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Abstract: The expansion product from the sulfuric acid dehydration of para-nitroaniline has
been characterized and studied for CO, adsorption. The X-ray photoelectron spectroscopy (XPS)
characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively) are
comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials.
The analysis of the XPS signals of Cls, Ols, N1s, and S2p reveals the presence of a large number
of functional groups and chemical species. The CO, adsorption capacity of the foam is 7.9 wt%
(1.79 mmol/g) at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is
113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are
observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an
extrapolated activation energy of 18.3 k] /mol comparable to that of amine-modified nanocarbons.
The richness in functionalities of H,SO4-expanded foams represents a valuable and further pursuable
approach to porous carbons alternative to KOH-derived activated carbons.

Keywords: porous carbon; nitrogen; sulfur; COjy; nitroaniline; sulfuric acid

1. Introduction

There are two general classes of material employed for CO, separation: physical and chemical
sorbents. All materials in various degrees are adsorbents, since CO, is always captured on the surface
both physically or chemically depending on whether chemical reactions are involved in the adsorption
process. Reactive functional groups can be present or intentionally added to the surface, making the
material a chemical adsorbent. When reactive groups are also present underneath the surface and
the bulk is accessible through diffusion, the material is a chemical absorbent, and capture of CO; is
not limited to the surface alone. Chemical sorbents are also referred as to reactive sorbents given
the essential role played by chemical reactions in the sorption process. Chemical sorbents usually
include amines, also introduced in task-specific ionic liquids [1,2]; another class of reactive sorbents
is the alkali-metal-based oxides [3]. Many commonly used ionic liquids, suitable for high-pressure
capture, are expensive and toxic [4], while alkali-metal oxides suffer from deactivation and limited
durability [3,5]. Although these materials show high selectivity, their other drawbacks have meant
that research has focused on the study of porous carbons (PCs) [6,7], metal-organic frameworks
(MOFs) [8,9], microporous zeolites [10], high surface area silica-based amine-modified sorbents [11,12],
and crosslinked amine sorbents [13-15]. Chemically activated PC adsorbents have large surface areas
and pore volumes associated with micro- and mesoporous structure, and as a result show significantly
improved CO,-capturing capacity as compared to traditional carbonaceous materials [16].
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Contrary to some recent claims [17], it has been shown in multiple studies that the presence of
nitrogen- or sulfur-doping in PC materials does not enhance the uptake of CO; or the selectivity [18-20].
Instead, the presence of N, S, and O are more to do with the generation of the optimum pore size
and distribution [16]. The reason the residual N or S does not contribute to any chemical reactivity
of CO; (as would be expected with amine functionality) is that the optimum nitrogen-doped porous
carbon (NPC) and sulfur-doped porous carbon (SPC) are prepared using KOH oxidative activation at
high temperatures. Amine functional groups can act as a chemical reagent with CO; to form various
species including carbamates and/or bicarbonates [21-23], with the latter usually considered in the
presence of water, although recent studies support the formation of hydronium carbamates [24,25].
However, this amine functionality is progressively removed during the high temperatures required to
generate the porosity in the presence of KOH [26]. Thus, it is of interest to determine whether a lower
temperature route to a NPC or SPC would provide residual functionality for chemical adsorption.

A well-known approach to the formation of carbon-based foams is the acid-promoted
dehydration/oxidation of para-nitroaniline (HyNCgH4NO,) that is the basis of pyrotechnic snakes [27].
Heating para-nitroaniline in the presence of sulfuric acid at a mole ratio of about 0.5-2.0 and at
temperatures above 200 °C results in the eruption of a carbon-based foam with an increase in
volume of over 100 times. Subsequent studies have focused on determining the reactivity of different
nitroaniline isomers and derivatives, and the elucidation of the species formed during the reaction and
characterization of the products [28]. Most importantly, it has been observed that significant N- and
S-based functionality is present. We are therefore interested in whether such a low-temperature N- and
S-doped PC material (NSPC) could offer chemical adsorption of CO; on porous carbon substrates.

2. Results and Discussion

A porous carbon foam was prepared by the sulfuric acid-mediated dehydration/oxidation of
para-nitroaniline. The product is a black, highly porous foam, which crumbles upon physical handling.
From earlier work, it is known that neither texture nor volume of the foam is affected by the mole ratio
of reactants, while the expansion of the foam is dependent on the heating schedule [28]. For this reason,
particular attention has been given to ensure reproducible and full wetting of the nitroaniline powder
with sulfuric acid and heating to form homogeneous reactive mixture before incipient expansion of the
foam, as detailed in the Experimental section.

As can be seen from the thermogravimetric analysis (TGA) curves (Figure 1), the CO, adsorption
capacity of NSPC foam is ca. 7.9 wt% (or as is ordinarily stated, 1.79 mmol CO,/g adsorbent) at
25 °C and 1 atm. This is comparable to a number of different porous carbon sorbents: commercial
activated carbon (BPL 9.2 wt%, G-32 H 11.0 wt%), ammonia-treated activated carbon (C35N400
7.6 wt%), activated graphite fibers (G-900 5.9 wt%), and mesoporous carbon (CMK-3 7.6 wt%) [6].
Although greater CO, uptake has been registered for various other carbon materials from 2.0 to about
5.7 mmol/g at 25 °C and 1 bar [5], the capacity of para-nitroaniline-derived NSPC is a significant
achievement, since no high-temperature KOH activation treatment is used in the present case.

In Figure 1, the CO, uptake is shown to decrease as a function of increasing temperature, consistent
with surface adsorption where the residence time of gas on the surface of NSPC is shorter as the
temperature is increased. This is a commonly observed effect of porous carbons; a significant example
is N-doped porous carbons obtained from the pyrolysis of monoliths of resorcinol-formaldehyde
polymer gels, whose CO, capacity drops from 3.13 to 1.64 mmol/g in going from 25 to 60 °C at
1 atm [29].
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Figure 1. Plot of CO, uptake for nitrogen- and sulfur-doped porous carbon (NSPC) as a function
of time using pure CO, at 1 atm at the temperatures of 24.5, 44.7, and 65.0 °C in blue, red,
and black, respectively.

Notably, the recorded values of heat of adsorption for NSPC are greater than those typically
observed for physical adsorption of CO;. The heat flows registered during the CO, uptakes are
presented in Figure 2. As expected, these are all exothermal, and the amount of heat released per mole
of CO, is 113.6, 115.9, and 121.3 k] /mol at 24.5, 44.7, and 65.0 °C, respectively. Integral molar heat of
adsorption is a key parameter to distinguish physisorption from chemisorption [30]. Physisorption
results from weak interactions, and the heat released upon adsorption is relatively small in the range
of 5-45 kJ /mol, whereas chemisorption consists of chemical reactions with the formation of stable
species confined on the surface of a solid with the release of larger amounts of heat in the range of
80—400 kJ /mol. The typical heat of absorption of CO; in standard amine scrubbing systems is about
80 kJ /mol to form carbamates [31], and it is shown to increase with increasing temperature to up to
110 kJ /mol, as is seen for the values recorded in the present case [32]. This is a strong indication of
the presence of intact reactive amine functionality on the NSPC surface, a key result of the present
study since the chemical-thermal dehydration/oxidation of para-nitroaniline does appear to generate
a porous carbon foam, while preserving the nature of part of the functional groups of the starting
material. This is entirely different from the KOH activation of N- or S-bearing precursor materials,
where the harsher alkaline chemistry and much higher temperature used are the cause for an entire
loss of amine or thiol groups to form N- or S-doped graphitic materials.
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Figure 2. Plot of heat of flow for the adsorption of CO, on NSPC as a function of time using pure CO,
at 1 atm at the temperatures of 24.5, 44.7, and 65.0 °C in blue, red, and black, respectively. The baselines
in gray were used to integrate the curves and calculate the corresponding integrate molar heat of
adsorption at each temperature. The corresponding CO, uptake curves are given in Figure 1.
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Chemisorption is the dominant mechanism of CO; capture based on the integrated values of
molar heat of adsorption, thus there should be significant suitable functional groups present on the
NSPC foam. X-ray photoelectron spectroscopy (XPS) analysis of NSPC foam confirms the presence
of significant nitrogen (15 wt%) and sulfur (9 wt%) as well as oxygen (23 wt%), as shown in Figure 3.
Based upon our prior work [16], it would be expected that the carbon content (50 wt%) should result in
a PC with low CO, uptake, since maximum CO, uptake is achieved for pyrolyzed PC having a surface
area >2800 m? /g, a pore volume >1.35 cm®/g, and a C content between 80 and 95 wt% [16]. However,
the NSPC foams compare favorably to NPCs prepared from the pyrolysis of polypyrrole (PPy) at
500-800 °C using a KOH:PPy weight ratio of 2. In fact, the CO, uptake of such pyrolyzed NPCs is
in the range of 1.5-2.5 mmol/g at 24 °C and 1 bar single component CO, [16], comparable to the
1.79 mmol/g of the present NSPC. This is further evidence of the different mechanisms of adsorption
between KOH-activated NPC or SPC porous carbons and HySO4-expanded NSPCs, hence the high
CO; uptake of the latter despite the limited amount of carbon present in the sorbent.
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Figure 3. X-ray photoelectron spectroscopy (XPS) survey spectrum of NSPC foam.

The Cls signal (Figure 4a) is consistent with the presence of both aliphatic and aromatic carbon
species, in addition to a range of O- and N-functionalized species (Table 1). Aliphatic sp> carbon is
likely due to adventitious carbon commonly encountered on surfaces exposed to airborne organic
matter. Aromatic sp? carbon is related to the products of expansion, where residual or reacted benzene
moieties maintain their aromaticity. Benzene moieties are also in agreement with the signal of w — 7*
transition of the aromatic ring detected at 291.5 eV [26]. Remarkably, a significant amount of carbon is
found at unusually low binding energy, 283.5 eV, and given the chemistry involved in the expansion
process it is reasonable to associate this peak to conjugated sp? carbon that is known to appear at
low binding energy in its oxidized form, as reported in the case of polycarbazole [33]. The peaks at
higher binding energy are associated with the presence of carbon atoms bearing a number of different
functionalities including alcohol, amine, nitrile, carbonyl, amide, and carboxylic groups. The exact
identification of all or a part of these groups is beyond the scope of this study, however it is important
to note that 26.6 atom % of the surface carbon atoms bear intact functional groups. In agreement with
an overall nitrogen content of 15 wt% (Figure 3), it is likely that a significant part of these are amine
groups also supported by the heat of adsorption (Figure 2), typical of the reaction of amine with CO,.

The N1s signal (Figure 4b) shows the rich and diverse number of nitrogen functionalities present
on the surface of the NSPC foam. Starting from the lower binding energy peaks (Table 1), the peak at
398.0 eV is assigned to the presence of azole/triazole moieties [34], while that at 399.1 eV is commonly
associated to primary amines, nitrogen included in aromatic rings, and nitrile functionality. It is
interesting to note that the largest peak (about 35 atom %) of the nitrogen signal belongs to the latter
group. Amide, amino acid, carbazole [33], and uracil [35] are also possible chemical moieties formed
upon expansion. Ammonium is also formed together with amino benzenesulfonic acid; both species,



C 2016, 2,25 50f9

including the extensive formation of sulfonic acid groups, have previously been reported in the
literature [28]. The nitrogen of polyaniline is normally found at 403.0 eV, which might indicate that a
smaller amount of nitrogen (1.9 atom %) is present with conjugated aniline units, although N-oxide
functions are also in the same binding energy range. Finally, some of the nitro groups remain in the
foam unreacted and some are converted to nitroso groups, as also proposed in earlier literature [28].
It is evident that the surface chemistry of NSPC foam is fairly complex, and this richness of functionality
is a distinguishing feature of HSO4-expanded porous carbons compared to KOH-activated ones where
N and S are mainly integrated in the graphitic structure of the materials.
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Figure 4. High resolution XPS spectra and corresponding deconvolution peaks for (a) C1s; (b) N1s;
(c) S2p; and (d) O1s of NSPC foam. Deconvolution peaks are showed in color underneath experimental
signals in black.

Table 1. Summary of chemical analysis of NSPC foam as determined by XPS.

Signal Peak (eV) atom % Assignment
283.5 324 oxidized conjugated C
284.9 39.3 aromatic C
286.4 14.3 C-OH, C-NR,,-C=N
Cls 287.8 9.2 C=0, C(O)NH
289.5 3.1 C(O)OH
291.5 1.7 7 — 7 transition of the aromatic ring
398.0 24.5 azole/triazole N
399.1 34.8 -NH,, aromatic N, -C=N
400.4 27.0 C(O)NH, amino acid, carbazole, uracil
Nis 401.4 8.4 ammonium, amino benzenesulfonic acid
403.0 1.9 polyaniline, N-oxide
404.9 34 -NO,, -N=0
S2p 166.75 and 167.93 59.6 sulfite
167.62 and 168.80 404 sulfate, sulfonic, sulfonate
530.0 322 sulfinyl (organic)
Ols 530.9 333 amino acid CO,H
531.9 25.4 methacrylate, terephthalate, sulfone

533.1 9.1 H,O, CO,H
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The other two XPS signals are the S2p and Ols (Figure 4c,d, respectively), the deconvolution of
these confirms some of the species identified in the C1s and N1s. The two sulfur doublets (1.18 eV
separation, 2:1 area ratio) are associated to sulfite (166.75 and 167.62 eV) formed upon the reduction
of sulfuric acid known to act as an oxidant of nitroaniline [28], and to residual sulfate and sulfonic
acid/sulfonate groups (167.62 and 168.80 eV) formed upon thermal decomposition of nitroaniline [28].
The deconvolution of the Ols supports the presence of carboxylic groups individual or within amino
acid moieties, while methacrylate and terephthalate groups could also be present. Finally, the oxygen
of sulfinyl and sulfone could be formed from the further reduction of sulfonic groups during incipient
expansion of the foam.

The kinetics of adsorption of CO, of the NSPC foam has been analyzed in detail following the
approach presented in our previous work [36]. Briefly, the fitting of the experimental data presented
in Figure 1 have been performed using six different kinetic models: Elovich, pseudo-first-order,
pseudo-second-order, pseudo-nth-order, modified Avrami, and extended model. The results of the
fittings are provided in Table S1 of the Supplementary Material. The model that best describes the
adsorption behavior of the NSPC foam is the pseudo-first-order with R? of 0.9986, 0.9987, and 0.9973
at24.5,44.7, and 65.0 °C, respectively. While an improvement of the quality of the fittings (better R?)
is obtained with the other models, except for Elovich and pseudo-second-order, it is important
to note that the results obtained for the pseudo-nth-order, modified Avrami, and extended model
are essentially corrections to a pseudo-first-order behavior. In fact, the values of the additional
parameters of these three models (1 for the pseudo-nth-order, m for the modified Avrami, and n and
m for the extended model) are all close to 1, the value for which all these models correspond to the
pseudo-first-order model. For this reason, the activation energy (E;) of CO, adsorption for the NSPC
foam has been extrapolated from the slope of the Arrhenius plot of In(k;) versus 1/T (Table S1) to
find that E, = 18.3 kJ/mol. This value is comparable to those previously found for polyethylenimine
(PED)-functionalized single-walled carbon nanotubes (PEI-SWNT, E, = 13.3 k] /mol [36]) and graphite
oxide (PEI-GO, E, =22.6 kJ]/mol [36]). This significant finding further supports the amine-CO,
surface chemistry of NSPC foams, and the unique feature of HySO4-expanded nitroaniline foams
to produce amine-functionalized porous carbons without the need for further amine impregnation
or functionalization.

3. Experimental

3.1. Materials and Characterization

Sulfuric acid (Sigma-Aldrich, ACS Reagent, 95.0%-98.0%, Saint Louis, MO, USA) and
para-nitroaniline (Sigma-Aldrich, >99.0%) were used as received. All water was ultrapure (UP),
obtained from a Millipore Milli-Q UV water filtration system (EDM Millipore, Billerica, MA, USA).
Samples were characterized by X-ray photoelectron spectroscopy. Measurements carried out in a
PHI Quantera scanning XPS microprobe (Physical Electronics, Chanhassen, MN, USA). The wt% of
chemical elements was determined by XPS survey scans with pass energy of 140 eV. For detailed
elemental analysis, high-resolution multi-cycle elemental scans with pass energy 26 eV was performed.
Each spectrum was then deconvoluted by appropriate basis functions. Before spectral fitting, each
spectrum was corrected for reference binding energy for Cls to 284.8 eV.

3.2. Synthesis of N/S-Doped Porous Carbon Foam (NSPC)

para-Nitroaniline (0.2-0.5 g) was placed in a ceramic crucible and wet with sulfuric acid while
mixing with a stir glass rod, and the drop-by-drop addition of acid was continued until all powder was
uniformly wet. An extra 2-3 drops were added before heating up the mixture by placing a propane
flame under the crucible. While heating, the mixture turned to a yellow-brownish melt first and then to
a black liquid, and this was kept hot by removing the flame at times until visible vapors stop evolving
and a homogenous liquid phase was obtained after a few minutes. The flame was then placed back to
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bring the mixture to boil and eventually to incipient expansion of a light black foam. Plenty of fumes
were also released during expansion. The foam was characterized and used as prepared without
further treatment.

3.3. CO, Adsorption

CO, adsorption experiments were carried out with a TA Instruments Q600 TGA/DSC
(TA Instruments, New Castle, DE, USA) using atmospheric pressure CO, (High purity research
grade, 99.99%, Matheson Trigas, Basking Ridge, NJ, USA). The general procedure for the adsorption
experiments is described as follows. NSPC foam (1-2 mg) was loaded into an alumina pan and
placed on the balance arm of the TGA. The chamber was closed and purged with a steady flow of
Ar (70 mL/min). The temperature of the system was ramped from room temperature to 110 °C at a
rate of 10 °C/min in order to degas and dehydrate the sample. After the desorption was completed,
the sample was brought and kept to the desired temperature value until a constant weight was
achieved. The gas in the system was then changed to CO, (20 mL/min). Upon changing gases,
an immediate increase in weight was observed indicating that the NSPCs were adsorbing the CO,.
The CO, flow was continued until constant weight was attained. For the kinetics studies, the regression
analysis of the CO, adsorption curves (weight versus time) was performed with OriginPro 9.0 software
(OriginLab Corporation, Northampton, MA, USA) using the Levenberg-Marquardt iteration algorithm
for nonlinear curve fitting, as previously reported in reference [36].

4. Conclusions

In summary, we have shown that the thermally induced sulfuric acid-initiated dehydration
of para-nitroaniline appears to be a promising alternative method to prepare N- and S-doped
porous carbon (NSPC) foams with good CO, chemical adsorption properties. The maximum CO,
adsorption capacity of NSPC foams is comparable to that of a number of commercial activated
carbon sorbents. Most importantly, the demonstrated presence of intact amino groups among a large
number of other functionalities in the NSPC foams reveals that H,SO4-initiated incipient expansion
of nitroanilines have the unique advantage of preserving chemical functionalities that otherwise are
lost in the widely employed thermal KOH activation of synthetic and natural organic precursors.
Accordingly, other chemical compounds should be considered and tested to verify whether this
long established—but still poorly understood and rarely applied—approach could work beyond
nitroanilines, potentially opening up new avenues to chemically functionalized porous carbon sorbents.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2311-5629/2/4/
25/s1.
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