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Abstract: Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes 
and offer high specific energy, inexpensive and environmentally sustainable materials, and high 
operating voltages. Our research investigated the influence of surface composition on capacities and 
cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected core-
shell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and 
hydrogenation to introduce, respectively, –OH, and –H surface functional groups. We identified 
noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage 
densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes 
and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our 
approach provides novel fundamental insight into the anion intercalation process and suggests 
inexpensive and environmentally sustainable methods to improve performance of these grid-scale 
energy storage systems. 
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1. Introduction 

Electrical energy storage modules offer a solution to the critical problem of inefficient microgrid 
systems in remote locations, such as the U.S Army’s Forward Operating Bases (FOBs). These 
currently rely on diesel-powered generators for primary and backup energy supply and are often 
underrun (i.e., operate at 40%–50% of their peak output capabilities) to accommodate power 
consumption fluctuations. This operating mode significantly reduces their efficiencies and drives up 
diesel consumption [1]. 

Lithium-ion batteries (LIBs) offer sufficiently high energy densities to act as energy management 
systems in microgrid power applications [2]. Typical batteries implement a graphite anode and a 
metal oxide cathode (such as LiCoO2), along with an electrolyte composed of lithium salts (typically 
[Li+][PF6−], [Li+][TFSI−], or [Li+][BF4−]) dissolved in carbonate solvents.[3] Single cells typically operate 
at 3.6 V and can store 700 to 2400 mAh per cell. The LiCoO2 cathode has a theoretical gravimetric 
capacity of 274 mAh/g (140 mAh/g practical), while the anode is capable of storing up to 372 mAh/g 
(300–320 mAh/g practical) [2]. Nevertheless, existing LIBs feature many drawbacks that preclude 
their implementation in grid-level storage. High-voltage output is limited by the electrochemical 
stability of electrolytes and requires an inefficient series connection of multiple modules [4]. Oxidized 



C 2017, 3, 5 2 of 11 

cathodes facilitate gas evolution during electrolyte breakdown, pose swelling/bursting risks, and 
increase flammability hazards [5,6]. The cathode intercalation compound, LixCoO2 (x <0.5), 
contributes an additional Co4+ oxidizer hazard. Despite recent improvements of operating 
efficiencies, charge storage decays with cycling and offers a limited operating life. In addition to 
including rare, expensive transition metals such as cobalt, expended LIBs cannot be safely disposed 
of or incinerated without generating toxic byproducts [7]. 

A promising alternative LIB approach depends on a dual-intercalation mechanism that relies on 
both cations and anions.[8,9] It allows inexpensive and environmentally safe graphite to act as both 
the cathode and anode. While [Li+] anode intercalation still yields LiC6, [PF6−], cathode intercalation 
produces (PF6)Cx (x ≥20) [10]. This process, which occurs at 4.5–5.2 V, has a theoretical intercalation 
capacity of 90–120 mAh/g [11,12]. A mixture of monofluoroethylene carbonate (FEC) and ethylmethyl 
carbonate (EMC), along with a tris(hexafluoro-iso-propyl)phosphate (HFIP) sacrificial additive [11], 
acts as an electrochemically stable electrolyte solvent. This approach allows the use of less volatile 
solvents and inexpensive, easy-to-dispose electrodes, and offers energy densities that are suitable for 
grid-level implementation. Furthermore, the dual-intercalation process has broad implementation 
across a wide range of materials, including layered carbides [13], polymer composites [14], graphene 
[15], and aluminum [16]. 

Despite important advantages in the dual-intercalation charge storage mechanism, existing all-
graphite battery configurations do not yet yield sufficiently high cycling efficiencies and steady-state 
discharge capacities. Furthermore, although extensive studies of solid/electrolyte (SEI) formation and 
stability on graphite anodes, as well as reactions involving LiCoO2 cathodes, have been completed, 
SEI formation on graphite cathodes due to anion intercalation has not been examined. Since the 
intercalation process strongly depends on processes at the electrode–electrolyte interface [17], 
heterogeneity and composition differences on electrode surfaces are expected to significantly 
influence capacity and cycling efficiencies. Certain functional groups can be introduced onto carbon 
surfaces via high-temperature treatments, air oxidation, plasma and gas treatment, and wet 
chemistry reactions [18,19]. Subsequently, research efforts must classify surface chemical species as 
beneficial or detrimental to anion intercalation, determine optimal combinations of cathode and 
anode surface treatments, and implement them in the graphite cathode fabrication processes. 

Our efforts determined the influence of hydrogen and oxygen surface functionalities on the 
electrochemical performance of graphite cathodes and anodes in dual-ion cycling configurations. 
Since surface modification efforts have different effects on the graphite basal planes and sheet edges, 
we relied on both spherical (core-shell MCMB (MesoCarbon MicroBeads) cathodes and CGP 
(ConocoPhillips Graphite Particles) anodes) and flake-like SFG (Synthetic Flakes of Graphite) 
materials; all particle morphologies had been previously implemented in dual-intercalation LIBs 
[11,12]. We relied on conventional and industrially scalable furnace (flowing air at 570 °C or H2 gas 
at 800 °C to, respectively, oxidize or hydrogenate surfaces) methods and combined characterization 
of surface compositions with resulting electrochemical performance.  

We decoupled the surface chemistry effects for cation and anion intercalation and matched 
optimal surface treatments of positive and negative electrodes in asymmetric configurations to 
extract the highest capacities and most stable cycling behaviors. 

2. Results and Discussion 

2.1 Material Properties 

Most of the chemical treatments lightly modified the surface compositions of the materials 
without significantly transforming their structures. Table 1 summarizes the changes in the specific 
surface area (SSA) of the various graphite particles as a result of surface modifications. As shown in 
Figure S1 in the Supporting Information (SI), N2 adsorption/desorption demonstrated well-
pronounced Type IV isotherm behavior. These profiles suggested interparticle slits between non-
porous particles. Surface modification yielded very small SSA increases—between 0.50 m2·g−1 and 
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4.78 m2·g−1—and suggested that the chemical treatments did not restructure the well-ordered non-
porous carbon particles. 

Table 1. Gas sorption-derived specific surface area measurements and functional group content of 
chemically modified MesoCarbon MicroBeads (MCMB), Synthetic Flakes of Graphite (SFG), and 
ConocoPhillips Graphite Particles (CGP) graphite electrode particles. Functional group content was 
derived from thermogravimetric analysis (TGA). 

Negligible SSA changes suggested the chemical modification approaches neither activated the 
particles nor etched micropores into the materials [20]. Pore size distributions (Figure S2 in the SI) 
showed that chemical treatments retained the pore-free surface morphologies of all three graphite 
electrode materials. Most observed changes simply removed carbon atoms from surface layers during 
functionalization. Subsequently, functional groups were retained only on external particle surfaces. 
Most importantly, their effects on electrochemical cycling were, subsequently, limited solely to 
intercalation: the SSAs were sufficiently small to safely discount any double layer electrosorption 
contributions. 

Inert TGA analysis (show in Table 1) indicated that the initial carbon materials had negligible 
amounts of chemical groups on the surface, and all of the chemical treatments increased surface 
functionality concentrations. The greatest increases were observed for oxidized SFG (11.9 wt%). 
Overall, as compared to core-shell particles, the stacked SFG flakes exhibited greater concentrations 
of surface functional groups. Their intrinsic structure, which featured more prevalent exposed edge 
planes (previously shown to be more unstable) [21], make it more susceptible to functionalization. 

XPS analysis, which is summarized in Table 2, provided more information on the specific 
functionalization of hydrogenated and oxidized MCMB and SFG surfaces. The measurements 
showed that, although hydrogenation had left some of the oxygen-containing groups on the surfaces, 
most of them converted to hydrogen-rich groups and desorbed oxygen species following the 
treatment steps. Peak deconvolution (shown in Table S1 in SI) showed that most predominant 
oxidized sample groups were C–O, which suggested hydroxyl and acid surface functionalities in 
those samples. Peak deconvolution of the hydrogenated MCMB material showed that its surface 
structure was predominantly composed of C–H (50.1 at%), C–C (45 at%), and C–O (5.0 at%). 
Therefore, we were able to conclude that the tested graphite electrode materials exhibited desired, 
and sufficiently distinct, surface chemistries. 

Table 2. X-ray photoelectron spectroscopy (XPS)-derived elemental analysis comparison of different 
functionalized MCMB and SFG graphite cathode materials. 

Element MCMB SFG
 Oxidized Hydrogenated Oxidized

Carbon (at%) 98.2 99.4 98.2
Oxygen (at%) 1.8 0.6 1.8

2.2 Anion Intercalation 

Differently functionalized graphite materials acted as cathodes in half-cells and were cycled at a 
C/10 rate (assuming a 90 mAh·g−1 maximum [PF6−] intercalation capacity). The resulting anion 
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Content
Untreated 1.99 m2·g−1 0.52 wt% 1.34 m2·g−1 0.95 wt% 1.48 m2·g−1 0.41 wt% 
Oxidized 2.49 m2·g−1 1.72 wt% 4.64 m2·g−1 11.92 wt% 6.21 m2·g−1 3.54 wt% 

Hydrogenated 2.26 m2·g−1 0.44 wt% 2.72 m2·g−1 2.05 wt% 6.26 m2·g−1 0.21 wt% 
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intercalation/deintercalation profiles, as well as cycle-dependent capacities, are shown in Figure 1. 
The MCMB anion intercalation profiles (Figure 1a shows the first full charge-discharge profile) 
suggest onset of [PF6−] insertion and staging in oxidized graphite at lower voltages than other 
functionalized surfaces. Although the first-cycle capacity of oxidized core-shell electrodes is lower 
than the untreated graphite (discharge value from 5th cycle in Figure 1b), it maintains higher long-
term efficiency and exhibits improved capacity (92.4 mAh·g−1) compared to the pristine material (73.1 
mAh·g−1). 

 
Figure 1. (a) Capacity vs. Voltage (vs Li/Li+) of first cycle full-potential C/10 charge and discharge 
(between 4.0 and 5.2 V)) for differently functionalized MesoCarbon MicroBeads (MCMB) 
cathodes. (b) Corresponding charge/discharge cycle profiles (including 4 initial pre-conditioning 
cycles) for MCMB cathodes. Corresponding charge/discharge and capacity plots are shown in (c) and 
(d) for chemically modified Synthetic Flakes of Graphite (SFG) cathodes. 

Hydrogenated MCMB cathodes demonstrated noticeably different charge/discharge behaviors. 
Although they demonstrated higher first-cycle charge storage capacities, their performance decayed 
very rapidly, and their efficiencies dropped below 60%. 

Differently functionalized SFG cathodes demonstrated well-defined anion intercalation staging 
behavior (Figure 1c). Although efficiencies of first full charge–discharge cycles of the untreated 
cathodes (Table 3) exceeded those of either of the functionalized counterparts, steady-state capacity 
and efficiencies of oxidized and hydrogenated synthetic graphite electrodes was higher after the 2nd 
full charge/discharge cycle. All SFG electrodes demonstrated higher efficiencies than their MCMB 
counterparts and, especially, demonstrated higher capacities near the 5.0–5.2 V vertex potentials. 
Discharge capacities for most functionalized SFG cathodes exhibited constant decays after the  
1st cycle. 

Table 3 summarizes the first cycle efficiencies, steady-state capacities, cathode polarization 
potentials, and comparatively functionalized CGP anode ([Li+] intercalation) performance. For both 
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MCMB and SFG cathodes, hydrogenation consistently reduced 1st cycle efficiencies, and oxidation 
slightly increased them from 74% to 88% (in MCMB) and from 79% to 88% (in SFG). Although none 
of the treatments improved first-cycle efficiencies of the CGP anode, hydrogenated surfaces yielded 
higher steady-state efficiencies than oxidized ones. The lithiation/delithiation of functionalized 
anodes is shown in Figure S3 in SI. This finding was in direct contrast to anion intercalation at the 
cathodes, and the results underscored the significant differences between cation and anion 
intercalation fundamentals and resulting SEI formation. It should be noted that oxidation of all three 
graphite materials noticeably improved their capacities for, at minimum, the first few cycles. For 
applications such as primary batteries, which do not require long-duration cyclability, these 
approaches may improve device energy densities without sacrificing reliability or cost advantages. 

Table 3. First-cycle and steady-state efficiencies, capacities, and polarization potentials of 
functionalized graphite MCMB and SFG cathodes and ConocoPhillips Graphite Particles (CGP) 
anodes tested in half-cell configurations. 

2.3 Long-Term Cyclability 

A separate set of electrode materials for MCMB and SFG functionalized graphite cathodes were 
cycled in half-cell configurations at a C/2 rate. The discharge capacities and coulombic efficiencies are 
shown in Figure 2. These cells did not undergo any pre-cycling or pre-conditioning and operated 
squarely in the 4.0–5.1 V regime. 

 
Figure 2. C/2 discharge capacity performance for (a) MCMB and (b) SFG cathode half-cells. Cells were 
tested until discernible failure or 200 cycles. 

Material 
Surface 

Chemistry 
Cycle 1 

Efficiency 
Steady-State 

Efficiency 
Peak 

Capacity 
Polarization 

Potential 

MCMB 
Cathode 

Untreated 72.5% 88.1% 73.1 mAh·g−1 4.94 V 

Oxidized 74.1% 87.7% 92.4 mAh·g−1 4.92 V 

Hydrogenated 59.5% 81.4% 75.0 mAh·g−1 5.03 V 

SFG Cathode 

Untreated 79.1% 82.0% 94.2 mAh·g−1 5.04 V 

Oxidized 78.5% 88.2% 94.1 mAh·g−1 5.02 V 

Hydrogenated 75.1% 83.8% 92.7 mAh·g−1 5.02 V 

CGP Anode 

Untreated 88.9% 99.5% 309.5 mAh·g−1  

Oxidized 86.4% 99.1% 340.5 mAh·g−1  

Hydrogenated 87.7% 99.2% 268.7 mAh·g−1  
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For the MCMB core-shell cathodes, the untreated and oxidized electrodes retained stable 
performance through 200 cycles. Although the oxidized materials had slightly lower discharge 
capacities during the later cycles, the charge storage densities of the oxidized graphite materials were 
the highest of all tested configurations until the 75th cycle. 

The SFG untreated cathode cells failed at approximately the 75th cycle. The oxidized synthetic 
graphite cells avoided failure over 200 cycles, but their performance decreased to 26% of its initial 
capacity. Hydrogenated cathodes performed poorly in both SFG and MCMB cells, and failed  
(or degraded beyond any measurable operating levels) after 30 cycles. Although the exact cause of 
this breakdown remains to be determined, the positively charged hydrogenated surfaces were more 
likely to engage in irreversible electron transfer reactions with organic solvents at high positive 
potentials. 

X-Ray Diffraction analyzed the long-range stacking order (along the c-axis direction) of the 
cathode materials before and after cycling. The experiments aimed to determine whether the 
electrodes underwent any loss of crystallinity—a common problem in layered electrode materials—
due to anion intercalation. The results are summarized in Figure 3. Core-shell MCMB cathodes 
(Figure 3a) did not exhibit significant destruction of the graphite lattice. Electrochemical impedance 
spectroscopy (EIS) analyzed the equivalent series resistance (ESR) of the half-cells before and after 
cycling. The Nyquist plot for hydrogenated MCMB material before and after cycling (Figure 3b) 
showed that extended charging/discharging resulted in a prominent semi-circular regime in the mid-
frequency range. This behavior may be attributed to charge transfer resistance increases and may 
suggest a buildup of electrolyte decomposition products on cathode surfaces. It is, however, possible 
that anion intercalation exfoliated graphite electrodes, caused them to lose contact from the Al current 
collectors, and degraded the batteries. Stacking and long-range order along the [002] direction 
substantially decreased for most of the cycled SFG electrodes. It should be noted, however, that most 
of the synthetic flake electrodes that had been analyzed using X-Ray Diffraction were partially 
charged. This influenced the intensities of the [002] graphite peaks and added intercalated [PF6]x[C]y 
phases to resulting diffractograms. Comparative EIS-derived charge transfer resistance changes, 
which are shown in Table S2 in SI, demonstrated increased resistance of most cells after extended 
cycling. Voltage-induced irreversible breakdown of the organic solvents, layers of LiPF6 out of 
solution, corroded current collectors, and exfoliated (damaged) cathodes all possibly contributed to 
this effect. The exact causes require further investigation and will be discussed in future work. 
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Figure 3. (a) X-Ray Diffraction (XRD) analysis of long-range graphitic ordering in the [002] direction 
of the initial MCMB cathode and different surface treated materials after C/2 cycling; (b) Nyquist 
impedance plot that compares the charge transfer resistance between the hydrogenated MCMB 
cathode and the current collector before and after cycling; (c) XRD analysis of the SFG cathode before 
and after cycling. Note that the cycled untreated material retained partial charge (i.e. ions intercalated 
into its structure), which likely contributed to higher [002] long-range ordering; (d) Nyquist 
impedance plot that compared the charge transfer resistance of the oxidized SFG cathode before and 
after cycling. 

2.4 Dual-Ion Intercalation Configuration 

Four different cells with tailored anode and cathode surface chemistries compared the influences 
of electrode interfaces and highlighted the impacts of surface functional groups on dual intercalation 
processes. One cell used oxidized MCMB cathode and hydrogenated CGP anode, and another cell 
used oxidized SFG cathode and hydrogenated CGP anode. Two baseline tests used untreated CGP 
anode with untreated MCMB or SFG cathodes. To balance the relative predicted intercalation charge 
densities (90 mAh·g−1 for cathode and 320 mAh·g−1 for anode), the cathode masses exceeded the anode 
masses by factors of three. Results of C/10 cycling are shown in Figure 4. 

 

Figure 4. (a) Voltage vs. capacity of 1st 4.0–5.1 V cycle of full dual-intercalation cells. In each case, a 
graphite cathode (either MCMB or SFG) is matched with a graphite anode (CGP);  
(b) Charge/discharge capacity (including pre-conditioning) using C/10 cycles normalized to anode 
mass; (c) Coulombic efficiencies for first 35 cycles. 

The functionalized cells performed at higher coulombic efficiencies and offered higher charge 
capacities than their untreated counterparts. The voltage vs. capacity profiles demonstrated 
characteristic inflection points, which corresponded with distinct [PF6−] intercalation stages [12] for 
the asymmetrically functionalized cells and a higher polarization voltage. Additionally, both first-
cycle and subsequent coulombic efficiencies for the hydrogenated anode–oxidized cathode cells 
showed improvements over bare carbon surfaces. Although SFG-based cells demonstrated similar 
capacitive decay for untreated and oxidized cathodes, oxidized core-shell MCMB cathodes showed 
substantially improved stability as compared to their untreated counterparts. 

In the case of both the core-shell MCMB and flake SFG electrodes, oxidized cathodes and 
hydrogenated anodes provided more stable cycling and higher coulombic efficiencies than their 
untreated counterparts. The observed stability improvements of oxidized cathodes agree with 
previously reported results for carbon black LIB materials [22]. The most conventional explanation 
of this effect suggests that the high concentration of negatively charged oxygen groups (–C=O,  
–HCOO, –C–O–C, –OH, etc.), due to electron counting, precludes oxidation of organic solvents at the 
cathode under high applied voltages. Furthermore, oxidized carbons at cathode surfaces likely 
formed sp3 configurations, which, unlike sp2 carbons, had not degraded as rapidly during [PF6−] 
intercalation above 4.1 V [23]. The required asymmetry in surface composition demonstrates the 
distinct differences between anion and cation intercalation processes. Although lithiation and [PF6−] 
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insertion used FEC and EMC solvents, and relied on the HFIP additive for SEI stability, they 
benefitted most from, respectively, hydrogenated anodes and oxidized cathodes. Surface 
modification processes introduced chemical species onto electrode surfaces that minimized 
electrolyte oxidation and reduction at, respectively, cathodes and anodes. Subsequently, fewer 
irreversible solvent breakdown reactions and [Li+][PF6−] desolvation (salt deposition) processes 
occurred at each electrolyte. This suggests that other surface functionalities, such as halogenation and 
amination, may further improve cycling efficiency and stability of dual-intercalation graphite 
electrodes in the future. 

3. Materials and Methods 

All graphite materials were used as received. The first cathode material was a core-shell 
graphitized particle (hard carbon surface coating surrounded well-ordered graphite) MCMB 10-28 
(Osaka Gas, Japan). The second cathode material was a synthetic graphite flake material SFG-44. The 
anode material was a proprietary core-shell CGP-A12 ellipsoid particle (ConocoPhillips, USA). They 
are shown in Figure S4 in SI and are, respectively, labeled as “MCMB,” “SFG,” and “CGP” in the text. 

To oxidize the materials, carbon powders were placed in alumina boats, heated in alumina tube 
furnaces (open to air) to 570 °C, and held at that temperature for 4 hours. To hydrogenate graphite, 
we took oxidized graphite particles, placed them into quartz tube furnaces (under flowing Ar gas), 
and heated them at 800 °C under flowing H2 gas (at 0.5 L·min−1) for 8 h [24].  

Micromeretics Tristar II porosimeter used N2 adsorption to quantify the specific surface area 
(SSA) of the functionalized materials. Samples were outgassed at 105 C for 24 hours, and N2 sorption 
was carried out in the 0.05–0.995 P·P0−1 range using a liquid nitrogen bath (−193 °C). Brunauer-
Emmett-Teller (BET) SSA was calculated in the 0.05–0.30 P·P0−1 range [25] using Tristar II 3020 V1.03 
Software (Micromeretics Instrument Corporation, Norcross, GA, USA). 

X-Ray Photoelectron Spectroscopy (XPS) identified the surface chemistry and provided 
elemental analysis and functional group content of the graphite materials. Physical Electronic 
VersaProbe 5000 (VersaProbe, Chanhassen, MN, USA), with a 100 µm monochromatic Al-Kα X-ray 
beam Kratos AXIS surface analysis system (Ultra DLD), was used for performing the XPS 
measurements. CasaXPS Version 2.3.16 RP 1.6 software (Casa Software Ltd, Teignmouth, UK) 
deconvoluted the functional group peaks. Additionally, thermogravimetric analysis (TGA) with a 
TGA7 Perkin-Elmer instrument (Perkin-Elmer Corporation, Waltham, MA, USA) quantified total 
functional groups on each material. Samples were placed in Pt crucibles, heated to 750 °C at 5 °C·min−1 
in a N2 environment, and held at that temperature for 1 hour. Prior to temperature ramp-up, samples 
were held at 110 °C for 2 hours in an inert atmosphere to desorb water or other chemical species. 
PYRIS Software (Perkin-Elmer) analyzed results. 

Carbon structure of materials was evaluated using a Rigaku Ultima III X-Ray Diffractometer 
(XRD). This method evaluated both initial and electrochemically cycled materials. The instrument 
used 20 kV accelerating voltage in Bragg-Brentano mode. Materials were analyzed in the 5–50° 2θ 
range at a 2° 2θ min−1 scan rate. MDI Jade 7 Software (Materials Data, Inc., Livermore, CA, USA) 
applied baseline corrections and conducted peak fitting. 

An amount of 2.0 M [Li+][PF6−] in monofluoroethylene carbonate (FEC)/ethylmethyl carbonate 
(EMC) 1:1(v/v) mixture, along with a tris(hexafluoro-iso-propyl)phosphate (HFIP) additive, acted as 
the electrolyte for all cells (schematics of all electrolyte components shown in Figure S5 in SI). 
Graphite powders were mixed with poly(vinylidene) fluoride (PVDF) binder and conductive carbon 
black in n-methyl-2-pyrrolidone (NMP) solvent in an 80:10:10 ratio for electrode assembly. Cathode 
slurries were applied on a thin coating onto carbon-coated aluminum current collectors using a  
30 µm doctor blade; anode materials were applied onto copper foil using a 10 µm doctor blade. The 
resulting mass loading of electrodes was 3.5 mg·cm−2. Hoshen 2035 coin cells (1.59 cm diameter) were 
used to test both half-cell and full-cell configurations. Half-cells used Li metal counter electrode disks. 
Two layers of Celgard 2400 separator, along with a sheet of non-woven polypropylene fiber mat were 
used as separators. Cathode test cans were aluminum clad/Ni plated/stainless steel with a Pt tab 
ultrasonically welded inside the can to make direct contact with the coated electrode, while anode 
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cans were composed of 316 stainless steel (assembly shown in Figure S6 in SI). Cathode: anode 
electrodes maintained a 3:1 mass ratio in full dual-intercalation cells. 

Electrochemical performance was measured using a MACCOR Series 4000 battery tester 
(MACCOR Corporation, Tulsa, OK, USA). Cathode half-cells were charged/discharged using a C/10 
rate (assuming a theoretical 90 mAh/g intercalation capacity, based on active material mass) using 
galvanostatic cycling. Starting at Open Circuit Potential (OCP), cells were preconditioned using 
single cycles in the 4.0–4.2 V, 4.0–4.6 V, 4.0–4.8 V, and 4.0–5.0 V range (vs. Li/Li+). Subsequently, cells 
were cycled between 4.0 and 5.2 V up to 200 cycles. Separately, cells were cycled at a C/2 rate with no 
preconditioning. Anode cells were cycled at C/10 rate (based on a 300 mAh/g expected intercalation 
capacity) between 0.5 V and 35 mV vs Li/Li+. Dual intercalation cells were tested using the same pre-
conditioning procedures as cathode half cells, with a vertex potential of 5.1 V. Polarization potentials 
were calculated from the inflection point in the voltage vs. capacitance relationship of the 1st full 
voltage range cycle. 

Electrochemical Impedance Spectroscopy (EIS) measured the charge transfer resistance between 
electrodes and current collectors of coin cells before and after cycling with a Solartron SI 1287 
potentiostat. Voltage oscillated with ±10 mV amplitude (vs. OCP) at a dampening frequency (106–10−2 
Hz). Charge transfer resistance (RT) was calculated by the Re (Z) size of the semi-circular region at 
mid-range oscillation frequencies [26]. 

4. Conclusions 

We were able to evaluate the influence of hydrogen- and oxygen-containing surface functional 
groups on efficiency and charge storage densities of graphite cathodes and anodes in dual-
intercalation batteries. Particles with flake morphologies featured more exposed edge sites and were 
more susceptible to chemical treatments. While oxygen functional groups improved cyclability of 
cathodes, hydrogen functional groups were most beneficial for anode materials. Conversely, 
hydrogenated cathodes and oxidized anodes were most detrimental to electrochemical performance. 
Therefore, influence of specific functional groups strongly depended on the applied potential and 
matched with specific intercalated ions. When hydrogenated anodes were coupled with oxidized 
cathodes in all-graphite dual-intercalation cells, the resulting batteries demonstrated higher 
capacities, cyclabilities, and coulombic efficiencies than their untreated counterparts. 

We relied on environmentally benign and economically affordable surface treatments to 
improve the performance of these all-graphite batteries and, subsequently, confirmed their status as 
a cost-effective solution for microgrid energy storage. We provided additional fundamental insight 
into the dual-intercalation process, and, in particular, the effects of anion insertion into graphite. 
Multiple other surface treatments, such as amination and moderate fluorination, remain promising 
pathways to even greater efficiencies and long-term stable cyclabilities; they must be explored in 
subsequent efforts. Finally, while surface chemistry-dependent differences suggested SEI formation 
on cathodes during anion intercalation, the structure, composition, and the mechanism of formation 
of this layer on positively charged electrodes remains unclear. Ongoing investigation into these 
processes will have broad implications for dual-intercalation batteries and apply to both graphite 
electrodes and other emerging materials, such as layered aluminum, transition metal carbide 
carbides, and boron nitrides. 

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2311-5629/3/1/5/s1. 
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