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Abstract: Allergy is a type 2 immune reaction triggered by antigens known as allergens, including
food and environmental substances such as peanuts, plant pollen, fungal spores, and the feces and
debris of mites and insects. Macrophages are myeloid immune cells with phagocytic abilities that
process exogenous and endogenous antigens. Upon activation, they can produce effector molecules
such as cytokines as well as anti-inflammatory molecules. The dysregulation of macrophage function
can lead to excessive type 1 inflammation as well as type 2 inflammation, which includes aller-
gic reactions. Thus, it is important to better understand how macrophages are regulated in the
pathogenesis of allergies. Emerging evidence highlights the role of noncoding RNAs (ncRNAs) in
macrophage polarization, which in turn can modify the pathogenesis of various immune-mediated
diseases, including allergies. This review summarizes the current knowledge regarding this topic and
considers three classes of ncRNAs: microRNAs, long ncRNAs, and circular ncRNAs. Understanding
the roles of these ncRNAs in macrophage polarization will provide new insights into the pathogenesis
of allergies and identify potential novel therapeutic targets.
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1. Introduction

Allergies affect millions of people worldwide and are characterized by an excessive
type 2 immune response to normally harmless substances, generally known as antigens
or allergens, specifically [1,2]. Consequently, this response leads to the development of
various allergic symptoms, including asthma, allergic rhinitis, and atopic dermatitis. In the
most severe cases, it can result in anaphylaxis and possibly death. According to the World
Allergy Organization, the prevalence of allergic diseases has been continuously increasing
in the industrialized world [3,4]. In addition, according to the World Health Organization,
the number of asthma patients is expected to increase to 400 million by 2025 [4]. The
process by which the immune system becomes sensitive to a particular allergen is called
sensitization and is typically accompanied by the development of immunoglobulin E (IgE),
a specific subclass of antibodies, against the allergen. Sensitization rates to one or more
common allergens among schoolchildren are reported to be between 40% and 50% [5].
Since antigen E was isolated from the pollen of common ragweed (Ambrosia artemisiifolia)
as the first antigen in 1962 [6], a variety of environmental and food allergens have been
identified, including 106 allergens that have recently (between January 2019 and March
2021) been accepted by the Allergen Nomenclature Sub-Committee (http://allergen.org/
committee.php, accessed on 5 July 2023) [7]. For example, one of the authors (O.I.), together
with colleagues, identified Liposcelis bostrychophila, a booklouse species commonly found
in house dust, as a potent environmental allergen source based on IgE inhibition analysis,
which demonstrated that approximately 20% of the studied patients with asthma were
sensitized by the L. bostrychophila-specific antigen Lip b 1 [8,9]. It should be noted that
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sensitization to booklice antigens may lead to the misdiagnosis of food-induced allergies.
Babaie et al. recently reported that a patient developed anaphylaxis after ingesting oatmeal.
However, the results of the skin prick test and serologic testing for oats were negative,
and the cause was ultimately identified as booklice contamination of the oatmeal [10]. As
insects may become a popular food source in the future, it is important to consider their
potential to harbor known and novel allergens [11].

Antihistamines are widely used for symptomatic treatment of many allergic diseases
with variable efficacy. Despite the identification of increasing varieties of antigens, there is
no fundamental treatment to overcome allergic symptoms except for allergen immunother-
apy or desensitization, whereby long-term remission is expected, against a few food and
environmental allergens, e.g., cedar pollen [12]. Desensitization therapy is actively inves-
tigated because of its clinical potential; however, it harbors the intrinsic risk of inducing
severe side effects such as anaphylaxis [13]. Thus, desensitization shots are co-administered
with antihistamines. A drug that promotes immune tolerance by targeting macrophages,
for instance, could make allergen desensitization safer and even more effective. In 2003,
omalizumab, an IgE-blocking antibody received approval from the U.S. Food and Drug
Administration (FDA), but it is not approved for all allergic conditions, and it is expen-
sive [14]. Alternatively, blocking antibodies against specific allergens are being developed,
but these will be even more expensive for patients that are allergic to multiple allergens.
Therefore, an alternative remedy based on a new concept is desirable for this growing
patient population.

Immune cells such as mast cells, basophils, dendritic cells, B cells, and specific T-cell
subsets are well recognized as key players in allergic reactions. In contrast, to date,
macrophages are not commonly associated with allergies. In the future, it would be
key for the field to provide credible in vivo evidence that macrophages also play a role in
modulating allergy first using mouse models but ultimately in human patients. However,
several lines of evidence have recently revealed the crucial role of macrophages in devel-
oping and modulating these allergic responses [15–20]. For example, macrophages are
the most abundant immune cells present in the lungs (approximately 70% of the immune
cells) and play a crucial role in asthma caused by environmental-allergen-induced airway
inflammation [21,22], suggesting that macrophages, together with other immune cells could
play a role in immune responses. Therefore, the role of macrophages in allergic diseases
and the mechanism underlying their functional regulation deserve further study.

In one popular paradigm, macrophages can be divided into two major subclasses,
i.e., M1 and M2, based on the inflammatory responses that they mediate, and the process by
which macrophages differentiate in response to challenge is called macrophage polarization.
Macrophage polarization is determined by the microenvironment (Figure 1). However,
the mechanisms underlying in vivo macrophage polarization are complicated and remain
largely unclarified, but various intracellular molecules, including signaling molecules and
enzymes, and receptors have been shown to regulate macrophage polarization [23–34].
For example, it is not known whether dupilumab, a clinically approved biologic drug
that blocks IL4Rα signaling [35], leads to an in vivo reduction in M2 macrophages in
patients receiving this drug. In the future, it would be important to investigate which
immune cells are in fact being inhibited by dupilumab. Alternatively, it is possible that
dupilumab switches macrophages into a tolerant state, for instance, by turning on the
expression of anti-inflammatory molecules. Thus, it is crucial that the mechanism of action
of dupilumab be investigated systematically at the cellular and molecular levels. Here, we
provide a consideration of macrophages and noncoding RNAs (ncRNAs). Accumulating
evidence has revealed that ncRNAs, a class of functional RNAs not translated into proteins
and associated with various pathological events, are associated with both macrophage
polarization and allergies. ncRNAs are typically classified into two major types that
have distinct functions, i.e., housekeeping ncRNAs and regulatory ncRNAs. The detailed
classification of ncRNAs is discussed elsewhere [36,37]. Emerging evidence shows that
these ncRNAs play roles in macrophage polarization related to allergies [38,39]. Herein, we
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summarize the current knowledge on ncRNA-regulated macrophage functions related to
allergies, focusing on microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs
(circRNAs), and discuss the possibility of identifying novel potential targets for allergy
treatment. In general, we hypothesize that noncoding RNAs could serve as druggable
targets to manipulate macrophage plasticity in immune-mediated diseases. With regard
to treating allergy specifically, we hypothesize that inhibiting M2 polarization could be a
fruitful avenue as exemplified by dupilumab (Figure 1). However, systemic blockade of
IL4Rα signaling may have pleiotropic effects in patients, and a target such as a ncRNA that
is more specific to M2 could have fewer side effects.
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iNOS for M1 macrophages. However, the criteria for the subclassification of macrophages in vivo 
in different tissues still require further investigation. Noncoding RNAs might regulate the differen-
tiation of macrophages and/or the function of M1 and M2 macrophages by modifying gene expres-
sion programs. Dupilumab is a currently available monoclonal antibody that blocks IL-4 and IL-13 
signaling by targeting IL4Rα [35]. This biologic drug is FDA-approved for allergic diseases such as 
eczema, asthma, and nasal polyps, which result in chronic sinusitis. Hypothetically, its mechanism 
of action is in part to inhibit M2 polarization. Tralokinumab, another FDA-approved monoclonal 
antibody, used for the treatment of atopic dermatitis, targets just the cytokine IL-13 (not depicted). 
Again, it is not well understood which cell types are being affected by this biologic drug. It would 
be interesting to directly compare dupilumab versus tralokinumab and assess the in vivo effects of 
each on macrophages and their noncoding transcriptome. Image created with BioRender.com (ac-
cessed on 28 November 2023). 

  

Figure 1. Macrophage polarization. Naïve (M0) macrophages in their inactive state can be polarized
into either of two types of activated macrophages with distinct functions, M1 and M2 macrophages
(also termed “classically activated” or “alternatively activated” macrophages, respectively), after
exposure to certain stimuli. M1 and M2 macrophages are functionally associated with type 1 and type
2 immune reactions, respectively. Several mRNAs and proteins are used as markers to differentiate
between these macrophages: i.e., arginase-1 (Arg-1) and CD206 for M2; CD38, CD80, and iNOS
for M1 macrophages. However, the criteria for the subclassification of macrophages in vivo in
different tissues still require further investigation. Noncoding RNAs might regulate the differentiation
of macrophages and/or the function of M1 and M2 macrophages by modifying gene expression
programs. Dupilumab is a currently available monoclonal antibody that blocks IL-4 and IL-13
signaling by targeting IL4Rα [35]. This biologic drug is FDA-approved for allergic diseases such as
eczema, asthma, and nasal polyps, which result in chronic sinusitis. Hypothetically, its mechanism
of action is in part to inhibit M2 polarization. Tralokinumab, another FDA-approved monoclonal
antibody, used for the treatment of atopic dermatitis, targets just the cytokine IL-13 (not depicted).
Again, it is not well understood which cell types are being affected by this biologic drug. It would be
interesting to directly compare dupilumab versus tralokinumab and assess the in vivo effects of each
on macrophages and their noncoding transcriptome. Image created with BioRender.com (accessed on
28 November 2023).

2. M1/M2 Macrophage Polarization

Macrophages are evolutionarily ancient white blood cells crucial for the immune
system to function properly. They are characterized by high plasticity, which allows them
to functionally adapt depending on their microenvironment. Two major macrophage polar-
ization states exist: classically activated macrophages (M1 macrophages) and alternatively
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activated macrophages (M2 macrophages) (Figure 1). The T helper (Th)1/Th2 balance of
T cells affects the balance between the two macrophage polarization states and is critical
for maintaining healthy immune functionality [32,33].

M1 macrophages collaborate with Th1 immune responses and play a proinflammatory
role in host defense against infection with viruses and intracellular microbes [20,40–42].
Polarization of M1 macrophages is typically activated by factors such as interferon (IFN)-γ,
a Th1 cytokine, and bacterial products like lipopolysaccharides (LPSs) [24,25,28]. They
initiate immune responses by phagocytosing and destroying foreign elements that enter
the body, including microorganisms and viruses [40–42]. M1 macrophages can also react
against endogenous substances in the body. This reaction involves critical physiological
functions such as removing cancer cells that are generated in the body [31]; however, they
can also cause pathological states such as autoimmune diseases [43,44].

The effector functions of the M1 macrophages are characterized by the production
of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
and IL-6, and the expression of inducible nitric oxide synthase (iNOS), which recruits
other types of immune cells to the infection or injury site [25–30]. In addition to these
molecules, some cell-surface proteins, such as CD80 and CD38, serve as M1 macrophage
markers [25]. Furthermore, it has been reported that M1 macrophages are involved in
forming granulomas, which are masses of immune cells that wall-off infected tissue [45].

In contrast, M2 macrophages are associated with Th2 immune responses and activated
by Th2 cytokines, such as IL-4 and IL-13 [2,26–30]. In general, M2 and Th2 cells are asso-
ciated with allergic reactions. They typically produce anti-inflammatory cytokines, such
as IL-10 and transforming growth factor (TGF)-β, which help suppress the immune re-
sponse and promote wound healing, tissue repair, tissue remodeling, resistance to parasites
(e.g., helminths), and tumor growth [46,47]. Additionally, M2 macrophages are involved in
clearing apoptotic cells and tissue debris as well as promoting angiogenesis [48]. Compared
to M1 macrophages, M2 macrophages show more diverse characteristics. They can be
subdivided into several subclasses such as M2a, M2b, M2c, and M2d macrophages based on
their functions and the signals they receive [16,28,29] (M2d macrophages are alternatively
termed tumor-associated macrophages). However, it is important to know that the validity
of the classification and markers remains controversial.

As mentioned above, macrophages in the M1 and M2 states play distinct physiological
roles; therefore, an imbalance in these states can lead to various pathological conditions
such as chronic inflammation, autoimmune diseases, cancer, metabolic disorders, and
infections [34,40,42,44,49–54]. Thus, we believe that macrophage polarization is a promising
target for drug discovery.

3. Association of M2 Macrophages with Immune Tolerance or Suppression in Allergy

The M1 and M2 polarization of macrophages is closely associated with the balance of
Th1 and Th2 cells, and it is thought that M2 and Th2 cells are directly linked to allergy [33].
However, macrophages can modulate allergic reactions through their phenotypic plasticity.
For example, it has been demonstrated that M2 macrophages regulate allergic responses
by suppressing the activity of effector lymphocytes [15,17] and that M2 macrophages
can produce resistin-like molecule α (RELMα), which correlates with the appearance of
Foxp3-expressing regulatory T cells [32].

As such, various allergic diseases can occur when macrophage functions are dysregu-
lated. Nonetheless, the linkage between macrophage polarization and allergies is still not
fully understood. Several studies have explained that dysregulated macrophage functions
in the lung and nasal tissues can cause allergic asthma and allergic rhinitis [5,16,18,19,55–58].
Recent studies have demonstrated the involvement of macrophages in the development
of food allergies. For example, chitinase 3-like 1, which is known to be associated with
various chronic diseases including allergic disease, plays a pivotal role in M2 macrophage
polarization in food allergy [59].
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Considering the above-mentioned knowledge, it seems reasonable to propose that
targeting macrophage plasticity could be an opportunity to promote immune tolerance and
suppress exaggerated immune reactions. However, the anti-inflammatory property of M2
macrophages contradicts previous reports that they are associated with allergic diseases.
This contradiction might be explained by differences in the tissue microenvironment and/or
their developmental origins, i.e., yolk sac, fetal liver, or adult bone marrow.

4. ncRNAs in Macrophage Polarization

As mentioned earlier, ncRNAs are RNA molecules that do not encode proteins and
are essential in regulating gene expression at both transcriptional and post-transcriptional
levels, which includes epigenetic regulation [60]. There are at least three classes of ncRNAs
that regulate gene expression: microRNAs (miRNAs), long ncRNAs (lncRNAs), and cir-
cular RNAs (circRNAs). Furthermore, ncRNAs that regulate protein activity have been
described [61,62]. While miRNA-mediated regulation of gene expression occurs at the
post-transcriptional level, lncRNAs and circRNAs may utilize diverse mechanisms of action.
Emerging evidence has highlighted the critical role of ncRNAs in regulating macrophage
polarization, which may lead to the development of allergies [63]. Although the mecha-
nisms through which ncRNAs regulate macrophage polarization are diverse and complex,
several studies have shown that ncRNAs potentially regulate M1 and M2 macrophage po-
larization by targeting the regulators of proinflammatory signaling pathways or regulating
the expression of anti- or proinflammatory cytokines.

Although published studies have thus far highlighted the functional association
between ncRNAs and macrophage polarization or that between ncRNAs and allergic
diseases, few reports have described the ncRNA–macrophage polarization–allergy axis.
Therefore, in the following sections, we summarize these previous studies on how the
individual ncRNA classes are involved in macrophage polarization and how that may
relate to allergic diseases.

4.1. miRNA-Mediated Regulation of Macrophage Polarization

miRNAs are small (typically ~22 nt in length) ncRNAs that post-transcriptionally
regulate gene and protein expression by binding to the 3′-untranslated region of the target
mRNAs, which induces mRNA degradation and translational repression [39,64]. Several
miRNAs have been demonstrated to regulate macrophage polarization related to allergic
diseases (Table 1). For example, it was reported that miR-155-5p directly targeted the
IL-13 receptor alpha1. Given that IL-13 signaling is associated with M2-mediated allergic
diseases like asthma, miR-155-5p could regulate the M1/M2 balance [65]. Furthermore, the
enhanced proinflammatory response of RAW264.7 macrophage-like cells to IL-33, another
proinflammatory cytokine associated with allergic diseases, correlated with increased miR-
155-5p expression [66]. Thus, it would be of interest to check the miR-155-5p expression in
macrophages from patients with allergies.

In addition, Jaiswal et al. found that lentiviral overexpression of let-7c and miR-99a-
5p in mouse bone-marrow-derived macrophages (BMDMs) promoted M2 macrophage
polarization [67]. Although let-7c was previously demonstrated to target C/EBP-δ, thus
inhibiting M1 polarization [68], this study identified TNF-α as the target of miR-99a-5p
as another mechanism to suppress M1 macrophage differentiation [67]. In contrast, it
was reported that angiotensin II enhanced M1 macrophage polarization by abrogating
miR-99a-5p activation [67]. A different study by Wang et al. illustrates that M2 macrophage
polarization in allergic rhinitis was promoted by the miR-202-5p–Matrilin-2 axis [69]. Fur-
thermore, recently, Lee et al. found, using an ovalbumin-induced allergic asthma mouse
model, that the inhibition of miR-21 suppresses alveolar M2 macrophage polarization [70].
These findings will need to be independently, thoughtfully validated before an allergy drug
development strategy is worth considering.

The mannose receptor MRC1/CD206 is expressed in immune cells, and its expression
level is pronouncedly elevated in M2 macrophages; therefore, it is generally accepted as
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an M2 macrophage marker [29]. MRC1/CD206 recognizes an extensive range of surface
glycoproteins and plays a crucial role in a variety of immunological events, both physiolog-
ically and pathologically [71]. Interestingly, miR-511-3p is an miRNA that is transcribed
from an intron of the MRC1 gene. The expressions of miR-511-3p and MRC1/CD206 have
been shown to be coregulated in macrophages [72,73]. In studies with the MRC1 knockout
mouse model in which miR-511-3p expression is also deficient, Zhou et al. demonstrated
that miR-511-3p downregulated M1 macrophage polarization, upregulated M2 macrophage
polarization, and protected against cockroach allergen-induced lung inflammation [73].
In addition, it was reported by Do et al. that miR-511-3p promoted M2 macrophage po-
larization and attenuated cockroach-allergen-induced lung inflammation by targeting
CCL2 [74]. Alternatively, Heinsbroek et al. demonstrated that miR-511-3p regulated intesti-
nal inflammation by controlling macrophage-mediated microbial responses via the indirect
upregulation of TLR-4 expression [75]. These findings suggest that miR-511-3p regulates
macrophage functions and polarization by targeting multiple mRNAs.

Using an allergen-induced asthma knockout mouse model, Chung et al. reported that
miR-451a negatively affects IL-4-induced M2 macrophage polarization by targeting and
silencing the expression of Sirtuin 2 and promoting asthmatic inflammation [76]. Addition-
ally, a few other studies were conducted using ovalbumin-induced allergic asthma mouse
models to identify miRNAs in macrophage polarization. For example, Veremeyko et al.
demonstrated that miR-124 expression was upregulated in the lung alveolar macrophages
of an ovalbumin-induced allergic lung inflammation mouse model and contributed to the
development of M2, but not M1, macrophage polarization [77]. Another study by Shi et al.
highlighted the involvement of miR-142-5p and miR-130a-3p in pulmonary macrophage
polarization and asthma airway remodeling in ovalbumin-sensitized mice [78]. Addition-
ally, Su et al. reported that miR-142-5p and miR-130a-3p functioned by targeting suppressor
of cytokine signaling 1 (SOCS1) and peroxisome proliferator-activated receptor γ, respec-
tively [79]. Notably, this study revealed that SOCS1 had a negative impact on the M2
macrophage polarization in mice [79], while the M2 polarization of human macrophages
is enhanced by SOCS1 [80]. Again, such contradiction will need to be resolved before
ncRNAs can be selected as allergy drug targets.

Table 1. MicroRNAs that regulate macrophage polarization in allergy.

miRNA *1 Materials Used Affecting
Polarization *2 Target Related

Pathophysiology Reference

miR-155-5p

Blood monocytes from
healthy donors and the
human monocytic cell

line THP1

M2 (−) IL13R Allergic asthma [65]

miR-99a-5p
Mouse

bone-marrow-derived
macrophages

M1 (−)
M2 (+) TNF Allergic airway

inflammation [67]

miR-202-5p
Mucus-derived

macrophages from allergic
rhinitis patients

M2 (+) MATN2 Allergic rhinitis [69]

miR-21-5p Ovalbumin-induced allergic
asthma mouse model M2 (+) Possibly IRF5 Allergic asthma [70]

miR-511-3p
Lung macrophages and an

allergen-induced lung
inflammation mouse model

M1 (−)
M2 (+) HPGDS Allergic lung

inflammation [73]
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Table 1. Cont.

miRNA *1 Materials Used Affecting
Polarization *2 Target Related

Pathophysiology Reference

miR-511-3p
Lung macrophages and an

allergen-induced lung
inflammation mouse model

M1 (−)
M2 (+) CCL2 Allergic lung

inflammation [74]

miR-451a Allergen-induced mouse
asthma model M2 (+) SIRT2 Allergic asthma [76]

miR-124-3p Ovalbumin-induced allergic
asthma mouse model M2 (+) CEBPA Allergic asthma [77]

miR-130a-3p Ovalbumin-induced allergic
asthma mouse model M2 (−) PPARG Allergic asthma [78,79]

miR-142-5p Ovalbumin-induced allergic
asthma mouse model M2 (+) SOCS1 Allergic asthma [78,79]

*1 miRNAs are indicated as current miRBase identifiers; *2 plus and minus signs indicate positive and negative
regulation, respectively.

4.2. lncRNA-Mediated Regulation of Macrophage Polarization

lncRNAs are long (generally defined to be >200 nt in length) ncRNAs that regulate
gene expression at various levels, which include chromatin remodeling, transcriptional
regulation, and post-transcriptional regulation [62,63]. Several lncRNAs have been shown
to regulate M2 macrophage polarization related to allergies (Table 2). For example, the
knockdown of receptor-type tyrosine protein phosphatase ε (PTPRE)-AS1, a lncRNA selec-
tively expressed in IL-4-stimulated macrophages, was shown to promote M2 macrophage
activation via the MAPK/ERK 1/2 pathway [81]. Wen et al. recently demonstrated that
MIR222HG acts on the miR146a-5p/TRAF6/NF-κB axis, leading to the attenuation of
macrophage M2 polarization and allergic inflammation in allergic rhinitis [82]. The few
studies investigating the lncRNA AK085865 have also highlighted its role in macrophage
polarization [83,84]. In particular, the study conducted by Pei et al. showed that AK085865-
deficient mice were protected from the allergic airway inflammation induced by Der
f 1, a major mite allergen component of Dermatophagoides farinae [83]. They also found
that AK085865 deletion suppressed M2 macrophage polarization, which subsequently de-
creased their susceptibility to Der f 1-induced airway inflammation. In addition, Zhang et al.
demonstrated that AK085865 specifically interacted with interleukin-enhancer-binding
factor (ILF)-2 and functioned as a negative regulator of the ILF2–ILF3-complex-mediated
biosynthesis of miR-192, which promotes M2 macrophage polarization through the direct
targeting of interleukin-1 receptor-associated kinase (IRAK) 1 [84].

lnc-BAZ2B, a lncRNA dominantly expressed in monocytes and significantly upregu-
lated in children with asthma, was also demonstrated to promote M2 macrophage polariza-
tion. Mechanistically, lnc-BAZ2B promotes the expression of BAZ2B mRNA by stabilizing
its pre-mRNA, leading to enhanced IRF4 expression and M2 macrophage polarization [85].
Another lncRNA reported to regulate the pathological state of allergies is NKILA [86]. This
lncRNA was demonstrated to limit the asthmatic airway inflammation, enhancing M2
macrophage polarization and inhibiting the NF-κB pathway in a mouse asthmatic model.

In contrast to many reports on the lncRNA-mediated regulation of M2 macrophage
polarization in allergy, there are few reports on the lncRNA–M1 macrophage polarization-
allergy axis. One of the few such studies, reported by Jiang et al., describes the contribution
of lncRNA MEG8-sponging of miR-181a-5p to M1 macrophage polarization via regulating
SHP2 expression in a rat model of IgA purpura, which is a type 3 allergic disease triggered
by allergens such as drugs, food, or insect bites [87]. In another study, Zhu et al. demon-
strated that lncRNA growth-arrest-specific transcript 5 (GAS5) is upregulated in exosomes
isolated from the nasal mucus of allergic rhinitis patients and promotes M1 macrophage
polarization by restraining autophagy and subsequently activating NF-κB signaling [88].
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4.3. circRNA-Mediated Regulation of Macrophage Polarization

circRNAs are a recently discovered product of back splicing, and a subset of them
do not encode for protein. Thus, they comprise a new category of ncRNAs that form
covalently closed circular structures, which make them resistant to degradation by RNA
exonucleases [89,90]. Since they are long-lived, a few circRNAs have been shown to act as
molecular “sponges” that sequester miRNAs and/or RNA-binding proteins [91]. Although
the function of most circRNAs remains poorly understood, a few circRNAs have been
demonstrated to regulate the macrophage polarization associated with allergy (Table 2).
For example, Shang et al. reported that circ_0001359 was downregulated in ovalbumin-
induced asthmatic mice compared with normal mice and circ_0001359-enriched exosomes
secreted from adipose-derived stem-cells-attenuated airway remodeling via promoting
polarization into M2-like macrophages [92]. Mechanistically, circ_0001359 was shown to
regulate macrophage polarization by enhancing FoxO1 signaling via sponging miR-183-5p
(Figure 2A) [92]. Recently, luteolin, a flavone reported to have a protective role in asthma,
was shown to activate M2 and suppress M1 macrophage polarization via upregulating
circ_0001326 in the human macrophage cell line THP-1 [93]. The same study also elucidated
the underlying mechanism of how circ_0001326 regulates downstream gene expression,
including miR-136-5p and USP4 (Figure 2B). Finally, it is also conceivable that synthetic
circRNAs could be rationally designed to inhibit specific miRNAs to treat diseases such
as allergy. Once miRNAs that promote allergy have been identified and validated, then
one could simply multimerize the binding sites for miRNA(s) of interest into a synthetic
circRNA that will serve to inhibit them and, in turn, allergy.

Table 2. Long noncoding and circular RNAs that regulate macrophage polarization in allergy.

LncRNA Materials Used Affecting
Polarization Target Related

Pathophysiology References

PTPRE-AS1
Mouse

bone-marrow-derived
macrophages

M2 (−) MAPK/ERK-1/2
pathway Allergic asthma [81]

MIR222HG Mouse RAW264.7 cell
line M2 (−)

miR146a-
5p/TRAF6/NF-κB

axis
Allergic rhinitis [82]

AK085865 AK085865-deficient mice M2 (+) Not determined Asthmatic airway
inflammation [83,84]

lnc-BAZ2B
Peripheral blood

mononuclear cells of
asthma patients

M2 (+) IRF4 Allergic asthma [85]

NKILA Asthmatic mouse model M2 (+) NF-κB pathway Asthmatic airway
inflammation [86]

MEG8 Rat peripheral blood
cells M1 (+) miR-181a-5p

IgA purpura
(Henoch-
Schonlein
purpura)

[87]

GAS5 Asthmatic rat model
Human ASM culture M1 (+) mTORC1/ULK1/ATG13

axis Allergic rhinitis [88]

circ_0001359 Asthmatic mouse model M2 (+) FoxO1 signaling via
sponging miR-183-5p Allergic asthma [92]

circ_0001326 Human THP-1 cell line M2 (+)
M1 (−) miR-136-5p and USP4 Allergic asthma [93]
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ization in an ovalbumin-induced asthma mouse model and lipopolysaccharide-induced RAW264.7 
macrophages cells as evidenced by Arg-1 and IL-10 expression. In contrast, the expression of the 

Figure 2. Working models of how two circRNAs regulate M1 vs. M2 macrophage polarization.
(A) Adipose-derived stem cells (ADSCs) secrete exosomes that contain circ_0001359. Upon fusion
with macrophages, circ_0001359 is released into the cytoplasm and promotes M2-like macrophage po-
larization in an ovalbumin-induced asthma mouse model and lipopolysaccharide-induced RAW264.7
macrophages cells as evidenced by Arg-1 and IL-10 expression. In contrast, the expression of the
following M1 effector molecules is suppressed by circ_0001359: IL-1β, IL-6, TNF-α, iNOS, MCP-1,
and IFN-γ. Mechanistically, circ_0001359 inhibits miR-183-5p via base pairing. Since Foxo1 mRNA
is directly repressed by miR-183-5p, FoxO1 activity is enhanced as a result and may be in part re-
sponsible for reprogramming macrophage cell fate. Image created with BioRender.com (accessed
on 28 November 2023). (B) Luteolin (a naturally occurring flavonoid found in plants), known for its
protective role in asthma, inhibits M1 macrophage polarization and promotes M2 activation in THP-
1-derived macrophages. Luteolin-treated THP-1 macrophages induce expression of circ_0001326,
inhibiting miR-136-5p via base pairing. Consequently, ubiquitin-specific protease 4 (USP4) is upregu-
lated since it is directly repressed by miR-136-5p, and ultimately K48-linked and K63-linked ubiquitin
is metabolized by USP4 since it is a deubiquitinase enzyme. Image created with BioRender.com
(accessed on 28 November 2023).

5. Therapeutic Implications of the ncRNA–Allergy Axis

Individual ncRNAs regulate the expression of multiple genes and proteins; there-
fore, they are involved in diverse biological processes including those associated with
allergic diseases. Since the dysregulation of macrophage polarization is a primary feature
of many allergic diseases, targeting the ncRNAs that regulate macrophage polarization
represents a promising therapeutic approach for treating these diseases. As described
above, several studies have shown that modulating the expression of specific ncRNAs can
alter macrophage polarization and ameliorate allergic symptoms. Of the ncRNAs, miRNAs
have particularly attracted attention as promising therapeutic targets of allergic diseases,
as is the case for many diseases, e.g., cancer [72].

Of several types of molecules that modulate ncRNA functions, synthetic oligonu-
cleotides such as small interfering (si) RNAs and antisense RNAs are widely used as tools
to inactivate specific ncRNAs and are being developed into drugs. For example, patisiran
is an FDA-approved siRNA therapeutic [94]. Inotersen is an FDA-approved antisense RNA
for the same indication [95]. Thus, in principle, both classes of oligonucleotides can be
developed into safe and effective drugs. Synthetic miRNA mimics are frequently used
in miRNA studies, as well as antisense RNAs that bind target miRNAs, thus inhibiting
their function (antagomirs). For example, a previous in vitro study demonstrated that
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miR-155-5p overexpression via transfection of a synthetic miR-155-5p mimic reprogrammed
macrophages from the M2 phenotype into M1 phenotype. If this could be accomplished
in vivo, then it could be a potential avenue for treating allergies. Conversely, targeting
miR-155-5p with antisense oligonucleotides restored the defect in M2-like macrophage
polarization in rheumatoid arthritis, suggesting that a miR-155-5p antagomir may serve as
a drug for rheumatoid arthritis treatment [79].

Although several antagomirs and miRNA mimics have been developed as promising
oligonucleotide therapeutics, they have yet to reach the market. Conceivably, the major
limitation is a difficulty in delivering sufficient amounts of these molecules into the targeted
cells. In addition, small RNA molecules that are chemically modified to enhance their
specificity and/or stability have been reported to potently induce unfavorable immune
responses such as the interferon response in a cell-type-dependent manner [96]. Thus,
further research will be necessary to develop oligonucleotide therapeutics with both high
efficacy and safety.

In addition to miRNAs, some lncRNAs and circRNAs have been shown to regulate
macrophage polarization as mentioned above; thus, they can also be potent therapeutic
targets. However, compared with miRNA research, lncRNA and circRNA research has not
yet progressed from bench to clinical application. A hurdle to be overcome is the difficulty
experienced with the delivery of RNA molecules. As is the case for COVID-19 vaccines, the use
of lipid nanoparticles as an RNA carrier is a promising option. In addition, exosomes have been
recently highlighted as a promising carrier of RNA molecules including ncRNAs due to their
high stability, high biocompatibility, and low immunogenicity [97]. For example, Huang et al.
reported that exosomes engineered for the tumor-targeted delivery lncRNA MEG3 had
high therapeutic efficacy against osteosarcoma [98]. Exosomes are naturally derived lipid
nanoparticles that deliver RNA and/or protein cargo to cells. Therefore, exosomes carrying
ncRNAs that regulate macrophage polarization could be less-toxic allergy medications.

6. Concluding Remarks

In summary, we discussed how the ncRNA-mediated regulation of macrophage polar-
ization and function could be associated with allergies. However, current knowledge on
ncRNA–macrophage–allergy connections is limited; therefore, more mechanistic as well
as in vivo studies are needed using either human subjects or animal models that better
mimic human allergy. In other human diseases, genome-wide association studies (GWAS)
have led to the identification of important drug targets [99,100]. Furthermore, most of the
identified associations map to noncoding regions of the human genome [101]. While not
all such loci are ncRNA genes, at least a subset of them are [102]. Some are regulatory
elements including 3′-untranslated regions (UTRs). It stands to reason that if miRNAs can
regulate disease pathogenesis, then variation in their binding site within a 3′ UTR could
also have a significant biological effect [103,104]. These targets of natural variation in some
cases can also be modulated pharmacologically.

Since M1 and M2 macrophages have been mainly defined and characterized based on
the results of simplified in vitro studies, their in vivo roles, where the environment is more
heterogeneous and complicated, have yet to be fully elucidated. This might explain why
there is no consensus on whether inhibiting or promoting M2 macrophage polarization
is associated with allergic diseases. Until this issue is resolved, it will be challenging to
rationally design a drug development strategy for allergy. Nonetheless, it is widely accepted
that macrophages are an attractive therapeutic target for immune-mediated diseases, and
there is no reason to think that allergy is an exception. Moreover, ncRNAs have been
considered promising therapeutic targets in addition to biomarkers. Regulatory networks
involving cytokines, chemokines, signaling molecules, and transcription factors, as well as
epigenetic events such as DNA methylation and histone modifications through methylation
and acetylation, are essential for macrophage polarization [54]. Currently, the options
available to treat or cure allergic diseases are limited; therefore, many allergic patients
continuously receive treatments such as antihistamines, which do not completely relieve
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their symptoms. In this context, an improved understanding of how these ncRNAs are
associated with the complicated networks between macrophage polarization and allergic
diseases is required to reveal novel targets for drug discovery and development.
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