best adhesion of Ti3C2Tx MXene providing optimal coating.
Figure 4a,b show SEM images of plasma-treated fiber fracture surfaces at different plasma power
intensities (50 and 150 W) after five dips in aqueous MXene dispersion of large flakes. MXene coverage
is achieved in both systems with visible Ti3C2Tx flakes adhered to fiber surfaces; however, at higher
intensity a thicker and less uniform MXene coating is obtained. At 150 W, more MXene adheres to
glass fiber surface, but the coating is less uniform and contains visible aggregates of large Ti3C2Tx

flakes. Corresponding electrical resistance plots of different plasma power and treatment times are
shown in Figure 4c,d. With increased MXene adhesion, fiber bundles treated at 150 W power and
maximum of 50 dips showed lowest resistance properties ranging from 2.5 +/− 0.47 kΩ compared to
50 W which showed slightly higher resistance values averaging 14 +/− 9.6 kΩ (Figure 4c,d). At higher
plasma power, the induced hydrophilic surface of the treated glass fibers allows for better interaction
with oxygen containing functional groups on the MXene surface [43]. For dip-coated fibers treated
at 50 W, a slight increase in electrical resistance was observed above five dips (for 20 and 50 dips);
however, overall resistance never exceeded 110 kΩ. At lower plasma power, there is likely less coverage
of oxygen groups on the surface of glass fibers, compared to 150 W, resulting in a decrease in the
number of MXene flakes that can adhere to the glass surface and participate in electronic pathways.
When comparing treatment times for both 50 and 150 W, only small changes in electrical resistance
were observed when increasing from 0.5 to 5 min plasma exposure (25 kΩ or less). Fibers treated with
150 W power all displayed lower electrical resistances due to hydrophilicity of the glass fibers allowing
for maximum coverage with MXene. MXene-coated fibers exhibiting insufficient coating uniformity
can result in poor damage-monitoring capabilities due to easy removal during testing. As a result,
glass fibers treated at 50 W power for 5 min were used for assessing damage-monitoring capabilities of
MXene-coated fibers.
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resistance values. SEM images of Ti3C2Tx-coated fibers using 50 W (a) and 150 W (b) power during
plasma treatment. Resistance values for varying surface treatment times are provided in (c,d).
Lines connecting points in (c,d) are a guide for the eye.

For damage-monitoring in fiber-reinforced composites, electrically conductive fibers are essential
for determining the point of fracture within the system based on changes in electrical properties.
Therefore, continuous conductive pathways along the fibers are necessary. Electrical properties of
MXene flakes can be utilized for tracking deformation and fracture of glass fibers within a polymer
matrix via electrical resistance. Additionally, the simple dip-coating method eliminates extra processing
steps and can be embedded directly into the polymer after drying. In-situ electrical resistance monitoring
was performed on MXene-coated glass fibers while in tension utilizing LF and SLF coating methods.
Due to overall coating uniformity, fibers treated under 50 W power for 5 min in oxygen plasma
were prepared prior to dip-coating with MXene. The SLF dip-coating method utilizes small flakes
to penetrate fiber bundles ensuring all fiber surfaces are covered while large flakes further increase
electrical conductivity and secure smaller flakes to the fibers. Figure 5a,d shows resistance changes
with increasing tensile load as a function of time for LF- and SLF-coated glass fiber bundles. For this
study, engineering stress-strain curves were not utilized for determining mechanical properties of
MXene-coated fibers. Since bundles with varying number of fibers were investigated, exact information
for influence of MXene coating cannot be accurately assessed. As fiber bundles are strained, an initial
decrease in electrical resistance is observed as bundles are stretched until taught. This decrease is
due to complete alignment of fibers within the stretched bundle and full contact creating a complete
conductive pathway between all fibers. As a result, both five-dips LF- and SLF-coated fiber bundles
reach low resistance values of 3 kΩ and 1.8 kΩ, respectively. The SLF method exhibited the lowest
resistance values even when compared to large flake coatings using 20 and 50 dips confirming small
flakes can penetrate into bundles for improved coverage and overall electrical properties.

MXene-coated fiber bundles were strained until break and subsequent loss of electrical resistance
monitoring. As tensile load approaches 5–6 N near break after ~275 s, an increase in electrical resistance
is observed as individual fibers begin to break within the bundle and begin to separate disrupting
the conductive pathways (Figure 5a,d). After tensile load dropped to 0 N at break (Figure 5b,e),
no distinct fracture point was observed in the fiber bundles however electrical properties remained.
Since individual fiber breakage occurs at different locations within the bundle, some conductive
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pathways remained after a drop in load was observed however resistance values did increase. Limit of
resistance tracking (~1 GΩ) did not occur simultaneously with tensile break but only after all connective
pathways within the fiber bundle were lost. This event occurred after allowing fiber bundles to be
continuously pulled past the tensile break point over several minutes until the two halves of the bundle
were completely separated.
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Figure 5. Electrical resistance monitoring via tensile strain measurements over time for LF (a,b) and
SLF (d,e) MXene dip-coating methods. Plots in (b,e) show resistance behavior around fiber bundle
fracture prior to resistance monitoring limit. Corresponding SEM images of fiber bundles after break
and single fiber surfaces post-testing (c,f). SEM images of single fiber surfaces show MXene coating
remains on the fiber surface after testing.

LF-coated fibers using five dips showed a sharp increase in electrical resistance shortly after
tensile break followed by a brief stabilization around 450 kΩ (Figure 5b) before rapidly increasing
to the resistance limit. SLF coating method showed a two-step change in resistance from ~10 to
15 kΩ followed by a steady increase in electrical resistance. However, more time during testing was
needed to reach the resistance limit of the instrument (Figure 5e). SLF-coated fibers showed lower
resistance values even after fracture due to better coating resulting from the use of both small and
large MXene flakes. As the fiber bundle reaches break, conductive pathways from outer shell large
flakes are first to be disrupted; however, conductive pathways from smaller flakes remain intact longer
as bundles are pulled apart. SEM images of broken fiber bundles (Figure 5c,f) show individual fibers
breaking at various locations (yellow arrows), causing increases in resistance as bundles are slowly
pulled apart. Additionally, SEM images of single fiber surfaces show loss of MXene coating due to
friction from fibers sliding past one another during testing which adds to the increased electrical
resistance observed. It is worth mentioning that fiber breakage within a composite system using DC
measurements offers one failure mode within fiber-reinforced systems; however, to assess other types
of failures, such as debonding or delamination, AC measurements can also be implemented [44–46].
Prior studies have shown MXenes can be incorporated into polymer matrices producing electrically
conductive composites. Addition of MXene-coated fibers will improve overall conductivity and
AC-based detections.

Lastly, the extent of damage to MXene coating after tensile fracture was explored via Raman
spectroscopy. Figure 6a shows an optical image of a broken fiber from a SLF dip-coated fiber bundle
after 30 days. It can be seen the MXene coating remains intact along the entire length of the glass fiber.
Raman spectra were collected at various locations along the coated fiber starting at the point of break,
5 µm and 15 µm (Figure 6b). Ti3C2Tx peaks are clearly visible indicating that even though some layers
may have been lost during testing, the SLF coating method provides complete coverage of glass fibers
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as well as good adhesion after an extended period of time. Minimal oxidation of the MXene-coated
fibers occurred as no photoluminescence background nor TiO2 peaks are observed [47]. Carbon-related
peaks are observed at higher wave numbers; however, these peaks are observed in pristine fibers as
well. Transfer of electronic properties show the potential practical use of these fibers as woven fabrics
embedded in polymer matrix systems. Ti3C2Tx MXene has been shown to possess higher electrical
conductivity compared to solution processed MWCNTs, graphene oxide and reduced graphene oxide
with simpler processing. Furthermore, prior studies have shown the excellent electronic properties
of Ti3C2Tx can also impart EMI shielding capabilities [48] which can be an additional property in
conjunction with damage-monitoring. Lastly, Ti3C2Tx MXene has additional attractive properties
such as tunable plasmonic effects which enable light-to-heat conversion [49] fostering self-healing
possibilities within composites.
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Figure 6. Optical image of a single SLF MXene-coated fiber within a broken bundle (a). Raman spectra
of broken fiber post-tensile testing from break point to 15 µm along the fiber length (b). The SLF
coating method shows clear MXene peaks remain after break with no presence of oxidation (TiO2) after
tensile strain.

4. Conclusions

Ti3C2Tx MXene-coated glass fibers were produced through a facile dip-coating process following
oxygen plasma treatment of glass fiber surfaces for improved MXene adhesion. Addition of the
hydrophilic layer improved Ti3C2Tx coatings, imparting electrical properties to insulating glass fibers.
Increasing plasma treatment power to 150 W and number of dips to 50 provided a fiber bundle
resistivity of 1.3 Ω*cm; however, coating uniformity was sacrificed due to agglomeration of MXene
flakes on the surface. Uniform MXene coverage was achieved with surface treatments at 5 W and 5 dips
exhibiting the most uniform coverage and electrical resistances as low as 5 kΩ prior to tensile testing.
The lowest resistivity value reached was by using alternating small and large flake coatings (1.18 Ω·cm)
when all connective pathways within the fiber bundles were in contact during in-situ resistance
testing. When individual fibers were broken and the fiber bundle was completely separated, a gradual
increase in resistance was measured. MXene coatings were partially lost during tensile testing due to
friction; however, electrical resistance was still measurable until complete separation of fiber bundles.
This study provides a simple route for imparting electronic properties of MXenes to insulating fibers for
incorporation into polymer or ceramic matrices and developing damage-monitoring composite systems.
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