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Abstract: Controversy continues over the functional prevalence of long non-coding RNAs (lncRNAs)
despite their being widely investigated in all kinds of cells and organisms. In animals, lncRNAs have
aroused general interest from exponentially increasing transcriptomic repertoires reporting their
highly tissue-specific and developmentally dynamic expression, and more importantly, from growing
experimental evidence supporting their functionality in facilitating organogenesis and individual
fitness. In mammalian testes, while a great multitude of lncRNA species are identified, only a
minority of them have been shown to be useful, and even fewer have been demonstrated as true
requirements for male fertility using knockout models to date. This noticeable gap is attributed to the
virtual existence of a large number of junk lncRNAs, the lack of an ideal germline culture system,
difficulty in loss-of-function interrogation, and limited screening strategies. Facing these challenges,
in this review, we discuss lncRNA functionality in organismal development and especially in mouse
testis, with a focus on lncRNAs with functional screening.
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1. Introduction

Mammalian cells house tens of thousands of long noncoding RNAs (lncRNAs) [1]. By
far, dozens of them are well documented as being functional [2,3]. Needless to say, this
only represents a minute fraction of the total. Relative to those shown in cell lines, a smaller
number of lncRNAs are demonstrated to perform a function required for proper organismal
development [4,5]. Even less recognized is the functionality of the mammalian testicular
lncRNAs, few of which are fully validated as having a true role in either spermatogenesis
or male fertility in knockout mouse models [6], although the testis expresses numerous
species of lncRNAs [7,8]. Until now, how large a fraction of lncRNAs represent biological
significance remains a central puzzle, fueling a long-lasting debate [9–14]. Some researchers
argue that even though many useful lncRNAs do exist, the majority are not meaningful,
regardless of whether or not they are transcribed excessively [15,16]. This opinion comes
from several aspects. From a genomic perspective, recent global transcriptome profiling
across eukaryotic organisms demonstrates that at least 85% of the genome is transcribed,
which is far more than expected [17]. However, only 10% of the Pol II activities in yeast
initiate from conventional promoters and the remaining events are noise [15]. Other
evidence comes from several studies using mouse knockout models with the deletion of
large DNA fragments that transcribe hundreds of transcripts. Nevertheless, these models
reveal no apparent phenotype [18] and many functionless lncRNAs in animal models have
been reported [19–21]. In contrast, other researchers claim that the functional discovery of
lncRNA genes, which are difficult relative to protein-coding genes, is still in its infancy [22].
Still, a repository of functional lncRNAs has been compiled and appreciated [3]. It is thus
conceivable that buried in the mass of junk transcripts could be a large proportion of
functional lncRNAs that are, nevertheless, emerging like the tip of an iceberg [9,23].
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Although much attention has been focused on the discovery of bona fide functional
lncRNAs at the organismal level, this field is moving slowly. The human genome harbors
a magnitude of lncRNA gene loci, ranging from 59,000 up to 102,000, based on different
databases [24–26]. About 80% of the human genome is actively transcribed through
the body’s development to adulthood [27]. While nearly 2000 lncRNAs have a putative
functional association, most of them are described solely in cell lines and have yet to be
studied in tissues [3]. To date, only a few lncRNAs have been functionally identified using
animal models [2]. A thorough dissection of the functionality of a given lncRNA in organ
development calls for effective and multipronged strategies. In this article, we review
recent advances in screening and probing functional lncRNAs in organismal development,
with an emphasis on testicular lncRNAs.

2. LncRNA Functionality: Prediction Rationale

With the advent of next-generation RNA sequencing technologies, the expressions
of lncRNAs have been subjected to high-throughput analyses in various types of cells or
tissues [4,28]. Compared with protein-coding genes, lncRNAs are expressed at lower levels
while more specifically, i.e., in a cell type-, tissue-, developmental stage-, or disease state-
specific manner [29–31]. Most lncRNAs are more tightly regulated than protein-coding
genes, contending for a central role of lncRNAs in the cell state determination [32,33]. Thus,
discerning functional subsets from a magnitude lncRNA pool is a priority [34] but has
become a major hurdle in the field. Screening efforts based on common criteria such as
physical gene locus proximity, lncRNA-gene co-expression, and sequence conservation,
together with individualized paradigms, have pointed to the role of lncRNA in mammalian
organ development [8]. For example, in cis co-expression of lncRNA and nearby genes has
been widely applied to predicting functional lncRNAs. However, such a prediction strat-
egy has been challenged in that co-activation of neighboring genes is driven by multiple
lncRNA-associated mechanisms, such as enhancer-like DNA locus, splice sites, or tran-
scriptional activity, but not exclusively by the lncRNA transcript itself [35]. Moreover, there
are always contrasting variations across different species or organs, leading to generally
limited efficacy in picking out bona fide functional lncRNAs [34]. Therefore, reconsidering
traditional strategies to achieve a higher probability of mining out functional lncRNAs is
now on the horizon.

3. Functional Screening: Cell Lines vs. Animal Models

Benefiting from fast and easy manipulation as well as low cost, cultured cell lines serve
as an important platform to decrypt the functionality of individual lncRNAs. Moreover,
these advantages make cell lines an ideal system for high-throughput lncRNA functional
screening. Indeed, RNAi-, CRISPR/Cas9-, CRISPR/dCas9-, or CRISPR/Cas13-based
screening strategies have successfully identified a dozen lncRNAs functioning in cell dif-
ferentiation, growth, or response to stimuli [36–39]. While these seminal studies clearly
demonstrate the role of lncRNAs, only a small subset of lncRNAs functioning in cell lines
could be recapitulated in mouse models. A representative example is Malat1, which regu-
lates growth-control genes at both the transcriptional and post-transcriptional levels [40].
Nevertheless, in vivo knockout mice show normal development and fertility [41]. Another
example is Evx1as, which promotes EVX transcription in cis and regulates mesendodermal
differentiation in pluripotent cell lines [42]. Nevertheless, Evx1as-ablated mice are viable
with no obvious abnormality [19]. Similar contradictory outcomes from cell lines versus
animal models are de facto often obtained and discussed in more cases [2].

Regardless of the long manufacturing period and heavy expenditure, the convincing
level of lncRNA functional studies requires appropriate LOF manipulation on animals.
Indeed, CRISPR/Cas9-based screening using different animal models, including C. elegans,
Drosophila, zebrafish, and mouse, has been fruitful, but displays variable results since
its emergence. Goudarzi et al. selectively tested 25 candidate lncRNAs based on their
conservation, expression trait, and proximity to developmental regulators, showing that
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lncRNAs have no overt roles in zebrafish [20]. Schor et al. deleted 3 out of 362 lncRNAs with
specific spatiotemporal expression in Drosophila embryogenesis but yielded no obvious
phenotypes in normal conditions or under stress factors [43]. In addition, the genetic
ablation of six cardiac-specific mouse lncRNAs with distinct transcriptional and epigenetic
patterns resulted in no defects [44]. Despite these negative screening results in terms
of the biological significance of tested lncRNAs, some other screens were more or less
successful. Sauvageau et al. filtered out 18 lncRNAs with epigenetic modification for
active transcription and conservation between mouse and human, of which three mutant
strains displayed lethality and two exhibited growth defects [45]. A large-scale evaluation
of 155 C. elegans knockouts of intergenic lncRNAs (lincRNAs) revealed phenotypes of
23 knockouts [46]. Another functional examination of 10 C. elegans knockouts revealed
six lncRNAs required for normal development and fertility [47]. A canvass of lncRNA
functional screens at the animal level is presented here in Table 1. As such, two groups
of screens led to opinions that could be paradoxical regarding the prevalence of lncRNA
functionality in animals, which has rather confused researchers. The in vivo lncRNA
functional screens are far less fruitful than the progress in understanding their modes
of mechanistic action. This gap is attributed to several explanations [2], including non-
specific or off-target effects [48], transcript-independent mechanisms [35,49], functional
redundancy [50], non-conserved function among species [51], and a stress- or disease-
responsive role [4], as well as a missed phenotype [52,53].

Based on the research discussed above, cell lines and animal models have both ad-
vantages and disadvantages in functional screening. A combinational screen using both
may allow for attaining a complementarity between large-scale screening ex vivo and the
discovery of truly functional lncRNAs in vivo. Perhaps feasibly, for preliminary filtering,
high-throughput RNAi or knockout approach can be exploited in primarily derived cell
lines and, meanwhile, knockout models can be designed for endogenous validation of
potential functional subsets. Indeed, several recent screens applied this dual-means strat-
egy and therefore discovered dozens of lncRNAs in various cell lines and also in their
corresponding organs [54–56] (Table 1).
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Table 1. Strategy and efficiency of current knockout-based functional screening of lncRNAs in animals.

Organism

Queried
Object of

Organismal
Development

Screening Criteria

Knockout
Screening

Tools

Knockout
Screening

Results
Reference

Expression
Specificity

or
Dynamicity

Expression
Abundance Conservation

Active
Epigenetic

Status

Physical
Proximity

with
Regulators

Co-
expression

with
Regulators

Other
Screening

Criteria

C. elegans
Body

development
and fertility

√ √ CRISPR-
Cas9 6/10 [47]

C. elegans
Body

development
and fertility

CRISPR-
Cas9 23/155 [46]

Drosophila Embryogenesis
√ CRISPR-

Cas9 0/3 [43]

Drosophila Spermatogenesis
√ CRISPR-

Cas9 33/105 [57]

Zebrafish
Embryogenesis,

viability,
fertility

√ √ √ CRISPR-
Cas9 0/25 [20]

Mouse Intestine
development

√ Pre-screen in
cell lines

CRISPR-
Cas9 1/1 [56]

Mouse Neuroregeneration
√ √ √ Pre-screen in

cell lines
CRISPR-

Cas9 1/1 [54]

Mouse Cardiomyocyte
development

√ √ Pre-screen in
cell lines

Homologous
recombina-

tion
1/1 [55]

Mouse Body
development

√ √ Homologous
recombina-

tion
5/18 [45]

Mouse Heart
development

√ √ √ CRISPR-
Cas9 0/6 [44]

Mouse Body
development

√ √ √ √ √ Pre-screen in
cell lines

CRISPR-
Cas9 1/12 [19]



Non-Coding RNA 2023, 9, 36 5 of 16

4. Testicular LncRNAs: Functionality

Over the past decade, an intense issue has raised the question of how functional
lncRNAs originate from pervasive transcription [23,58]. A meaningful explanation is that
functional lncRNAs occasionally evolve from a vast pool of non-functional transcripts via
a mechanism similar to constructive neutral evolution [23]. In other words, only those
organisms that produce a large quantity of junk RNAs possess many functional lncRNAs.
Fitting this opinion, lncRNAs are highly expressed in nervous systems, where intensive
research has revealed several subsets with physiological roles in neurogenesis, a field
moving far beyond others [59].

Actually, the adult testis displays the highest transcriptome complexity among the
tissues [8,60,61]. On one hand, during meiosis, chromatin relaxation activates a tran-
scriptional burst of genic and intergenic RNAs, particularly lncRNAs, endo-siRNAs and
pachytene piRNAs, along with transpositional shuffling to promote genomic and transcrip-
tomic variability [62]. On the other hand, endo-siRNAs and pachytene piRNAs generated
from antisense transcripts, usually from transposon sequences, guide the degradation of
mRNAs and lncRNAs that could be useless or even deleterious, referred to as a molecular
mechanism for genome-wide quality control [62,63]. Combined, the extensive transcription
and targeted degradation of lncRNAs accelerate lncRNA evolution under robust screening
through natural selection filters in mammalian spermatogenesis, giving rise to the thriving
birth of young lncRNAs and preservation of optimized ones thereof [7,62]. All these clues
highlight the significance of lncRNAs in spermatogenesis and hint at the existence of not a
few functional ones. Although massive novel spermatogenic lncRNAs have been identified,
most of them are biologically uncharacterized.

Several studies show the role of lncRNAs in male germ cells, which was summarized
in recent reviews [6,64–66]. Here, we introduce functional lncRNAs with a focus on how to
screen them in testis. So far, we still know little about lncRNA function in spermatogenesis,
especially in mammals. There are only four lncRNA knockout models displaying obvious
phenotypes (Figure 1). The first case is Tsx (testis-specific X-linked), whose knockout males
were fertile with normal spermatogenesis [67]. Nonetheless, Tsx knockout resulted in a
mild increase in the apoptosis of pachytene spermatocytes, an additional maternal-specific
effect on litter size, and dysfunction of multiple other cell types. The second case is Tesh1,
whose knockout males were subfertile with teratospermia and offspring with female-
biased sex ratios [68]. The third case is Tug1 (taurine-up-regulated gene 1), whose knockout
males were sterile with decreased sperm counts and malformed sperm morphologies [69].
However, Tug1 may not act merely as a lncRNA transcript because there are two additional
attributive layers: as a cis-DNA regulator and as a protein-coding gene [69]. We still
know little about whether these mechanisms alone or jointly contribute to its function in
spermatogenesis [22]. The last case is Gm9999, which encodes two small peptides named
Kastor and Polluks, respectively. Deletion of both peptides caused male subfertility with
teratospermia and deletion of one peptide partially reproduced the phenotype, suggesting
that Gm9999 regulates spermatogenesis on the dependence of peptide generation [70].
These four rarely reported knockout mouse models that exhibit either mild or non-lncRNA
transcript-exclusive effects on male fertility implicate a general difficulty in decoding the
functional tacitness and complexity of testicular lncRNAs.
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Figure 1. Physiologically functional lncRNAs in mouse testis. The physiological role of a few
lncRNAs in mouse spermatogenesis has been studied by creating knockout mouse models. Most
lncRNA knockouts delete the entire genomic locus. Other knockouts delete the functional element
in the lncRNA locus, such as the ORF region in the Gm9999 locus. So far, only four lncRNAs have
been demonstrated as functional in mouse testis. Tsx is highly expressed in pachytene spermatocytes
and Tesh1 is mainly expressed in elongated spermatids. Tug1, Gm9999, and Tesh1 knockouts exhibit
teratospermia and impaired male fertility. Mechanistically, Tsx acts in cis and Tesh1 in trans. Tug1
could act in cis, in trans, or by an encoded protein. Gm9999 executes its function through its two
encoded polypeptides.

5. Testicular LncRNAs: Functional Screening

In one systematic study consisting of the functional screening of testicular lncRNAs,
Wen et al. identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of
them [57]. Among these knockouts, 33 (31%) showed visual developmental defects in
late male germ cells and a partial or complete loss of male fertility. This result supports
the pervasive involvement of functional lncRNAs, at least in late spermatogenesis, and
for the first time, supports a general relevance of lncRNAs to testis function. This study
employed RNAi and rescue experiments to determine in cis or in trans regulation of gene
expression and also to separate RNA-dependent lncRNA function from DNA-dependent
effect. From an evolutionary viewpoint, a constant proportion (around 30% of the entire
pool) of functional lncRNA sequences are likely accumulating all along, nearly equal in
percentage to this study [57]. In another functional screen in mouse testis, Li et al. conducted
global lncRNA expression profiling in six types of spermatogenic cells and subsequent
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filtering was based on protein-coding gene co-expression analysis and physical proximity
with spermatogenic regulators [71]. They finally selected six lncRNA candidates and
employed an shRNA-knockdown system in the testis to interrogate their in vivo function.
As a result, two out of six candidate-depleted testes exhibited overt developmental defects
in spermatogenesis. Fascinatingly, these screens in the testis of different species seem more
efficient than in other tissues, supporting the aforementioned assumption that testicular
transcriptome may comprise a relatively larger pool of functional lncRNAs.

6. Opportunities and Challenges

Due to our limited knowledge of lncRNA function in spermatogenesis, distinguished
questions remain open. One notable question is whether lncRNAs are of significant impor-
tance in meiosis. The pervasively accessible chromatin observed during the meiotic progress
includes intergenic regions [61], known as the major loci of lncRNA genes. As most stages
of meiosis exhibit open chromatin states, tremendous lncRNAs are transcribed in spermato-
cytes, confirmed via single-cell RNA-seq analysis [72]. Moreover, several lncRNAs escape
meiotic sex chromosome inactivation (MSCI) in pachytene spermatocytes and play poten-
tial roles in meiosis [73]. Although several mammalian spermatocyte-expressed lncRNAs
have been functionally characterized, all of these studies rely on cell-based assays or have
not produced an apparent phenotype in knockout mouse models [6,74–76]. More functional
insights about meiotic lncRNAs are derived from yeast systems. One early study suggests
a regulatory role of anti-sense lncRNA during the mitosis-to-meiosis transition [77]. Later
studies identified a set of functional lncRNAs that regulate meiotic-specific chromosomal
events at the transcriptional or post-transcriptional level [78]. Considering the potentially
larger pool of lncRNAs and their complicated regulation in higher eukaryote systems, we
reason that a considerable portion of lncRNAs perform a function in meiosis, which has
yet to be explored.

Another obstacle that hampers our understanding of lncRNA functionality is our poor
knowledge of the subcellular compartmentalization of lncRNAs in germ cells. It is well
established that the localization of lncRNA is well suggestive of its cellular function [79,80].
Given its close relationship to molecular roles, subcellular localization would hopefully lift
the cloud of mystery off lncRNA functionality. To date, lncRNAs have been detected in
most of the general cellular organelles and granules [80]. However, our understanding of
the subcellular localization of spermatogenic lncRNAs remains scarce. It is interesting to
address how many lncRNAs are physically associated with germ-cell-specialized organelles
and membraneless granules, such as the synaptonemal complex, the chromatoid body (CB),
or acrosome. As mentioned previously, lncRNAs, along with RNA-binding proteins (RBPs)
and other non-coding RNAs, constitute ribonucleoproteins (RNPs) and regulate synaptone-
mal complex formation directly [81]. Moreover, previous analysis of the CB component
identified numerous lncRNA transcripts, suggesting their significance in CB assembly or
function [82]. All of these findings hint that lncRNAs constitute spermatogenic RNPs and
play a role in spermatogenesis. Furthermore, to what extent are lncRNAs functionally
involved in the formation or function of these organelles in the process of piRNA biogene-
sis, meiosis, or sperm–egg recognition? A general method uses high-resolution imaging
techniques, such as fluorescence in situ hybridization (FISH) and CRISPR/Cas13, to define
lncRNA single-molecule localization [83–85]. An alternative method uses high-specificity
biochemical methods, such as subcellular organelle purification coupled with RNA-seq or
APEX-RIP, to detect high-throughput lncRNA-organelle associations [86,87]. Such method-
ological application to spermatogenic cells will speed our progress in decoding lncRNA
function in the context of lncRNA-organelle association in spermatogenesis. In addition,
technical advances in probing protein-bound lncRNAs hold equivalent promise at more
refined layers of molecular interaction.

Most present screens focus on lincRNAs transcribed from intergenic regions, whereas
other types of lncRNAs derived from introns (intronic lncRNAs) and gene regulatory
regions (such as promoter lncRNAs and enhancer lncRNAs, elncRNAs/eRNAs) are rarely
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considered for screening, mainly because these lncRNAs are unstable and thus presumed
to lack a function [88,89]. However, recent findings have challenged these stereotypes,
showing that at least some of them play important biological roles [89,90]. Special attention
should be paid to the new understanding of enhancers and enhancer-derived lncRNAs
(elncRNAs). Enhancers control precise spatiotemporal gene expression and are thus the
key regulators for cell specification and organ development [91,92]. Enhancers bind tran-
scription factors that are presumed to interact with target promoters but more likely are
responsible for the transcription of elncRNAs [93]. Enhancers are widely transcribed and
many, if not most, lncRNAs are derived from enhancers [93–95], including some lncR-
NAs previously defined as a locus in intergenic regions [96]. elncRNAs can modulate
DNA/histone modification as well as chromatin organization by binding to other RBPs or
transcriptional factors [93,94,97]. Several elncRNAs are essential for organ development,
such as Evf2 [98], Peril [99], Firre [100], and Maenli [101], suggesting the physiological role
of elncRNAs in vivo. Hence, elncRNAs are likely to be strong potential candidates in
functional screening. Following elncRNA pre-screening, we must design thoughtful LOF
strategies [101] and rigorously interpret phenotypes of animal models to distinguish the
pure role of elncRNA as a complicated transcript influenced by its enhancer DNA locus or
by its transcriptional activity [22].

In the testis, the expression of thousands of germline-specific genes gives rise to the
most diverse and complex testicular transcriptome among all organs [61,102]. Discontin-
uous transcriptional states were coupled with unique chromatin remodeling across sper-
matogenesis [103]. To modulate these accurately monitored processes, germline-specific
enhancers and associated regulation likely generally exist, despite the lncRNA expressed in
testis are unlikely to be mainly derived from enhancers [71]. Indeed, the mitosis-to-meiosis
transcriptome transition is driven by a switching from mitotic to meiotic super enhancers
(SEs) [104]. Moreover, distinct regulation of meiotic Ses was observed on autosomes versus
the sex chromosomes [104]. We believe that the testis harbors more functional elncRNAs
than other tissues, which are only beginning to be unveiled with our understanding of
spermatogenic enhancers.

7. Loss-of-Function Tools

Loss-of-function (LOF) methods are widely used to functionally interrogate or val-
idate lncRNAs in cells and animals, including CRISPR-Cas gene-editing systems, RNA
interference (RNAi), and antisense oligonucleotide (ASO). Several reviews compared their
advantages and disadvantages and discussed their applicability based on different modes of
action [22,34,105–107]. These LOF tools are being effectively utilized in the area of spermato-
genesis. For example, CRISPR-Cas9-based knockout tools enabled a large-scale functional
screen in Drosophila testis [57]. However, these tools cannot preclude that the DNA lo-
cus of a lncRNA plays a role, even if not dominantly, in producing a phenotype [108].
In the screening of mouse testicular lncRNAs, adeno-associated viral (AAV)-delivered
shRNA-mediated knockdown was successfully applied in testis [71]. However, substantial
knockdown efficiency of RNAi is not guaranteed in the nucleus [109,110], where lncRNAs
are transcribed and may have the propensity to reside [88,111]. Superior to RNAi with
respect to this point, ASO and CRISPR-Cas13 systems can be more efficient in targeting
nuclear lncRNAs [110,112].

Furthermore, shRNA-based knockdown in testis showed the bias of targeting Sertoli
cells rather than germ cells [113,114]. In addition, a virus-based delivery system needs
intricate preparation of virus packaging, posing biohazard risks and artificial effects. Al-
though siRNA avoids these shRNA-relevant caveats, its instability and transiency limit
the use of siRNA for maintaining a long-term knockdown effect. In contrast, ASO can last
several weeks and is widely used in disease treatment in mammals and humans [115,116].
Moreover, ASO can directly act on nascent transcripts to prevent transcription, whereas
siRNA-mediated knockdown performs solely at the post-transcriptional level [117]. Thus,
ASO can have a LOF effect on a lncRNA inclusive of its nascent or mature form. Our
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group recently established the technique of microinjecting ASO into living mouse testis
to negatively modulate the levels of a target lncRNA [118]. Using FISH and a battery of
other assays, we showed that ASO performed better than siRNAs in Tsx knockdown in
recapitulating the phenotype of Tsx knockout. This study lays the groundwork for the fast
interrogation of lncRNA functionality in testis. It is worth noting that ASO has a broad
scope of applications not only in biological research but also in clinical trials [107], thanks
to its merits, including easy nuclear accessibility, lack of need for delivery reagents, and low
biological toxicity [119,120], which would be beneficial for reproductive health and therapy.

In general, RNAi serves as the most convenient approach for large-scale functional
screening of lncRNAs both in vivo and in vitro [36,121]. Comparatively, ASO is more
efficient, albeit more expensive, for nucleus-enriched lncRNA knockdown. Although the
CRISPR-Cas9 gene editing completely ablates lncRNA transcripts and still represents the
key benchmark to proclaim a functional lncRNA, we must carefully formulate the knockout
designs and cautiously interpret the results when this lncRNA overlaps with other genes
or regulatory elements.

8. Future Strategies for Screening

Overall, the present screening strategies are somewhat homogeneous and require
more attempts to identify lncRNAs of biological meaning in development such as in
spermatogenesis. It is widely accepted that surveyed lncRNAs can be predicted to be
functional as a result of their multiple common features, which usually include expression
abundance, sequence conservation, gene locus, and transcriptional states (Figure 2 and
Table 1). The rank of lncRNA expression level, as one plausibly reasonable criterion, might
always be overestimated in prioritizing putative functional candidates [17,122]. Another
representative criterion worth discussion is the linkage of functionality and sequence
conservation. However, even a conserved lncRNA may differ in the route of biogenesis or
subcellular transport, leading to a distinct role in different species or organisms [51].

To select the best probable pool of candidate lncRNAs for functional interrogation
using LOF approaches, we need to carefully gain as many properties as possible by trac-
ing them from being transcribed at genomic loci to being post-transcriptional processed,
and adopt rational and insightful strategies. Additional function-predictable features that
might have been underestimated include, but are not limited to, subcellular localization,
sequence/motif, secondary/tertiary structure, and interaction with protein regulator, RNA
regulator, or DNA element (Figure 2). Although some of these topics are just beginning to
be underpinned, inspired by some cutting-edge explorations [123–126], we hold promise
to advance this field under joint efforts of scientific communities. For example, a recent
study decoded that lncRNAs sharing similar small sequence (K-mers) contents have re-
lated functions although they lack a linear homology [127]. This work implies that short
lncRNA elements are potential indicators for lncRNA functionality and can be used for
high-throughput screening. For another delicate example, Khalil et al. profiled PRC2-
associated lncRNAs, and the knockdown of certain subsets led to gene expression changes,
with the up-regulated genes being globally silenced by PRC2 [128]. It is worth noting that
PRC2-associated lncRNAs, such as HOTAIR and TUG1, were further demonstrated to func-
tion in vivo [69,129], suggesting that those lncRNAs that associate with central regulators
of development can be investigated further. Moreover, other assays specialized in the de-
tection of lncRNA-protein, lncRNA-DNA, or lncRNA-RNA interaction; secondary/tertiary
structure; and subcellular localization will provide important clues for screening [130–132]
(Figure 2).
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Figure 2. Schematic of present and future strategies to screen functional lncRNAs at the organismal
level. We used mammalian testis as a model to depict these strategies. The present strategies
tend to select lncRNA candidates based on tissue-specific, cell-type-predominant, or developmental
dynamic expression patterns, co-expression with critical regulators, sequence conservation across
species, genomic locus proximity to functional genes, and epigenetic marks for transcriptional activity
(Table 1). Future strategies call for more attention to the molecular roles of lncRNAs including their
subcellular localization, functional sequence, and structure, and interaction with other regulators or
functional elements.
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In addition, many criteria for lncRNA characteristics are interconnected. The func-
tional elements of lncRNA always determine its subcellular localization or protein chap-
erone [133,134]. LncRNA functional sequences/motifs are preconditioned to form sec-
ondary/tertiary structures in vivo, and both can be recognized by protein regulators to
coordinate biological roles [5]. With our growing mechanistic understanding of lncRNAs,
we will be able to more integratively and creatively screen functional lncRNAs, which
are believed to greatly drive the field and ultimately unravel the functionality enigma of
organismal lncRNAs.
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