Electronic Supplementary Information

Waste Coffee Management: Deriving High-Performance Supercapacitors using Nitrogen-Doped Coffee Derived Carbon

Jonghyun Choi¹, Camila Zequine¹, Sanket Bhoyate¹, Wang Lin¹, Xianglin Li², P. K. Kahol³, Ram K. Gupta^{1,4*}

¹Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
 ²Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA
 ³Department of Physics, Pittsburg State University, Pittsburg, KS 66762, USA
 ⁴Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS 66762, USA

Fig. S1: XRD patterns of carbonized coffee powders.

Fig. S2: Raman spectra of the carbonized coffee powders (CP-UA, CP-N, and CP-NA).

Fig. S3: (a) CV curves of CP-NA at various scan rates.

Fig. S4: (a) Charge-discharge characteristics of CP-NA at various current densities, and **b**) Ragone plot for all the samples.

Fig. S5: Volumetric capacitance versus applied current for all the samples.

Fig. S6: Variation of specific capacitance as a function of mass loading and current desnity.

Fig. S7: CV curves of CP-NA at various scan rates based on (a) weight and (b) area, and (c) variation of specific capacitance versus scan rate.

Fig. S8: Galvanostatic charge-discharge curves of CP-NA at various current densities based on (a) weight and (b) area, and (c) variation of specific capacitance versus applied current.

 Table S1: Atomic content of coffee derived carbons.

Sample	Content (%)			Content of N Species (%)			
	C (%)	N (%)	O (%)	Pyridinic	Pyrrolic	Graphitic	Oxidized
CP-UA	72.07	1.73	26.2	0.55	0.47	0.42	0.29
CP-N	77.37	10.18	12.45	3.82	2.13	3.87	0.36
CP-NA	86.05	2.80	11.15	0.52	1.62	0.11	0.55

Table S2: Comparison of Energy and power density with previous carbon-based supercapacitor devices.

Device	Energy density (Wh/kg)	Power density (W/kg)	Reference
Waste Coffee derived carbon	12.8	6,643	This work
Cherry stone derived carbon	5	~2,000	1
Sisal leaves carbon	~11.5	~11,000	2
Lignin derived nanoporous carbon	12.8	~10,500	3
Bio-oil derived hierarchical porous carbon	8.1	4,702	4
Coal tar pitch carbon	6	~2,500	4
Carbon from sugarcane bagasse	7	3,600	5
Fruit stone carbon	~11	~3,100	6
Commercial microporous carbon Norit	5	~3,000	6
Sago bark derived carbon	5	400	6

- Olivares-Marín, M.; Fernández, J. A.; Lázaro, M. J.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.; Stoeckli, F.; Centeno, T. A. Cherry Stones as Precursor of Activated Carbons for Supercapacitors. *Mater. Chem. Phys.* 2009, *114*, 323.
- (2) Li, Y.; Zhang, Q.; Zhang, J.; Jin, L.; Zhao, X.; Xu, T. A Top-down Approach for Fabricating Free-Standing Bio-Carbon Supercapacitor Electrodes with a Hierarchical Structure. *Sci. Rep.* **2015**, *5*, 1.
- (3) Jeon, J. W.; Zhang, L.; Lutkenhaus, J. L.; Laskar, D. D.; Lemmon, J. P.; Choi, D.; Nandasiri, M. I.; Hashmi, A.; Xu, J.; Motkuri, R. K.; et al. Controlling Porosity in Lignin-Derived Nanoporous Carbon for Supercapacitor Applications. *ChemSusChem* 2015, *8*, 428.
- (4) Li, J.; Xiao, R.; Li, M.; Zhang, H.; Wu, S.; Xia, C. Template-Synthesized Hierarchical Porous Carbons from Bio-Oil with High Performance for Supercapacitor Electrodes. *Fuel Process. Technol.* **2019**, *192*, 239.
- (5) Wahid, M.; Puthusseri, D.; Phase, D.; Ogale, S. Enhanced Capacitance Retention in a Supercapacitor Made of Carbon from Sugarcane Bagasse by Hydrothermal Pretreatment. *Energy and Fuels* 2014, 28, 4233.
- Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Sua?rez-Garc?a, F.; Tasco?n, J. M. D.; Lu, G. Q. Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons. J. Am. Chem. Soc. 2009, 131, 5026.