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Abstract: Head and neck cancers (HNC) encompass a broad spectrum of neoplastic disorders charac-
terized by significant morbidity and mortality. While contemporary therapeutic interventions offer
promise, challenges persist due to tumor recurrence and metastasis. Central to HNC pathogenesis is
the aberration in numerous signaling cascades. Prominently, the Wnt signaling pathway has been
critically implicated in the etiology of HNC, as supported by a plethora of research. Equally impor-
tant, variations in the expression of non-coding RNAs (ncRNAs) have been identified to modulate
key cancer phenotypes such as cellular proliferation, epithelial-mesenchymal transition, metastatic
potential, recurrence, and treatment resistance. This review aims to provide an exhaustive insight
into the multifaceted influence of ncRNAs on HNC, with specific emphasis on their interactions
with the Wnt/β-catenin (WBC) signaling axis. We further delineate the effect of ncRNAs in either
exacerbating or attenuating HNC progression via interference with WBC signaling. An overview of
the mechanisms underlying the interplay between ncRNAs and WBC signaling is also presented. In
addition, we described the potential of various ncRNAs in enhancing the efficacy of chemotherapeutic
and radiotherapeutic modalities. In summary, this assessment posits the potential of ncRNAs as
therapeutic agents targeting the WBC signaling pathway in HNC management.

Keywords: head and neck cancer; non-coding RNAs; Wnt/β-catenin signaling; anti-miR

1. Introduction

Head and neck cancers (HNC), encompassing malignancies arising from the oral cavity,
oropharynx, nasopharynx, hypopharynx, and larynx, represent a significant global health
burden, as underscored by their pronounced prevalence [1]. The high prevalence of squa-
mous cell carcinoma (SCC) among HNCs (about 95%) led to the belief that it is a relatively
uniform disease when compared to other types of cancers [1]. However, emerging evidence
delineates the notable heterogeneity inherent to head and neck squamous cell carcinoma
(HNSCC), which hinders the accurate prognostication, therapeutic strategy formulation,
and, from a molecular perspective, identification of key oncogenic determinants [1–3].
Established risk factors for HNC include tobacco consumption, excessive alcohol intake,
and infection with the human papillomavirus (HPV), with the disease accounting for over
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about 444,347 mortalities in the year 2020 [4–7]. Contemporary therapeutic modalities
for HNC include concurrent chemoradiation, chemotherapy, radiotherapy, and surgical
interventions. Nonetheless, the persistence of suboptimal patient survival rates and adverse
sequelae associated with these interventions underlines the therapeutic challenges [5,8–10].
Consequently, the elucidation and development of innovative therapeutic targets, as well
as compounds with anti-neoplastic, anti-metastatic, and anti-angiogenic properties that
interact with salient proteins or signaling pathways pivotal to tumor progression, are of
critical significance for cancer therapy [2,11–17].

One of the core signaling processes responsible for regulating cell proliferation, cell
polarity, and cell fate determination in embryonic development and tissue homeostasis
is signaling via the Wnt family of secreted glycolipoproteins [18–21]. Wnt signaling con-
sists of two interconnected and mutually regulated signaling cascades, canonical and
non-canonical pathways. Canonical Wnt signaling, or the Wnt/β-catenin (WBC) pathway,
is dependent on β-catenin translocation into the nucleus and the subsequent transcription
of target genes [22]. Contrarily, the non-canonical pathway operates independently of
β-catenin and its affiliated transcription factors, including T-cell factor/lymphoid enhancer-
binding factor (TCF/LEF). While the canonical axis predominantly influences cellular
proliferation, the non-canonical circuitry primarily oversees cellular polarity and migra-
tion [22]. Additionally, the Wnt signaling pathway in humans comprises 19 different Wnt
proteins that are evolutionarily conserved cysteine-rich glycoproteins and are integral for
the self-renewal process in many mammalian tissues [23–25]. Beyond these roles, Wnt
signaling extends to encompass hepatic differentiation, pulmonary tissue regeneration
and repair, hair follicle renewal, hematopoietic system development, organ aging, and
osteoblast maturation [24–27].

In recent years, the emergence of non-coding RNA (ncRNA) has profoundly expanded
our understanding of cellular and molecular biology. Intriguingly, based on Ensemble1 (v76)
data, a mere 34% of the human transcriptome encodes proteins, while the residual 66%
encompasses non-coding genes. This segment includes entities such as ncRNAs, antisense
RNAs, and pseudogenes, among others [28–30]. Cumulative research over the past decades
has delineated the pivotal role of ncRNAs in modulating transcription across various
strata [31]. Hence, these RNAs have emerged as master regulators of gene expression,
notwithstanding their non-protein-coding nature. For example, a recent investigation
examined the expression patterns of three microRNAs (miRNAs), a prominent subclass of
ncRNAs, in laryngeal neuroendocrine carcinoma (LNEC), an infrequent subtype of HNC.
The study demonstrated a pronounced downregulation of miR-133b in LNEC patients,
positioning it as a tumor suppressor. In contrast, miR-223 and miR-449a manifested onco-
genic properties [32]. Considering the clinical challenge posed by metastasis of laryngeal
cancer (LC) cells to cervical lymph nodes, targeted therapeutic strategies are imperative. A
noteworthy investigation revealed that the ectopic expression of miR-449a curtailed both
proliferation and invasiveness of LC cells, concurrently downregulating Notch1 and Notch2,
thereby positioning miRNAs as prospective therapeutic markers for nodal metastasis in
LC [33]. In light of these findings, this review endeavors to furnish an exhaustive analysis
of the interplay between ncRNAs and proteins within signaling cascades, emphasizing
their influence on the WBC pathway and its mechanistic ramifications in HNC.

2. Wnt Signaling and Cancer

The components of the WBC signaling pathway were initially elucidated through genetic
investigations in Drosophila [34]. In 1982, Nusse and Varmus identified the mouse Wnt1
gene, originally termed Int-1, as a favored integration locus for the mouse mammary tumor
virus (MMTV) in the induction of mammary carcinomas [35]. A few years later, scientists
unraveled the link between mutations in the adenomatous polyposis coli (APC) gene and the
progression of hereditary colon cancer, which strongly cemented the close association between
Wnt signaling and colorectal cancer [36]. Later, many studies showcased the importance of
this pathway in the initiation, development, and progression of different cancers.
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The WBC signaling pathway operates through a complex network of interactions and
signaling events. At the center of this pathway is β-catenin, a protein that plays a dual role
as a core component of the pathway and a transcriptional co-factor [24]. In the absence of
Wnt ligands, cytoplasmic β-catenin is constantly targeted for degradation through a series
of phosphorylation events orchestrated by the Axin complex, which is comprised of scaf-
folding protein, Axin, casein kinase 1 (CK1) and glycogen synthase kinase 3β (GSK3β), and
APC proteins. This intricate process involves the sequential phosphorylation of β-catenin
by CK1 and GSK3β, leading to its recognition by the beta-transducin repeat-containing pro-
tein (β-TrCP) and subsequent ubiquitination and proteasomal degradation [19]. However,
when the Wnt ligand binds to its receptor, the pathway gets activated, and a cascade of
events is set in motion. The Wnt ligands interact with a seven-transmembrane receptor, Friz-
zled (FZD), forming a larger cell surface complex together with lipoprotein receptor-related
protein (LRP) 5/6 co-receptors. This complex activates the dishevelled (Dvl) proteins,
which recruits the Axin complex to the receptors, leading to the displacement of GSK3β
from the Axin complex. Consequently, β-catenin escapes degradation, accumulates in the
cytoplasm, and translocates to the nucleus [19]. In the nucleus, β-catenin binds to LEF/TCF
transcription factors, displacing co-repressors and recruiting co-activators. This intricate
interplay ultimately activates the expression of the Wnt target genes, thereby influencing
crucial cellular processes including cell proliferation, survival, and migration [19].

Given the essential roles played by WBC signaling in development and overall well-
being, it is no wonder that mutations to the components of this pathway have been linked
to several congenital disabilities, cancer development, and other serious diseases [25]. The
strong correlation between aberrant WBC signaling and various cancer types is firmly
established. This connection is exemplified by mutations affecting key components of the
Wnt pathway, encompassing events like the silencing or inactivation of proteins of the
Wnt secretory cascade or their co-factors [37–39]. Nevertheless, within the WBC signaling
pathway, the prevalent mutation implicated in oncogenic progression pertains to alterations
in the β-catenin gene [40]. Deregulation in the WBC signaling cascade is observed in the
majority of tumorigenesis stages, from tumor development to metastasis and resistance
to drugs [41]. Furthermore, modulation of this pathway may perturb cancer immune
surveillance, enhancing the evasion of immunotherapies and hindering the effectiveness
of immune checkpoint blockers [42–44]. Despite the advancements in human genome
sequencing technologies and the characterization of the component proteins of major
pathways, the role of Wnt signaling in cancer biology is intricate and complex, and its
effects are not yet fully understood [45].

3. Wnt Signaling in HNC

The development of HNC consists of sequential alterations to the cellular and molec-
ular pathways in the squamous epithelium, leading to gradual proliferation from pre-
malignant lesions to tumors [46]. The WBC signaling pathway is crucial in the development
of HNSCC, where the abnormal activation of the WBC signaling pathway has been found
to contribute to the malignant transformation of cells, leading to tumor formation. The
vital role of elevated WBC signaling in the initiation, development, and progression of
HNSCC has been well documented in several studies. For instance, Yang and his colleagues
elucidated that introducing a mutated β-catenin gene into HNSCC cells inhibited death
receptor-mediated apoptosis and enhanced invasion of these tumor cells [47]. Another
study revealed that abnormal accumulation of β-catenin in cytoplasm upregulated MMP-7
and induced epithelial-mesenchymal transition (EMT), ultimately resulting in the inva-
sion and migration of oral squamous cell carcinoma (OSCC) cells [48]. The accumulated
evidence has proven that, apart from invasion, lymph node metastasis (LNM) is a critical
prognostic factor of HNSCC [49]. A recent study has proved that the WBC pathway pro-
moted the invasion and LNM of HNSCC by partially activating Slug [50]. These studies
demarcated that the dysfunctions of this pathway induced malignant transformation and
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metastasis of HNSCC; therefore, targeting WBC signaling may be a potential therapeutic
approach in the treatment of this cancer.

4. Crosstalk between ncRNAs and WBC Signaling in HNSCC

The 21st century witnessed the discovery of transcripts that do not code for any pro-
teins due to the successful achievements of the Human Genome Project and the subsequent
initiative termed ENCODE (The Encyclopedia of DNA Elements project) in 2005 (ENCODE
Project Consortium, 2012) [51]. The major classes of regulatory ncRNAs include miRNAs,
piwi-interacting RNAs (piRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circR-
NAs), and enhancer RNAs (eRNAs), along with housekeeping ncRNAs, including rRNAs,
tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and telomerase
RNAs [51]. miRNAs are small transcripts with an average length of 22 nucleotides that
usually bind to 3′ UTR of mRNA and regulate its gene expression [52]. About 40% of
miRNA genes are present in the intronic regions or within the exons of other genes from
which they are transcribed into primary miRNAs (pri-miRNAs). Pri-miRNAs are processed
by DROSHA into precursor miRNAs (pre-miRNAs) which are then transported to the
cytoplasm by exportin 5 (XPO5). Furthermore, they are cleaved by DICER into small RNA
duplexes which are then loaded onto the Argonaute (AGO) protein, which makes the
miRNA single-stranded. Hence, the miRNA, along with the AGO and other co-factors,
forms the miRNA-RNA-induced silencing complex (RISC) which is responsible for binding
and inhibiting target mRNAs [53].

lncRNAs are a highly heterogenous group of transcripts that are more than 200 nucleotides
in length and do not code for any protein [31,54]. They can be transcribed in the sense or
anti-sense direction and they are called long intergenic RNAs (lincRNAs) when transcribed
from intergenic regions [31]. Various categories of lncRNAs are transcribed from multiple DNA
elements, including enhancers, promoters, and intergenic regions within eukaryotic genomes.
Diverse mechanisms contributing to lncRNA biogenesis encompass processes such as RNaseP-
mediated cleavage to form mature ends, the generation of snoRNA and the establishment of
caps at their extremities through the assembly of protein snoRNP complexes, as well as the
formation of circular structures. However, the exact processes involved in the synthesis and
regulation of various lncRNAs remain unknown [55]. In contrast to miRNAs, lncRNAs employ
a diverse array of mechanisms. They engage in interactions with transcriptional regulatory
proteins, as well as bind complementarily to mRNAs or directly to miRNAs. The process
by which lncRNAs sequester miRNAs is often referred to as the “sponge effect.” Through
this mechanism, lncRNAs modulate the regulatory influence of miRNAs on gene expression
(Figure 1) [31].

Another subclass of ncRNAs is represented by circRNAs, which are ubiquitously
distributed in the blood, various bodily fluids, and tissues [56]. circRNAs are produced
from pre-mRNA by back-splicing, where a 5′ splice site joins back to a 3′ splice site to
form a closed head-to-tail continuous molecule, termed as circRNA [57]. Their inherent
circular configuration provides circRNAs a remarkable stability, rendering them resilient to
nuclease-mediated degradation [56]. Expression profiles of circRNAs display tissue and
cell specificity, and these molecules play pivotal roles in developmental processes, cellular
proliferation, innate immunity, neuronal functions, and the pathogenesis of an array of
diseases, including malignancies [56].

A growing body of literature has demonstrated the importance of ncRNAs in human
malignancies [58,59]. They have been found to act as either oncogenes or tumor suppressors,
thereby influencing the development and progression of cancer [59,60]. Moreover, plenty
of these ncRNAs can be discharged from cancer cells into bodily fluids, acting as diagnostic
and prognostic markers [61]. Several ncRNAs have been found to modulate the proteins
in the WBC pathway, which in turn regulates the tumorigenesis, invasion and migration,
angiogenesis, and metastasis of HNSCC [62,63]. In addition, the modulation of the WBC
pathway by ncRNAs, primarily miRNAs and lncRNAs, affects cancer cell proliferation,
resistance to treatments, and poorer prognoses in HNC.
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Figure 1. The general mechanism by which non-coding RNAs, specifically miRNAs, circRNAs, and
lncRNAs, regulate the mRNA expression of genes associated with the WBC signaling pathway and
thereby resulting in the suppression or progression of HNC types. Apart from directly regulating
gene expression, circRNA and lncRNA also act by sponging miRNAs, which prevents their normal
function of binding and inhibiting the target mRNA.

4.1. Interplay between ncRNAs and the WBC Pathway in Modulating Cell Proliferation
and Survival

Research indicates that anomalies in Wnt signaling can induce unbridled cellular
proliferation, thereby fostering tumor initiation and advancement [19]. Specifically, in
HNSCC cells, perturbed Wnt signaling has been linked with augmented cell proliferation
and viability, concomitant with diminished apoptosis [64]. Furthermore, various ncRNAs
have been found to either manifest oncogenic attributes or function as tumor suppressors
through interactions with distinct constituents of the WBC signaling cascade. Such in-
teractions either exacerbate or attenuate the severity of the malignancy, as delineated in
Tables 1 and 2, and presented in Figure 2 [60,65].

A comprehensive body of research exemplifies the involvement of lncRNAs and
miRNAs in mediating cell proliferation in HNSCC cells through the modulation of the Wnt
signaling pathway (Figure 3). For example, Mao et al. (2022) documented elevated levels
of the lncRNA human leucocyte antigen complex group-18 (HCG18) in HNSCC cell lines
and tissues. Amplification of HCG18 was found to potentiate HNSCC cell proliferation by
interacting with Cyclin D1, an integral protein in the Wnt cascade, while its suppression
reduced proliferation. Moreover, HCG18-depleted cells exhibited marked downregulation
in Axin2, c-Myc, survivin, and β-catenin [62]. Chen and colleagues (2019) illustrated that
the activation of lncRNA placenta-specific protein 2 (PLAC2) via H3K27 acetylation induced
OSCC cell proliferation, a phenomenon corroborated by the upregulation of Cyclin D1 and
Ki-67 levels [63]. Concurrently, a series of investigations consistently identified various
lncRNAs, namely AC007271.3, MINCR, Taurine upregulated gene 1 (TUG1), and IGF2BP2-
AS1, that augmented cell proliferation and viability in OSCC cells [66–68]. In a distinct
study, Ai et al. (2020) showed that the activation of long intergenic non-protein coding RNA
941 (LINC00941) by EP300 (a histone acetyltransferase) in OSCC cells via H3K27 promoter
modification led to increased CAPRIN2 expression through DNA looping, ultimately
amplifying the canonical Wnt signaling pathway as evidenced by upregulated MYC,
CCND1, SOX9, β-catenin, and p-LRP6 [69].
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Furthermore, another study demonstrated that SLCO4A1-AS1 functions as a compet-
ing endogenous RNA (ceRNA) binding to miR-7855-p, leading to SETD7 upregulation.
This lncRNA also upregulated the WBC pathway proteins, which augmented cell prolif-
eration while inhibiting apoptosis [70]. Further investigations by Lin et al. (2023) and
Zhao et al. (2023) revealed that lncRNA WDFY3-AS2 and IGFL2-AS1, respectively, in-
duced cell proliferation in OSCC and tongue squamous cell carcinoma (TSCC) cells by
influencing the WBC pathway [71,72]. Liang and team identified the role of lncRNA
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in enhancing tongue
cancer cell proliferation through canonical Wnt signaling modulation [73]. Moreover, stud-
ies indicated that miRNAs such as miR-25 and miRNA-215 elevated cell proliferation and
colony formation in nasopharyngeal cancer (NPC) by enhancing the expression of WBC
pathway proteins [74,75]. Lastly, Sun et al. (2019) highlighted that overexpression of the
lncRNA urothelial carcinoma associated 1 (UCA1) in LC cells increased β-catenin levels,
promoting cell proliferation [76].

Several studies have reported the role of lncRNAs in modulating the WBC signal-
ing pathway and its components by functioning as “miRNA sponges”. For instance,
Jin et al. (2020) reported that overexpression of the lncRNA TIRY in cancer-associated fi-
broblasts (CAFs) activated the WBC signaling pathway, promoting the proliferation of
OSCC cells. This upregulation was attributed to a sponging mechanism that reduced
miR-14 expression [77]. Concurrently, Qiao et al. (2022) reported that lncRNA SNHG17
promoted oral cancer cell proliferation by acting as a decoy and inhibiting miR-384 [78]. In
another study, lncRNA AC104041.1 was identified as a sponge for miR-6817-3p, resulting
in the increased proliferation of OSCC cells [79]. Li et al. (2019) demonstrated that HCG18
exerted oncogenic effects in NPC cells by functioning as a ceRNA for miR-140, leading to
the upregulation of both the WBC and Hedgehog signaling pathways [80]. Additionally,
another study elucidated the oncogenic potential of lncRNA CCAT1 in enhancing OSCC
cell proliferation and inhibiting apoptosis by activating the WBC pathway and suppressing
miR-181a [81]. Chen et al. (2020) detected a marked upregulation of disheveled-Axin
domain containing 1 (DIXDC1) and lncRNA small nucleolar RNA host gene 20 (SNHG20),
paired with the targeted suppression of miR-29a in OSCC cells and tissues. This upregu-
lation in SNHG20 promoted cell viability and proliferation while inhibiting apoptosis in
OSCC cells, correlating with a poor prognosis for OSCC patients. Interestingly, treating cells
with a miR-29a mimic considerably suppressed OSCC cell proliferation by downregulating
Wnt-3a and β-catenin proteins. However, introducing DIXDC1 to cells treated with si-
SNHG20 and miR-29a mimics intensified these effects, suggesting that SNHG20 facilitates
OSCC progression via the miR-29a/DIXDC1/Wnt signaling axis [82]. Cao and Sun (2019)
demonstrated that miR-200c enhanced proliferation and cell viability in NPC cells by upreg-
ulating canonical Wnt signaling proteins and suppressing the cell fate determinant factor,
Dachshund family transcription factor 1 (DACH1) [83]. In another study, Xiong et al. (2020)
identified that lncRNA HOTTIP facilitated the proliferation of TSCC cells by targeting
miR-124-3p and influencing Wnt signaling [84]. Furthermore, Kang et al. (2020) elucidated
that lncRNA SNHG3 augmented cell viability and glycolysis in LSCC cells by modulating
the WBC pathway and targeting the miR-340-5p/YAP1 axis [85].

An emerging number of studies have investigated the role of ncRNAs in the sup-
pression of proliferation and survival, and the induction of apoptosis of HNSCC cells by
modulating the WBC signaling pathway. For instance, a recent study demonstrated that
an siRNA-mediated knockdown of circRNA hsa_circ_0136839 markedly enhanced the
cell cycle progression and cell proliferation of NPC cells by upregulating Wnt signaling
proteins such as β-catenin and Cyclin D1. However, this was significantly reduced by
overexpressing this circRNA. Therefore, this study reinforced the notion that the aberrant
expression of circRNA results in the development of HNSCC [56]. Additionally, numerous
miRNAs, miR-9, miR-638, miR-329, miR-410, and miR-27b, were reported to repress the
growth and proliferation of different OSCC cell lines by targeting key proteins involved in
canonical Wnt signaling, such as frizzled7 (FZD7), Wnt-7b, phospholipase D1 (PLD1), and
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CXCR4 [86–89]. Furthermore, lncRNA LINC00961 suppressed the proliferation of TSCC by
downregulating WBC signaling [90]. Furthermore, another study reported that miR-384
induced apoptosis and DNA fragmentation and inhibited the proliferation of LC cells via
Wnt signaling. In addition, this study also proved that miR-384 specifically targeted and
inhibited the expression of Wnt-induced secreted protein-1 (WISP1) gene [91]. Another
study conducted in hypopharyngeal cancer established that miR-338-3p suppressed prolif-
eration by targeted inhibition of metalloproteinase 17 or ADAM17, thereby subsequently
downregulating β-catenin and Cyclin D1 [92]. Likewise, lncRNA NEF also abolished cell
proliferation and induced apoptosis in LC cells by downregulating WBC signaling [93].

Interestingly, a range of natural compounds has demonstrated anticancer properties
against diverse cancer types, including HNC [10,94–102]. Importantly, a couple of studies
have provided critical evidence regarding the potential of natural compounds to inhibit the
progression of HNC by modulating the Wnt/β-catenin signaling pathway. For instance,
Xiao and his group showed that curcumin, a compound extracted from turmeric (Curcuma
longa) inhibited the proliferation of OSCC cells by upregulating miR-9 and repressing WBC
signaling [103]. In addition, another study revealed that isoliquiritigenin, a flavonoid ex-
tracted from licorice root (Glycyrrhizae radix), suppressed NPC cell growth and proliferation
as well as induced apoptosis by suppressing miR-32 and downregulating canonical Wnt
signaling [104]. Therefore, it is imperative to study the effect of natural compounds in mod-
ulating the expression of ncRNAs through WBC signaling. Taken together, these studies
suggest that ncRNAs are not only involved in regulating gene expression, but they are also
able to orchestrate multiple cellular processes such as proliferation, survival, and viability
by regulating WBC signaling to ultimately enable or suppress HNSCC progression.Non-Coding RNA 2023, 9, 8 of 25 
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Figure 2. The modulatory functions of oncogenic and tumor suppressive ncRNAs on the “switch on”
and “switch off” states of WBC signaling in HNCs. lncRNAs, circRNAs, and miRNAs bind to and
induce or attenuate the expression of various components in the WBC pathway, thereby influencing
the development of different types of HNCs. The mechanism of action of the WBC pathway, both in
the ON-state and OFF-state, is also depicted in the figure.
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Figure 3. ncRNAs as critical modulators of various hallmarks of HNC such as survival, proliferation,
EMT, invasion, migration, and metastasis by regulating Wnt/β-catenin signaling. The ncRNAs that
promote the important hallmarks of cancer development and progression are depicted on the left
side of the figure and are highlighted in red. The ncRNAs that inhibit cancer progression are depicted
on the right side and are highlighted in green.

Table 1. Wnt signaling modulating oncogenic ncRNAs in HNC.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

Nasopharyngeal Cancer

EBV-miR-BART22 b In vitro
CNE1, CNE2,

SUNE1
(Overexpression)

MOSPD2

↑Cell migration, invasion,
N-cadherin, vimentin, Snail,

β-catenin, EMT
↓E-cadherin, MOSPD2

[105]

EBV-miR-BART22 b In vitro
C666-1

(siRNA-mediated
knockdown)

-

↑E-cadherin, MOSPD2
↓Cell invasion, migration,

N-cadherin, vimentin, Snail,
β-catenin, EMT

[105]

EBV-miR-BART22 b In vivo

Hepatic metastasis
BALB/c nude mice

model
(Overexpression)

-
↑Cell motility, tumor

invasiveness [105]

miR-25 b In vitro HONE-1 (miRNA
inhibitor) DKK3 ↑Apoptosis, DKK3

↓Colony formation [74]

miR-25 b In vitro HONE-1
(Overexpression) - ↑TCF4, c-Myc, Cyclin D1 [74]

miR-215 b In vitro C666-1
(Overexpression) RB1

↑Cell proliferation, migration,
EMT, N-cadherin, vimentin,

p-β-catenin
↓RB1, E-cadherin

[75]
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Table 1. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

miR-215 b In vitro C666-1 (miRNA
inhibitor) RB1

↑RB1, E-cadherin
↓Cell proliferation, migration,

p-β-catenin, N-cadherin,
vimentin

[75]

miR-103 b In vitro CNE1, SUNE1
(Overexpression) TIMP3

↑β-catenin, CyclinD1,
invasion, migration,

proliferation
↓TIMP3

[106]

GNAS-AS1 a In vitro
SUNE1

(siRNA-mediated
knockdown)

β-catenin
↓Cell proliferation, c-Myc,

Cyclin D, MMP-2, β-catenin,
invasion, migration

[107]

miR-574-5p b In vitro C666-1
(Overexpression) FOXN3

↑Cell viability, β-catenin,
TCF4, invasion, metastasis

↓ FOXN3
[108]

HCG18 a In vitro
SUNE1, CNE2

(siRNA-mediated
knockdown)

miR-140

↑miR-140, apoptosis,
Caspase-3 and 9

↓Cell growth, migration,
invasion, Cyclin D1, β-catenin,

c-Myc, Hedgehog signaling

[80]

miR-140 b In vitro SUNE1, CNE2
(Overexpression) HCG18 ↓HCG18, Cyclin D1 [80]

miR-200c b In vitro
CNE2, SUNE1

(miR-200c-
inhibitor)

DACH1

↑DACH1
↓Cell proliferation, colony

number, migration, β-catenin,
c-Myc, GSK3β, Cyclin D1

[83]

NEAT1 a In vitro
CNE1, CNE2,

SUNE1, SUNE2,
5-8F

miR-34a-5p ↓miR-34a-5p [109]

NEAT1 a In vitro
5-8F

(siRNA-mediated
knockdown)

miR-34a-5p

↑ miR-34a-5p, E-cadherin
↓β-catenin, Cyclin D1, and

c-Myc, N-cadherin, vimentin,
cell proliferation, invasion,

migration, EMT

[109]

NEAT1 a In vivo

SCID mouse
xenografts (5-8F

(shRNA mediated
knockdown)
xenografts)

miR-34a-5p

↑ miR-34a-5p, E-cadherin
↓Tumor growth, β-catenin,

Cyclin D1, c-Myc, N-cadherin,
vimentin

[109]

Laryngeal Cancer

SLCO4A1-AS1 a In vitro
SNU46, TU177

(shRNA-mediated
knockdown)

miR-7855-5p

↑miR-7855-5p
↓Cell proliferation, colony

formation, β-catenin,
Cyclin D1, c-Myc

[70]

SNHG3 a In vitro

TU177,
AMC-HN-8

(shRNA-mediated
knockdown)

-

↑Apoptosis, miR-340-5p,
E-cadherin

↓Cell viability, glycolysis,
YAP1, β-catenin, c-Myc, Bcl-2

[85]

SNHG3 a In vivo

BALB/c nude mice
xenograft

(shRNA-mediated
knockdown)

-
↑miR-340-5p

↓Tumor volume, weight,
YAP1

[85]
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Table 1. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

UCA1 a In vitro AMC-HN-8
(Overexpression) -

↑Cell proliferation, invasion,
migration, β-catenin

↓ p-GSK3β
[76]

UCA1 a In vitro
AMC-HN-8

(siRNA-mediated
knockdown)

- ↓Cell proliferation, invasion,
migration [76]

DGCR5 a In vitro Hep2R miR-506 ↑DGCR5, ↓miR-506, CSC-like
phenotype [87]

DGCR5 a In vitro
Hep2R

(siRNA-mediated
knockdown)

miR-506

↑GSK3β,
↓Sox2, Oct4, Nanog, spheroid

formation, β-catenin,
Cyclin D1

[87]

DGCR5 a In vitro

Hep2R
(siRNA-mediated
knockdown and

Radiation)

- ↓Radioresistance [87]

miR-506 b In vitro Hep2R
(Overexpression) - ↓Sox2, Oct4, Nanog,

β-catenin, Cyclin D1 [87]

miR-506 b In vitro
Hep2R

(Overexpression
and Radiation)

- ↓Radioresistance [87]

LINC00473 a In vitro
SCC25, CAL27

(shRNA-mediated
knockdown)

-
↑Apoptosis, Bax,

↓Cell viability, colony number,
Bcl-2, β-catenin, c-Myc

[65]

LINC00473 a In vitro SCC9
(Overexpression) -

↑ Cell viability, colony
number, Bcl-2

↓Bax, Apoptosis
[65]

LINC00473 a In vitro

SCC25, CAL27
(shRNA-mediated
knockdown and

radiation)

-
↑Apoptosis, Bax,

↓Cell viability, colony number,
Bcl-2, β-catenin, c-Myc

[65]

Oral Cancer

WDFY3-AS2 a In vitro
CAL27, SCC9

(siRNA-mediated
knockdown)

-

↑E-cadherin
↓Cell proliferation, invasion,

migration, vimentin,
β-catenin, Myc, Slug

[72]

IGFL2-AS1 a In vitro

CAL-27, SCC-15,
SCC-9, SCC-4

(shRNA-mediated
knockdown)

miR-1224-5p

↑E-cadherin
↓Cell proliferation, invasion,

migration, EMT, nuclear
β-catenin, c-Myc, Cyclin D1,

MMP-7

[71]

HCG18 a In vitro HN30, SCC-4
(Overexpression) - ↑Cell proliferation, migration,

invasion, Cyclin D1 [62]

HCG18 a In vitro
HN30, SCC-4

(siRNA-mediated
knockdown)

-
↓Cell invasion, migration,
AXIN2, c-Myc, survivin,

Cyclin D1, β-catenin
[62]

HCG18 a In vivo
Nude mice
xenograft

(Overexpression)
- ↑Tumor weight, volume [62]
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Table 1. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

SNHG17 a In vitro
YD-38, SCC-9

(siRNA-mediated
knockdown)

miR-384

↑Apoptosis
↓Cell proliferation, viability,

CTNNB1, ELF1,
Wnt/β-catenin signaling

[78]

miR-626 b In vitro Ca9-22, HSC2
(miRNA inhibitor) -

↑RASSF4, E-cadherin
↓vimentin, N-cadherin,

invasion, migration, FZD1,
β-catenin

[110]

miR-626 b In vitro Ca9-22, HSC2
(Overexpression) RASSF4

↑Invasion, migration,
N-cadherin, β-catenin, FZD1

↓E-cadherin
[110]

IGF2BP2-AS1 a In vitro CAL27, SCC-9
(knockdown) -

↑G1 phase arrest, apoptosis,
Bax

↓Cell proliferation, colony
formation, β-catenin,

Cyclin D1, Bcl-2, MMP-2

[111]

LINC00941 a In vitro

HSC-3, OSC-19
(dCas9 tagged

with
KRAB-MeCP2)

-

↓Cell proliferation, colony
formation, cell number,

CAPRIN2, β-catenin, p-LRP6,
MYC, CCND1, SOX9

[69]

LINC00941 a In vivo

Nude mice (HSC-3
xenograft dCas9

tagged with
KRAB-MeCP2)

- ↓ Tumor formation, tumor
weight [69]

SNHG20 a In vitro
SCC-9

(siRNA-mediated
knockdown)

miR-29a
↑Apoptosis, miR-29a

↓Cell viability, invasion,
migration, Wnt-3a, β-catenin

[82]

miR-29a b In vitro SCC-9
(Overexpression) - ↓Cell viability, invasion,

migration, Wnt-3a, β-catenin [82]

miR-29a b In vitro SCC-9 (miRNA
inhibitor) - ↑SNHG20 [82]

TIRY a In vitro Oral CAFs
(Overexpression) -

↑Snail, Zeb1, α-SMA,
β-catenin
↓miR-14

[77]

TIRY a In vitro

Tca8113
(CAF-conditioned

media)
(Overexpression)

-

↑Invasion, metastasis, Snail,
Wnt-3a

↓Phosphorylation of
β-catenin

[77]

TIRY a In vitro

Tca8113
(CAF-conditioned

media)
(siRNA-mediated

knockdown)

- ↑miR-14 [77]

miR-14 a In vitro

Tca8113
(CAF-conditioned

media)
(Overexpression)

- ↓Invasion, metastasis [77]

HOTTIP a In vitro
SCC25, UM1

(siRNA-mediated
knockdown)

miR-124-3p
↑miR-124-3p, E-cadherin
↓Cell growth, invasion,

migration, β-catenin, c-Myc
[84]
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Table 1. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

HOTTIP a In vivo

Nude mice
(sh-HOTTIP

OTSCC
xenografts)

-

↑miR-124-3p, E-cadherin
↓Tumor weight, tumor

volume, β-catenin, c-Myc,
HMGA2

[84]

AC104041.1 a In vitro
SCC4

(shRNA-mediated
knockdown)

miR-6817-3p
↓Cell viability, migration,
Wnt-2b, β-catenin, c-Myc,

vimentin
[79]

AC104041.1 a In vitro CAL27
(Overexpression) miR-6817-3p ↑Cell viability, migration,

Wnt-2b [79]

AC104041.1 a In vivo

BALB/c nude mice
(SCC4 xenografts)
(shRNA-mediated

knockdown)

- ↓Tumor volume [79]

AC104041.1 a In vivo
BALB/c nude mice
(CAL27 xenografts)
(Overexpression)

- ↑Tumor volume [79]

CCAT1 a In vitro
KB, Cal-27

(shRNA-mediated
knockdown)

miR-181a

↑Apoptosis, Bax, miR-181a,
Caspase-3 and -9

↓Cell proliferation, colony
formation, Bcl-2, Cyclin D1,
CDK4, invasion, migration,

p-GSK3β, β-catenin and
c-Myc

[81]

CCAT1 a In vivo

BALB/c mice with
Cal-27 xenograft

(shRNA-mediated
knockdown)

-
↓Tumor size, weight,

p-GSK-3β, β-catenin, c-Myc,
Cyclin D1, Ki-67

[81]

PLAC2 a In vitro SCC-9
(Overexpression) -

↑Cell proliferation, Ki-67,
invasion, migration, β-catenin,

TCF-4, MMP-7 and -9,
Cyclin D1

[63]

PLAC2 a In vitro
CAL-27

(siRNA-mediated
knockdown)

-

↓Cell proliferation, Ki-67,
Migration, Invasion,

β-catenin, TCF-4, MMP-7 and
-9, Cyclin D1

[63]

PLAC2 a In vivo
BALB/c nude mice
(SCC-9 xenograft)
(Overexpression)

- ↑Tumor volume, metastasis,
PLAC2, CBP, β-catenin [63]

MINCR a In vitro
SCC-25, TSCCA

(shRNA-mediated
knockdown)

-

↑Apoptosis, G0/G1 cell cycle
arrest, Cleaved caspase-3 and

-9, E-cadherin
↓Cell proliferation, migration,

invasion, N-cadherin,
β-catenin, c-Myc, Cyclin D1

[67]

AC007271.3 a In vitro
SCC-9, SCC-15

(siRNA-mediated
knockdown)

-

↑Apoptosis
↓Cell proliferation, cell

growth, Colony formation,
invasion, migration, β-catenin,

c-Myc, Cyclin D1, Bcl-2

[68]
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Table 1. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

AC007271.3 a In vitro SCC-9, SCC-15
(Overexpression) - ↑β-catenin, c-Myc, Cyclin D1,

Bcl-2 [68]

AC007271.3 a In vivo
SCC-9 nude mice

xenograft
(Overexpression)

-

↑Keratinization, abnormal
nuclear division, Ki-67, CD44,
β-catenin, c-Myc, Cyclin D1,

Bcl-2

[68]

FTH1P3 a In vitro
SCC-4, SCC-25

(siRNA-mediated
knockdown)

-
↓Cell viability, invasion,

β-catenin,
p-AKT, p-GSK3β

[112]

miR-373-p b In vitro SCC-9, UM1
(Overexpression) DKK1

↑N-cadherin, vimentin, Cell
invasion, viability, β-catenin
↓E-cadherin, CK18, DKK1

[113]

miR-373-3p b In vitro SCC-9, UM1
(miRNA inhibitor) -

↓N-cadherin, vimentin,
invasion, cell viability,

β-catenin
[113]

miR-218 b In vitro UM1cis, Cal-27cis
(anti-miR) PPP2R5A

↑Cisplatin sensitivity,
apoptosis, PPP2R5A

↓Cell viability, MRP1, ABCG2,
p-gp, TopoIIβ, EZH2

[114]

miR-218 b In vitro UM1cis
(Overexpression) PPP2R5A

↑ β-catenin, GSK3β, MRP1,
ABCG2, p-gp, TopoIIβ, EZH2,

Cell viability, cell growth
↓PPP2R5A

[114]

MALAT1 a In vitro
TSCC

(shRNA-mediated
knockdown)

-

↑E-cadherin, Bax, Apoptosis
↓Cell growth, invasion,

migration, vimentin,
β-catenin

[73]

MALAT1 a In vitro TSCC
(Overexpression) -

↑Cell growth, invasion,
migration, vimentin,

β-catenin
↓E-cadherin, Bax, apoptosis

[73]

TUG1 a In vitro
Tca8113, TSCCA

(siRNA-mediated
knockdown)

-

↑Apoptosis, Caspase-3
activity, Cleaved caspase-3

and -9, Bax
↓Cell proliferation, growth,
colony formation, invasion,

Bcl-2, β-catenin, c-Myc,
Cyclin D1

[66]

a: long non-coding RNA; b: micro RNA; ↑ Upregulation; ↓ Downregulation.

Table 2. Wnt signaling modulating tumor-suppressive ncRNAs in HNC.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

Hypopharyngeal Cancer

miR-503 b In vitro FaDu
(Overexpression) -

↓Cell invasion, WNT-3A,
BCL11B, and CCND2, MMP-3,

-7, and -9, FGF7, CTGF
[60]
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Table 2. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

miR-338-3p b In vitro FaDu
(Overexpression) ADAM17

↓Cell proliferation, ADAM17,
cell migration, invasion,

Cyclin D1, MMP-2, nuclear
β-catenin, p-pRb,
Wnt/β-catenin

[92]

miR-338-3p b In vitro FaDu (Inhibitor) - ↑β-catenin, Cyclin D1, p-pRb,
MMP-2, sox-2, Nanog [92]

Laryngeal Cancer

miR-384 b In vitro TU212, TU686 WISP1
↑Cell apoptosis, DNA

fragmentation, Caspase-3
↓Cell proliferation, WISP-1

[91]

miR-384 b In vitro TU212, TU686
(Inhibitor) - ↓Caspase-3, DNA

fragmentation [91]

NEF a In vitro UM-SCC-17A
(Overexpression) - ↑Cell apoptosis

↓Cell proliferation, β-catenin [93]

Nasopharyngeal Cancer

hsa_circ_0136839 c In vitro CNE2
(Overexpression) -

↓Cell proliferation, invasion,
migration colony formation,

G0/G1 cell cycle arrest,
β-catenin

[56]

hsa_circ_0136839 c In vitro
C666-1

(siRNA-mediated
knockdown)

-

↑Cell proliferation, invasion,
migration colony formation,
β-catenin, c-Jun, LEF1, CD44,

Cyclin D1

[56]

Oral Cancer

miR-503 b In vitro SAS, OECM1 -
↓Cell invasion, WNT-3A,

BCL11B, CCND2, MMP-3, 7,
and 9, FGF7, CTGF

[60]

miR-638 b In vitro SCC-9
(Overexpression) PLD1

↓Cell proliferation, invasion,
migration, PLD1, β-catenin,

c-Myc, Cyclin D1
[115]

miR-638 b In vitro SCC-9 (Inhibitor) PLD1 ↑PLD1, β-catenin, c-Myc,
Cyclin D1 [115]

LINC00961 a In vitro SCC-1
(Overexpression) -

↑E-cadherin
↓Cell proliferation, invasion,

migration, vimentin,
N-cadherin, Snail, β-catenin

[90]

LINC00961 a In vitro
SCC-1

(shRNA-mediated
knockdown)

- ↑Cell proliferation,
Wnt/β-catenin signaling [90]

miR-27b b In vitro Tca8113, SCC-4
(Overexpression) FZD7 ↓Cell proliferation, FZD7,

Wnt, Cyclin D1, c-Myc [88]

miR-9 b In vitro Tca8113, SCC-9
(Overexpression) CXCR4

↑Cell apoptosis, G1/S cell
cycle arrest

↓Cell proliferation, colony
formation, cell invasion,
CXCR4, β-catenin, Bcl-2,

c-Myc

[86]

miR-9 b In vitro
Nude mice
xenograft

(Overexpression)
CXCR4 ↓Tumor growth, CXCR4,

Ki-67 [86]
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Table 2. Cont.

ncRNA Type of Study Cell Line/Cancer
Model Target Mechanism/Mode of Action Reference

miR-329b/miR-410 b In vitro OEC-M1, SCC-15
(Overexpression) Wnt-7b

↓Wnt-7b,
TCF/LEF1transcriptional
activity, cell proliferation,

invasion, colony formation,
β-catenin, p-GSK3β, c-Myc,

Cyclin D1

[89]

miR-329b/miR-410 b In vitro
OC-3, SCC-4

(miR329-inhibitor/
miR410-inhibitor)

Wnt-7b

↑Wnt-7b,
TCF/LEF1transcriptional
activity, β-catenin, c-Myc,

Cyclin D1

[89]

miR-329b/miR-410 b In vivo
OEC-M1 xenograft
(overexpression of
miR329/miR410)

Wnt-7b ↓Tumor weight, volume,
Wnt-7b, β-catenin [89]

a: long non-coding RNA; b: micro RNA; c: circular RNA; ↑ Upregulation; ↓ Downregulation.

4.2. Interplay between ncRNAs and the WBC Pathway in the Modulating EMT, Invasion,
and Migration

EMT is a biological process characterized by the transformation of epithelial cells
into a more mobile mesenchymal phenotype, allowing them to invade and migrate to
new tissues [116]. Importantly, EMT, invasion, and migration represent interconnected
biological phenomena that collectively contribute to the progression of tumors from a
benign to a more aggressive malignant state [117]. These sequential events are orchestrated
through a complex network of signaling pathways, initiated by the downregulation of cell
adhesion molecule E-cadherin, mediated by proteins such as Snail, Slug, Zeb 1/2, smad
interacting protein 1 (SIP1), or Twist 1. Simultaneously, there is an upregulation of vimentin
and N-cadherin expression, facilitating the necessary alterations in cellular properties for
efficient tissue invasion and migration [117–119].

Numerous investigations have elucidated the pivotal role of ncRNAs in modulating
Wnt signaling, which in turn influences the invasive phenotype, indicating their central
function in directing the invasion and migration of HNSCC cells (Figure 2). For instance,
Wang et al. (2020) delineated that the lncRNA GNAS-AS1 activated the Wnt signaling
pathway by upregulating β-catenin. Additionally, the suppression of this lncRNA markedly
decreased the metastatic capacity of NPC cells by attenuating matrix metalloproteinase-2
(MMP-2) [107]. Another study documented that the Epstein-Barr virus-encoded miRNA
BART-22 enhanced EMT, invasion, and migration of NPC cells, by directly targeting motile
sperm domain-containing protein 2 (MOSPD2). This miRNA exerts its effect by modulating
the Wnt signaling cascade [105]. Zhao et al. (2020) found that miR-103 significantly
suppressed the tissue inhibitor of metalloproteinases-3 (TIMP-3) while enhancing β-catenin
and Cyclin D1 expressions, which intensified the invasive and migratory propensities
of NPC cells [106]. Another investigation by Liu et al. (2018) revealed that lncRNA
ferritin heavy chain 1 pseudogene 3 (FTH1P3) increased migration and invasion in OSCC
cells. Moreover, FTH1P3 silencing critically downregulated the PI3K/Akt/GSK3β/WBC
signaling cascade, as evidenced by reduced levels of β-catenin, phosphorylated Akt, and
GSK3β [112]. Further studies have indicated that miR-574-5p enhanced invasiveness
and migration in NPC cells by inhibiting the tumor suppressor gene forkhead box N3
(FOXN3), while miR-373-3p markedly aggravated EMT-induced metastasis by curbing
DKK1, a negative regulator of Wnt signaling, in TSCC cells [108,113]. Additionally, miR-626
promoted EMT, invasion, and migration in OSCC cells through RASSF4 targeting and the
consequent β-catenin signaling upregulation [110]. A notable finding by Chen et al. (2020)
emphasized the lncRNA role of SNHG20 in amplifying OSCC cell migration and invasion
by upregulating crucial WBC signaling elements β-catenin and Wnt-3a [82]. Concurrent
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studies have affirmed that lncRNAs like AC007271.3, MINCR, TUG1, IGF2BP2-AS1, and
PLAC2, activated via H3K27 acetylation, escalate the invasion and migration in OSCC
cells by modulating the canonical Wnt signaling pathway, thus advancing oral cancer
progression [63,66–68,111]. Additionally, Lin et al. (2023) highlighted the pro-invasive
effects of lncRNA WDFY3-AS2 by upregulating key proteins, including vimentin, slug,
β-catenin, and c-Myc. Cao and Sun (2019) expounded on miR-200c’s crucial influence on
augmenting NPC cell migration via direct DACH1 targeting [83]. Another investigation
indicated that lncRNA MALAT1 promotes EMT and inhibits apoptosis in tongue cancer
cells through the WBC signaling modulation [73].

Furthermore, another study demonstrated that the lncRNA TIRY activated the WBC
signaling cascade within CAFs. This activation promoted EMT, invasion, and metastasis
in OSCC cells by diminishing miR-14 levels through a sponging mechanism. At a mecha-
nistic level, TIRY was observed to amplify the expression of molecular markers including
Snail, Zeb1, α-SMA, Wnt-3a, and β-catenin [77]. Ji et al. (2019) reported the role of the
nuclear paraspeckle assembly transcript 1 (NEAT1) in augmenting EMT, migration, and
invasion of NPC cells by inhibiting miR-34a-5p directly. Intriguingly, silencing NEAT1
led to an upregulation of miR-34a-5p and a concomitant downregulation of β-catenin,
Cyclin D1, c-Myc, N-cadherin, and vimentin in both NPC cell lines and the SCID mouse
xenograft model [109]. Additionally, another study highlighted that silencing lncRNA
HCG18 attenuated invasion and metastasis in NPC cells by downregulating Hedgehog
and WBC signaling pathways, as well as by sponging miR-140 [80]. Another study by
Xiong et al. (2020) emphasized that the lncRNA HOTTIP enhanced invasion and migration
in tongue cancer cells by targeted repression of miR-124-3p. Notably, silencing HOTTIP
resulted in the upregulation of miR-124-3p which, in turn, attenuated invasion, migration,
and tumor proliferation by targeting HMGA2 through Wnt signaling modulation [84].

A myriad of investigations has elucidated the pivotal role of ncRNAs in hampering
EMT, invasion, migration, and metastasis in HNSCC. For instance, the tumor suppressor
miRNA, miR-503, was shown to curtail HNSCC cell invasion by downregulating WBC
pathway constituents, including Wnt-3a and MMPs 3, 7, and 9. This miRNA also decreased
the expression of invasion-related genes, including fibroblast growth factor 7 (FGF7) and
connective tissue growth factor (CTGF) [60]. Additionally, studies have confirmed that
multiple miRNAs, such as miR-9, miR-638, miR-329, and miR-410, substantially reduced
the invasive and migratory characteristics of OSCC cells by attenuating the WBC signaling
cascade [86,89,115]. In another notable study, lncRNA LINC00961 was found to diminish
invasion, migration, and EMT in TSCC cells, acting as a putative tumor suppressor in
tongue cancer development [90]. This collective body of research emphasizes the integral
role of ncRNAs in modulating the migration and invasion of cancer cells, making them
essential focal points in oncological research.

4.3. Interplay between ncRNAs and the WBC Pathway in Modulating Chemoresistance
and Radioresistance

Chemotherapy and radiotherapy constitute the cornerstones of therapeutic interven-
tion for individuals afflicted with advanced or metastatic stages of HNSCC, as substantiated
by pertinent research findings [120,121]. Cisplatin-based chemotherapy and concomitant
radiotherapy or radio-chemotherapy are widely used against several HNSCC conditions,
especially in unresectable tumors [121–123]. Nonetheless, in numerous instances, cancer
cells develop resistance to these therapeutic modalities through a variety of mechanisms.
One of these mechanisms involves the anomalous activation of the WBC signaling path-
way, resulting in the upregulation of genes associated with chemoresistance. Notably, this
includes genes involved in drug efflux pathways, such as ATP-Binding Cassette (ABC)
transporters, as well as genes implicated in epigenetic regulations, such as DNA methyl-
transferases [124,125]. Several ncRNAs have been substantiated as effective regulators of
chemoresistance and radio-resistance in HNSCC cells by modulating WBC pathway. For
instance, an investigation demonstrated that miR-218 directly targets protein phosphatase
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2 regulatory subunit B’alpha (PPP2R5A), a tumor suppressor gene, influencing cancer
progression and chemoresistance in oral cancer cells. The study further indicated that
when miR-218 is downregulated, there is an inhibition of Wnt signaling, enhancing the
sensitivity of oral cancer cells to cisplatin-based treatments. Additionally, the repression of
miR-218 led to the decreased expression of several genes implicated in chemoresistance,
such as ABCG2, multidrug resistance protein 1 (MRP1), and p-glycoprotein (p-gp) [114].
Another study showed that the upregulation of chemotherapy-induced lncRNA 1 (CILA1)
significantly enhanced chemoresistance in TSCC cells accompanied by elevated invasion,
metastasis, and EMT in vitro and in vivo. This study also confirmed that CILA1 exerted its
functions by the upregulation of the WBC signaling pathway [126].

Additionally, a couple of studies have also demonstrated the modulation of radioresis-
tance in HNSCC cells by lncRNAs via WBC signaling. For instance, the lncRNA LINC00473
enhanced the radioresistance of LC cells by activating WBC signaling. This study also
demonstrated that the silencing of LINC00473 and X-ray treatment induced apoptosis and
suppressed colony formation and the proliferation of LC cells [65]. In addition, another study
demonstrated that the lncRNA DGCR5 promoted radioresistance in LC cells by sponging
miR-506. Further, the silencing of DGCR5 enhanced radiosensitivity and downregulated Wnt
signaling components, including β-catenin and Cyclin D1 [87]. Hence, a deeper investigation
into the WBC signaling pathway elucidating the regulatory roles of ncRNAs within this
pathway and comprehending the downstream implications of its activation is essential. Such
insights are crucial for devising novel therapeutic strategies to enhance the efficacy of both
chemotherapy and radiotherapy and more effectively target HNC.

5. Conclusions

HNC encompasses a spectrum of malignant conditions affecting the oral, nasal, na-
sopharyngeal, hypopharyngeal, and laryngeal regions. Deviations in the expression of
proteins involved in various cellular activities and pathways constitute a significant factor
in the advancement of HNSCC. The WBC signaling pathway exemplifies the complex
cellular communication systems vital to both developmental and pathological contexts.
While the WBC pathway is fundamental for cellular proliferation, morphogenesis, and
homeostatic balance, its aberrations can lead to severe consequences. Genetic alterations
within this pathway are associated with diverse cancers, including HNC. Over recent years,
ncRNAs have gained prominence as potential therapeutic targets in numerous cancers,
including HNC. Emerging research underscores the instrumental role of ncRNAs in HNC,
modulating various signaling pathways, including WBC. Consequently, ncRNAs impact
key oncogenic processes in HNC, such as cellular proliferation, differentiation, invasion,
EMT, migration, and metastasis. Clinical trials are increasingly evaluating the utility of
several ncRNAs as diagnostic and therapeutic indicators in oncology. For instance, one
noteworthy study highlighted the potential of MALAT1 targeting miR-124 as a diagnostic
biomarker for OSCC, as denoted in trial NCT05708209. The investigation encompassed
20 OSCC patients and 20 healthy controls, assessing MALAT1 and miR-124 levels in un-
stimulated saliva samples. Furthermore, ncRNAs critically influence the chemotherapeutic
and radiotherapeutic resistance of HNSCC cells. Given the importance of ncRNAs in
HNC, a thorough understanding of their specific roles is vital for the innovation of refined
therapeutic strategies. This review describes the central role of ncRNAs in modulating
cancer cell behavior, particularly through the WBC signaling mechanism. Nonetheless,
further studies are essential to thoroughly discern the contributions of ncRNAs in HNC
progression and to design groundbreaking therapeutic interventions for this malignancy.
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Abbreviations

α-SMA Alpha smooth muscle actin
β-TrCP Beta-transducin repeat-containing protein
ABC ATP-binding cassette
ADAM17 ADAM metallopeptidase domain 17
AKT Protein kinase B
APC Adenomatous polyposis coli
Bax Bcl-2-associated X protein
BCL11B B-cell lymphoma/leukemia 11B
Bcl-2 B-cell leukemia/lymphoma 2 protein
CD44 Cluster of differentiation 44
CILA1 Chemotherapy-induced long non-coding RNA 1
CK1 Casein kinase 1
c-Myc Cellular myelocytomatosis oncogene
CTGF Connective tissue growth factor
CXCR4 CXC chemokine receptor 4
DACH1 Dachshund family transcription factor 1
DGCR5 DiGeorge syndrome critical region gene 5
DKK1 Dickkopf-1
DKK3 Dickkopf Wnt signaling pathway inhibitor 3
ELF1 E74 Like ETS Transcription Factor 1
EZH2 Enhancer of zeste homolog 2
FGF7 Fibroblast growth factor 7
FZD7 Frizzled 7
GSK3β Glycogen synthase kinase-3 beta
HCG18 HLA complex group 18
HMGA2 High mobility group A2
HNC Head and neck cancer
HNSCC Head and neck squamous cell carcinoma
HPV Human papilloma virus
LC Laryngeal cancer
LEF1 Lymphoid enhancer binding factor 1
LRP Lipoprotein receptor-related protein
LNEC Laryngeal neuroendocrine carcinoma
LNM Lymph node metastasis
MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1
MMP Matrix metalloproteinase
MOSPD2 Motile sperm domain containing 2
MRP1 Multidrug resistance-associated protein 1
ncRNA Non-coding RNA
NUAK1 NUAK family SNF1-like kinase 1
p-gp P-glycoprotein
PLAC2 Placenta-specific protein 2
PLD1 Phospholipase D1
PPP2R5A Protein phosphatase 2 regulatory subunit B’alpha
RASSF4 Ras association domain family member 4
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SETD7 SET domain-containing 7 histone lysine methyl transferase
SLCO4A1 AS1-solute carrier organic anion transporter family member 4A1 antisense RNA 1
snoRNA Small nucleolar RNA
SNHG1 Small nucleolar RNA host gene 17
SNHG3 Small nucleolar RNA host gene 3
TCF/LEF T-cell factor/lymphoid enhancer factor 1
TCF4 Transcription factor 4
TIMP-3 Tissue inhibitor of metalloproteinases-3
TopoII topoisomerase IIβ
TSCC Tongue squamous cell carcinoma
TUG1 Taurine upregulated gene 1
UCA1 Urothelial Carcinoma Associated 1
WBC Wnt/β-catenin
WIF1 Wnt inhibitory factor-1
WISP1 Wnt-induced secreted protein-1
YAP/TAZ Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif
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