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Abstract: In this work, zinc oxide-decorated graphene oxide (ZnO–rGO) was successfully synthesized
with a fast reflux chemical procedure at 100 ◦C. An equal mass ratio of graphene oxide (GO) and
zinc acetate was used as starting materials dissolved, respectively, in ultrapure distilled water and
dimethylformamide (DMF). Particularly, pure GO was synthesized using Hummers modified protocol
by varying the mass ratio of (graphite:potassium permanganate) as follows: 1:2, 1:3, and 1:4, which
allow us to obtain six types of pure and decorated samples, named, respectively, GO1:2, GO1:3, GO1:4,
ZnO–rGO1:2, ZnO–rGO1:3, and ZnO–rGO1:4 using reflux at 100 ◦C. X-ray diffraction, FTIR, and
Raman spectroscopy spectra confirm the formation of wurzite ZnO in all ZnO-decorated samples
with better reduction of GO in ZnO–rGO1:4, confirming that a higher degree of graphene oxidation
allows better reduction during the decoration process with ZnO metal oxide. Antioxidant activity of
pure and zinc oxide-decorated graphene oxide samples were compared using two different in vitro
assays (DPPH radical and H2O2 scavenging activities). Considerable in vitro antioxidant activities in
a concentration-dependent manner were recorded. Interestingly, pristine GO showed more elevated
scavenging efficiency in DPPH tests while ZnO-decorated GO was relatively more efficient in H2O2

antioxidant assays.
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1. Introduction

During recent decades, the emergence of carbon nanomaterials in nanoscience opens an important
research field for all Carbon allotropes [1]. Graphene, an atomically thin two-dimensional carbonaceous
material, has attracted tremendous attention in the scientific community due to its exceptional electronic,
electrical, and mechanical properties [2,3]. Graphene-based materials have gained heightened attention
as novel materials for water treatment, environmental remediation, and medical applications (e.g.,
biosensors, bioimaging, and drug delivery) [4,5]. Indeed, with the recent explosion of methods
for large-scale synthesis of graphene, the number of publications related to graphene and other
graphene-based materials has increased exponentially. Usually, graphene production could be done
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using the exfoliation-reduction of graphene oxide (GO) in an acid medium. Brodie first demonstrated
the synthesis of GO in 1859 by adding a portion of potassium chlorate to a slurry of graphite in fuming
nitric acid. In 1898, Staudenmaier improved on this protocol by using a mixture of concentrated sulfuric
acid and fuming nitric acid followed by the gradual addition of chlorate to the reaction mixture. In 1958,
Hummers modulated the GO synthesis protocol and used potassium permanganate (KMnO4) and
NaNO3 in concentrated sulfuric acid (H2SO4) [6]. In recent years, the Tour process has been proposed as
an alternative to Hummers’ method, aiming to minimize toxic gas production and control the synthesis
conditions [7]. As its unparalleled properties, including high surface area, excellent conductivity, ease of
functionalization, and production, graphene provides an ideal platform to make useful nanomaterials,
and motivates researchers to synthesize metallic nanoparticle–graphene nanocomposites for fabricating
sensors and biosensors and enhancing performance [8,9]. Moreover, GO could be used as 2D matrices
decorated by chemical elements or metal oxides, for example, to obtain metal oxide-reduced graphene
oxide [10]. Loading of gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) in the graphene
sheets enhanced the photocatalytic activity of the Au–graphene, and Ag–graphene nanocomposite.
The synergistic effects of the surface plasmonic resonance of AuNPs or the hydrophilic nature of the
Ag–graphene nanocomposite and the specific electronics effect of graphene holds great promise for
adsorption and photocatalysis application [2,11]. Additionally, zinc oxide (ZnO) nanoparticle-decorated
graphene nanosheets are considered as an advanced material for their electrochemical performance
and photocatalytic degradation of organic dyes [12,13]. Under such conditions, ZnO can act as a
photocatalyst while graphene acts as an electron-acceptor/transport material to facilitate the migration
of photogenerated electrons and hinders electron–hole recombination [12]. Furthermore, decorating the
graphene surface with ZnO can be greatly improve their antibacterial and antioxidant properties [14].

In this work, a modified Hummers’ method was used to optimize GO synthesis using H2SO4

and varying graphite: KMnO4 proportion. Produced GO has been decorated with ZnO to obtain
zinc oxide-decorated graphene oxide (ZnO–rGO). This work also verified the possible effect of the
oxidation degree on the quality of GO decoration with Zn nanoparticles to obtain a good decoration of
the GO sheet surfaces. Structural properties of pure GO and ZnO–rGO nanocomposites were studied
using XRD, FTIR, and Raman spectroscopy. These techniques give us a semi-quantitative evaluation
of reduction and decoration of GO and ZnO–rGO, respectively. The antioxidant activity of GO and
ZnO–rGO nanocomposites was assessed using DPPH radical and H2O2 scavenging assays.

2. Materials and Methods

All chemicals, including graphite powder (with diameter < 20 µm, synthetic), potassium
permanganate, zinc acetate dihydrate, L-ascorbic acid (99%), DPPH (2, 2-diphenyl-1-picrylhydrazyl),
sulfuric acid (95–97%), hydrogen peroxide, and methanol were purchased from Sigma Aldrich
(Sigma-Aldrich, St. Loius, MO, USA). All the chemicals used were of analytical grade and used
without purification.

2.1. GO and ZnO–rGO Nanocomposites Synthesis and Characterization

GO synthesis was carried out using modified Hummers’ method: 2 g of graphite was added to
50 mL of H2SO4 and stirred for 30 min at RT. Then, 6 g of KMnO4 was added slowly (ice bath < 15 ◦C).
After 2 h of stirring, 100 mL of ultra-purified distilled water (UP-DW) was added dropwise. Finally,
200 mL of UP-DW was added instantly and 10 mL of hydrogen peroxide (H2O2) was added dropwise
to stop the reaction. Before starting characterizations, the obtained diluted acidic solution of GO was
washed and centrifuged three times (10 min, 4000 rpm) and dried at 50 ◦C for 48 h (Figure 1). This
type of sample was named GO1:3, referring to its graphite: KMnO4 synthesis ratio. Two other samples,
named GO1:2 and GO1:4, were prepared to finally obtain three types of GO samples synthesized at
different mass ratios (1:2, 1:3, and 1:4; G:KMnO4). ZnO–rGO was obtained using the reflux technique
at 100 ◦C during 180 min. Graphene oxide and zinc acetate were dispersed and sonicated in UP-DW
and DMF, respectively (GO:Zn-Ac = 1:1, DW: DMF = 1:9). After reflux reaction, our solution was
washed, centrifuged, and dried in same conditions as the GO powder.
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Figure 1. Image of the graphite acidic solution in ice bath during oxidation reaction (A) and the
obtained pasty GO powder after centrifugation (B).

Different techniques of structural characterization were used to analyze the GO and ZnO–rGO
samples. X-ray diffraction was carried out using a PanAnalytical EMPRYEN diffractometer, working
with CuKα ray (λ = 1.54 Å). FTIR and Raman results were obtained using FTIR-JASCO-6300 and DXR
Raman spectrometers, respectively.

2.2. GO and ZnO–rGO Nanocomposites Antioxidant Activity

The antioxidant potential of tested samples was determined on the basis of their scavenging activity
of the stable DPPH free radical [15]. Briefly, 0.1 mL of various concentrations of the each compound in
methanol was added to 1.9 mL of a methanol solution of DPPH (0.004%). The mixture was vigorously
shaken and then allowed to stand at room temperature for 30 min in the dark. The absorbance was
determined at 517 nm using a Shimadzu UV-1280 spectrophotometer. Ascorbic acid was used as the
positive control. All tests were performed in triplicate. The ability of scavenging DPPH radical was
calculated by the following Equation (1):

Scavenging ability (%) = (A0 − A1)/A0) × 100 (1)

In the equation, A0 is the absorbance of the control, while A1 is the absorbance of sample.
The ability of the tested samples to scavenge H2O2 was estimated by the Ruch Figure method [16].

A solution of H2O2 (40 mM) was freshly prepared in 0.05 M KH2PO4-K2HPO4 phosphate buffer
(pH = 7.4). The compounds at different concentrations were mixed with 1.4 mL phosphate buffer and
0.6 mL 40 mM H2O2. After 10 min the concentration of the H2O2 was determined at 230 nm using
a Shimadzu UV-1280 spectrophotometer. Ascorbic acid was used as the positive control. All tests
performed in triplicate. The ability of H2O2 neutralization was calculated using Equation (1).

3. Results and Discussion

3.1. Structural Characteriwations

3.1.1. XRD

Figure 2a presents X-ray diffraction spectra of: as-received graphite powder, GO1:2, GO1:3, and
GO1:4 samples. Graphite XRD spectra (recorded for comparison) display the graphite diffraction
peaks with the characteristic graphite dominant peak situated at: 2θ = 26.46◦, corresponding to the
diffraction of (200) planes with a d-spacing of 3.36 Å. Other low-intensity graphite diffraction peaks
appear on the XRD plot, indicating the high crystallinity of the used graphite powder. XRD spectra
of GO1:2, GO1:3, and GO1:4 show a disappearance of this peak mainly for GO1:4 nanocomposites.
Moreover, we observe the appearance of new diffraction peaks situated at: 11.92◦, 11.47◦, and 11.18◦,
corresponding, respectively, to (001) diffraction planes of GO1:2, GO1:3, and GO1:4. As shown in
Table 1, the d-spacing of the (001) XRD family plane of GO increases as function of content of KMnO4

in the starting acidic synthesis solution.
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Figure 2. X-ray patterns of: (a) Graphite, GO1:2, GO1:3, and GO1:4; (b) GO1:2 and ZnO–rGO1:2;
(c) GO1:3 and ZnO–rGO1:3; and (d) GO1:4 and ZnO–rGO1:4.

Table 1. D-spacing of the (100) GO diffraction plane of GO1:2, GO1:3, and GO1:4 samples.

Samples GO1:2 GO1:3 GO1:4

2θ (◦) 11.92 11.47 11.18
d (Å) 07.40 07.70 07.90

Table 1 presents the d-spacing (dhkl) of the (100) GO diffraction plane of GO1:2, GO1:3 and GO1:4
samples. We indicate an increasing of dhkl value with enhancement of oxidant material (potassium
permanganate) in starting material of our synthesis.

Interestingly, we observe in Figure 2b–d appearance of the majority of the XRD peaks of the
wurzite zinc oxide structure [JCPDS 36-1451] in all zinc oxide-decorated reduced graphene oxide
samples. Simultaneously, we note the existence of the oxidation indicator peak of GO (2θ = 11.18◦)
in the ZnO–rGO1:2 XRD spectrum, while a total disappearance of this peak in the ZnO–rGO1:3 and
ZnO–rGO1:4 spectra was observed, indicating the partial reduction of graphene oxide in ZnO–rGO1:2.

3.1.2. FTIR

FTIR results are displayed in Figure 3. For the GO1:2 plot, we observe two peaks located at
3237 cm−1 and 1030 cm−1 corresponding, respectively, to vibrations of OH and C–O bands. We note
less intense peaks located at 1720 cm−1 and 1604 cm−1 indicating partial oxidation of graphite. With
respect to other pristine and decorated samples, the FTIR of the GO1:3 and ZnO–rGO1:3 couple shows
a large peak placed at 3230 cm−1 corresponding to the OH band, and in pristine GO, two sharp peaks
related to C=O and C=C bands located at 1707 cm−1 and 1630 cm−1. Interestingly, these features
broaden in the GO1:4 and ZnO–rGO1:4 couple and are absent in the GO1:2 and ZnO–rGO1:2 one.
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After decoration, we note a decrease in the intensity for the peak located at 3237 cm−1 and the total
disappearance of the peak located at 1707 cm−1. The FTIR spectra of the GO1:4 and ZnO–rGO1:4
samples are shown in Figure 3c. We observe the same feature found in GO1:3 and ZnO–rGO1:3, despite
noting the total absence of peaks located near 3224 cm−1 and 1720 cm−1, indicating a better reduction
of GO1:4 during decoration with ZnO nanoparticles [17–19].
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3.1.3. Raman

Figure 4 shows the Raman spectra of pure and zinc oxide decorated reduced graphene oxide.
Raman spectra of GO1:2 and ZnO–rGO1:2 presented in Figure 4a, show D and G bands, located at
1347 cm−1 and 1594 cm−1 for both pure and decorated reduced graphene oxide in same position. These
bands are attributed, respectively, to the E2g vibrational mode of sp2 carbon hybridization and structure
defects [20]. We observe that the ID/IG ratio increases from 1.01 for GO1:2 to 1.09 for ZnO–rGO1:2
indicating a reduction of GO. We note a total absence of peaks relative to ZnO vibrational modes,
probably due to our need to use a more intense laser. Similarly, we observe in Figure 4b, presenting
the Raman spectra of GO1:3 and ZnO–rGO1:3 samples, D and G bands at 1340 cm−1 and 1589 cm−1,
respectively, with the respective ID/IG ratios of 0.96 and 1.05, indicating the reduction of GO1:3 after
decoration with ZnO. We note one more time the absence of peaks relative to ZnO vibrational modes.
Figure 4c provides GO1:4 and ZnO–rGO1:4 Raman spectra. D and G carbon sp2 bands appear in the
same previous positions of 1347 cm−1 and 1594 cm−1, respectively. The ID/IG ratio enhances from
0.95 to 1.04 after decoration, indicating better reduction of GO1:4 after decoration with zinc oxide.
Contrarily to precedent spectra of zinc oxide-decorated reduced graphene oxide, we observe a peak
located at 485 cm−1, corresponding to the E2 vibrational mode of hexagonal ZnO [21], indicating a
better decoration of GO with ZnO in this sample type.
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As a whole, the results show that the mass ratio in Hummers’ method represents an important
parameter for the reduction and metal oxide decoration of graphene oxide as well. In our work,
we maintain more attention on the GO matrix, focusing our efforts on optimizing the GO oxidation
by increasing the oxidant agent amount. As a matter of fact, the better ZnO graphene decoration
corresponds to the higher oxidation degree in GO samples.

3.2. Antioxidant Assays

Recent reports have demonstrated that several types of nanoparticles act as potent free radical
scavengers and antioxidants [22,23]. The prepared nanocomposites GO and ZnO–rGO were investigated
for anti-oxidant properties using DPPH radical and H2O2 scavenging assays. In Figure 5, the ability to
scavenge the DPPH radical was increased with the increase in the concentration of tested samples from
25–400 µg/mL. DPPH radical scavenging activity of different samples and ascorbic acid at 400 µg/mL
was in the following order: Ascorbic acid (96%) > GO1:4 (40%) > GO1:2 (35%) > GO1:3 (26%) >

ZnO–rGO1:3 (22%) > ZnO–rGO1:2 (20%) > ZnO–rGO1:4 (19%). The DPPH assay method is based on
the reduction of DPPH, a stable free radical. Antioxidants with DPPH radical scavenging activity could
donate hydrogen to free radicals and to form non-radical species [15]. As observed in DPPH radical
assays, the H2O2 scavenging ability of the tested samples was dose-dependent (Figure 6). The H2O2

scavenging activity of different samples and ascorbic acid at 400 µg/mL was in the following order:
Ascorbic acid (85%) > ZnO–rGO1:3 (63%) > GO 1:4 (58 %) > ZnO–rGO1:2 (52%) > ZnO–rGO1:4 (47%)
> GO1:2(42%) > GO1:3 (20%). H2O2 itself is not very reactive, but it can sometimes be toxic to the cell
because it may give rise to hydroxyl radicals in the cell. Thus, removal of H2O2 is very essential to
protecting the biological system, in general, and food components, in particular [24]. Our findings
correspond with existing literature demonstrating the ability of the graphene-based family (graphene,
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rGO, and GO) to neutralizing free radicals, oxygen scavenging, or peroxide decomposition through
their antioxidant activities [22,25]. The antioxidant activity pattern can depend on the structure of
graphene oxide or few-layer graphene [25]. Some researchers proposed that antioxidant propriety of
carbon materials may involve radical adduct formation at sp2 carbon sites, which delocalizes spin
across the conjugated graphene backbone and leads to the destruction of the radical following second
adduct formation, through electron transfer, through hydrogen donation from functional groups,
or through chelation of transitional metal ions and inhibition of Fenton-based radical generation [23,24].
Interestingly, GO showed a more considerable scavenging efficiency using the DPPH radical test while
the ZnO decorated GO was more efficient in the H2O2 antioxidant assays. The observed trend suggests
the enhancement of the antioxidant activity of ZnO–rGO compared to GO, which may be due to
synergetic effects or the interaction between zinc oxide nanoparticles and graphene oxide [14,25].
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4. Conclusions

GO was synthesized using modified Hummers’ method changing the graphite:KMnO4 proportion.
Best results in terms of the oxidation degree were obtained with a 1:4 mass ratio. XRD and Raman
scattering spectra clearly indicate the reduction of GO and successful synthesis of the ZnO–rGO
nanocomposite. This result has been confirmed by the appearance of peaks relative to the hexagonal
wurtzite structure of ZnO. FTIR results inform us about the existence of oxygenated functional groups
corresponding to hydroxyl, carboxyl, and epoxy molecules and the change of the correspondent peak
intensity after the reduction of GO. Structural characterizations confirm that the better oxidized samples
(GO1:4) undergo the best reduction and decoration by zinc oxide demonstrating that better-oxidized
graphene oxide leads to a better reduced and decorated graphene oxide. Additionally, the prepared
nanocomposites exhibited noticeable antioxidant properties. The results from DPPH radical and
H2O2 scavenging assays revealed that GO and ZnO–rGO nanocomposites are capable of donating
electrons or hydrogen atoms and, subsequently, react with free radicals in a dose-dependent manner.
The ZnO–rGO nanocomposites show better H2O2 scavenging effects than GO. The combination of all
these findings encourage simultaneously studying pure and metal oxide-decorated graphene oxide
further to obtain excellent pure and metal-decorated graphene oxide matrices to check their potential
biological applications. However, further exploration is necessary to determine the effective decoration
degree and antioxidant capacity.
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