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Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that are known for their role in the 
post-transcriptional regulation of target genes. Typically, their functions are predicted by first iden-
tifying their target genes and then finding biological processes enriched in these targets. Current 
tools for miRNA functional analysis use only genes with physical binding sites as their targets and 
exclude other genes that are indirectly targeted transcriptionally through transcription factors. 
Here, we introduce a method to predict gene ontology (GO) annotations indirectly targeted by mi-
croRNAs. The proposed method resulted in better performance in predicting known miRNA-GO 
term associations compared to the canonical approach. To facilitate miRNA GO enrichment analy-
sis, we developed an R Shiny application, miRinGO, that is freely available online at GitHub. 
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1. Introduction 
Recent studies have suggested that microRNAs (miRNAs) are involved in many di-

verse biological processes and pathways including normal development and diseases [1]. 
Animal miRNAs bind to 3′UTR of mRNAs mainly through short sequences (6–8 NTs) 
called seed regions and act as repressors of target gene expression [2]. Taking into account 
this short sequence binding, one miRNA can target hundreds or even thousands of genes 
and subsequently perturb many biological pathways [3]. Given the cost of experimental 
identification of the function of a miRNA, potential miRNA-targeted pathways are first 
predicted computationally and then validated experimentally. 

In order to computationally predict miRNA-targeted pathways, typically potential 
target genes are compiled using one or more miRNA target prediction tools and a stand-
ard gene enrichment analysis [4] is used to find potential enriched pathways or gene on-
tology (GO) terms. Although the conventional pipeline is widely used, it has some limi-
tations. Of these, existing tools consider only direct targets (post-transcriptionally regu-
lated) of miRNAs but do not consider indirect targets (mainly transcriptionally regulated) 
that are not necessarily enriched in miRNA seed-binding sites [5]. 

Indirect target genes are mainly regulated transcriptionally through transcription 
factors (TFs) [6,7]. Transcription factors are proteins that have the ability to regulate the 
transcription of other genes by binding to regions upstream of the gene sequence called 
promotors. Several studies have highlighted the interaction of miRNAs and TFs to mod-
ulate gene expression. Cui et.al., [8] showed that miRNA targets are enriched in nuclear 
proteins (mostly TFs) compared to other groups of cellular signaling genes such as lig-
ands, cell-surface receptors and intracellular central signaling proteins. Shalgi et.al., [9] 
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provided insight into the architecture of the miRNA-TF regulatory network. They found 
that TFs are often “target hubs” and are co-regulated by many miRNAs. Furthermore, 
they discovered frequent network motifs where miRNA-TF pairs co-regulate common 
genes and sometimes regulate each other; forming different types of feedforward/feedfor-
ward loops. Gosline et.al, [7] showed that in case of miRNA loss, changes in gene expres-
sion is dominated by indirect transcriptional effects rather than direct post-transcriptional 
effects and that TFs mediate and amplify miRNAs effects.  

Indirectly regulated genes can be enriched in a specific biological pathway or pheno-
type. One notable example is the role of the miR-200 family and miR-205 in controlling 
the epithelial to mesenchymal transition (EMT) pathway through targeting ZEB1 and 
ZEB2 transcription factors [10]. Jin et.al., [11] showed that four miRNAs Let-7g, Let-7a, 
miR-200a, and miR-375 regulate the cell cycle in pancreatic endocrine cells indirectly 
through cell cycle-related TFs such as E2F2. Other studies have shown how miRNAs reg-
ulate cell differentiation by targeting TFs. Of these, Tay et al. [12] demonstrated the role 
of miR-134 in embryonic stem cell differentiation by targeting Nanog and LRH1. Another 
study showed that miR-143 and miR-145 can work together to regulate smooth muscle 
cell differentiation and proliferation by targeting KLF4 and ELK1 transcription factors [13].  

Figure 1 shows a scenario where biological pathways/processes can be missed by 
classical miRNA pathway analysis tools. In this scenario, the biological pathway consists 
of nine genes (one TF and eight non-TF). Using the classical method, the percentage of 
targeted genes is (1/9 = 11%), on the other hand, if we include TF targets (i.e., indirect 
targets), the percentage of targeted genes will be (6/9 = 67%) and this can make it more 
likely to be predicted as a target pathway. 

 
Figure 1. miRNAs can indirectly target biological pathways through transcriptions factors. 

Several tools and web servers have been developed to predict potential biological 
pathways targeted by miRNAs [14–20]. Of these, mirPath v3.0 [14], miTALOS [15], Star-
Base [16], and miRWalk v3.0 [17] are widely-used and their features are compared in Table 
1. While they are all similar in terms of using direct targets only, they use different data-
bases for both miRNA targets and gene ontology annotations [21–25]. miTALOS is the 
only tool that filters potential targets by incorporating tissue-specific genes. All tools ex-
cept for StarBase accept multiple miRNAs as input. In this study, we introduce miRinGO 
(miRNA indirect target Gene Ontology) that uncovers potential biological pathways af-
fected by indirect targets of human miRNAs especially ones related to cell differentiation 
and development.  
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Table 1. A comparison of the widely used tools of miRNAs pathway analysis. 

Features/Tools mirPath v3.0  StarBase  miTALOS  miRWalk v3.0  

Predicted targets 
databases 

TargetScan (v6)/mi-
croT-CDS (v5.0) 

TargetScan/mi-
Randa/PITA/RNA22/Pic-

Tar/… 

TargetScan/mi-
Randa 

TargetScan 
(v7.1)/miRDB 

Validated targets 
databases TarBase v7.0 CLIP-Seq data CLIP-Seq data miRTarbase 

Pathways/GO 
terms databases 

KEGG/GO catego-
ries 

KEGG/GO/Reactome/Bi-
oCarta 

KEGG/WikiPath-
ways/Reactome 

KEGG/GO/Reac-
tome 

Inclusion of indi-
rect targets? No No No No 

Tissue specific? No No Yes No 

Allows multiple 
miRNAs? 

Yes No Yes Yes 

2. Methods 
2.1. Overall Pipeline 

Our pipeline to predict indirectly targeted biological processes by miRNAs consists 
of three steps as depicted in Figure 2. First, for each miRNA, potential directly-targeted 
TFs were compiled from the TargetScan database v7.2 [26]. Second, computationally pre-
dicted tissue-specific TF-gene associations were collected from the resources website of 
(Sonawane et al., 2017) [27]. In the case of multiple input miRNAs, we use the intersection 
of indirect targets of each miRNA. Third, a hypergeometric test is conducted to find po-
tential targeted biological processes.  

 
Figure 2. Pipeline of our miRNA GO enrichment analysis tool. 

2.2. Input Data 
Data used by our tool were compiled from publicly available databases. Putative 

miRNA targets were downloaded from TargetScan v7.2 [26]. We downloaded the file with 
all predictions regardless of the conservation of the miRNA family or miRNA binding 
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sites and kept high-confidence human miRNA targets (Cumulative weighted context++ score 
< −0.1).  

Computationally predicted tissue-specific TF targets were downloaded from the re-
sources website of (Sonawane et al., 2017) [27]. These TF targets were predicted using the 
PANDA (Passing Attributes between Networks for Data Assimilation) algorithm [28]. 
PANDA integrates three complementary sources of information, i.e., TF sequences motif 
data, protein-protein interactions of TFs and gene co-expression from Genotype-Tissue 
Expression (GTEx) RNA-Seq data [29]. It contains TF-gene associations from 38 different 
tissues/tissue locations. We aggregated TF-gene associations from different locations but 
belong to the same tissue. We had 29 broad tissues after aggregation. 

Gene ontology annotations were downloaded using Ensembl Biomart [30] (version 
GRCh38). GO terms with less than five genes were removed. 

2.3. Test Dataset 
To validate our method, we used a ‘gold standard’ dataset of miRNAs and their ex-

perimentally validated functions (GO terms) [31] from ftp://ftp.ebi.ac.uk/pub/data-
bases/GO/goa/HUMAN/goa_human_rna.gaf (accessed 15 January 2019). We filtered the 
dataset to include only high-confidence annotations (excluded annotations with “Inferred 
from Sequence or structural Similarity” (ISS), “Non-traceable Author Statement” (NAS), 
and “Traceable Author Statement” (TAS) evidence codes). We also removed annotations 
with no reference article. To keep only relevant annotations, we removed generic GO 
terms shared by most miRNAs (e.g., “miRNA mediated inhibition of translation”, “gene 
silencing by miRNA” and “gene silencing by RNA”). Cell/tissue ontology was down-
loaded from http://www.ontobee.org/listTerms/CL?format=tsv (accessed 15 January 
2019). GO terms with less than five genes were removed. The filtered dataset consists of 
335 pairs of miRNAs and their associated GO terms and is available in Supplementary 
Table S1. 

3. Results 
3.1. MicroRNA Indirect vs. Direct Targeting 

To test the ability of our methodology to predict functions associated with a miRNA, 
we used a dataset with 335 known miRNA-GO term pairs. All TargetScan-predicted tar-
gets were included in this analysis. For each miRNA-GO term pair, resulting GO terms 
were ranked by the hypergeometric test p-value in ascending order, then rank values were 
converted to a percentile rank by dividing by the total number of GO terms. Finally, we 
picked the related GO term with the smallest p-value (smallest rank value). Known GO 
terms predicted by the indirect targeting method have a significantly lower (Wilcox 
signed-rank test, one-sided p-value = 0.002417) rank compared to canonical direct target-
ing as shown in Figure 3.  
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Figure 3. Comparison of indirect targeting with direct targeting (** represents p-value < 0.01). 

3.2. Effect of Number of miRNA Targets 
Since miRNA GO enrichment analysis is affected by targets of the miRNA and Tar-

getScan-predicted targets can have false positives, we investigated the effect of the num-
ber of predicted miRNA targets on predicting the known GO terms. We repeated the same 
analysis but instead of using all predicted targets, we used the top (20%, 40%, 60%, 80% 
and 100%) of potential targets (sorted by TargetScan context++ score [26]). Figure 4 shows 
that in all cases, the average percentile rank of GO terms predicted by the indirect target-
ing methodology is lower than those predicted by direct targeting. Although increasing 
the number of miRNA targets yielded a lower average rank (better performance), using 
all of the targets did not give significantly better results compared to using the top 80% of 
targets and 40% of targets in the case of indirect and direct targeting, respectively. 
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Figure 4. Effect of number of miRNA targets on miRNA GO enrichment analysis. Error bars repre-
sent one standard error. 

3.3. Indirect Targeting Reveals Role of miRNAs in Developmental Processes 
To investigate biological processes that are more likely to be affected by indirect tar-

geting of miRNAs, we calculated TF density per GO term as defined by Equation (1). 

TF density = (Number of TFs in a GO term)/(Total number of genes in that term) (1) 

Table 2 shows the top 5 GO BP terms with the highest TF density. All these GO terms 
are related to the “developmental process” and all genes involved are transcription fac-
tors. 

Table 2. Top 5 GO terms with the highest TF density. 

GO Term ID GO Term 
Number 
of TFs 

Number of 
Genes Parent Process 

GO:0001714 
endodermal cell 
fate specification 5 5 

developmental 
process 

GO:0003211 
cardiac ventricle 

formation 5 5 
developmental 

process 

GO:0003357 
noradrenergic 

neuron differen-
tiation 

5 5 
developmental 

process 

GO:0021520 
spinal cord mo-
tor neuron cell 

fate specification 
7 7 developmental 

process 

GO:0021902 commitment of 
neuronal cell to 

7 7 developmental 
process 
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specific neuron 
type in forebrain 

To see if transcription factors are enriched in development-related GO terms com-
pared to other terms, we divided the GO terms (that have at least one TF) into two groups; 
one with development-related terms and the second with other terms or processes. We 
selected development-related terms by searching for GO biological process terms with the 
following keywords (“development”, “cell fate”, “differentiation”, “stem cell”, “morpho-
genesis”, “cell specification”, “formation”). Figure 5 shows that development-related 
terms (n = 613) tend to have significantly (p-value < 2.2 × 10−16, Wilcoxon rank sum test) 
higher TF density compared to other terms (n = 1767). 

 
Figure 5. Comparison of TF density in development-related GO terms vs. all other terms. 

3.4. Case Study: Role of miR-9 in Neurogenesis 
To test the ability of our tool to capture relevant targeted development-related GO 

terms, we picked a miRNA with a known function to be able to compare our predicted 
GO terms with known ones. Of these miRNAs, miR-9 is a brain-enriched miRNA and has 
a prominent role in neurogenesis [32–34]. We ran our tool with the following inputs, we 
selected “brain” as the tissue type, “biological process” as the GO category, “indirect” as 
the targeting mode and “100” as the percentage of miRNA targets. Two out of the top five 
GO terms predicted are related to neurogenesis (“Nervous system development” and 
“brain development”).  

To compare our results with existing miRNA pathway analysis tools, we down-
loaded predicted GO biological process terms for “miR-9” from four different web servers 
(accessed January 15, 2019): mirPath v3.0 [14], StarBase (mirTarPathway module) v3.0 
[16], miTALOS v2 [15] and miRWalk v3.0 [17]. We searched for the highest-ranking GO 
term related to neurogenesis as shown in Table 3. Our tool ranked neurogenesis-related 
GO terms higher than other tools. 
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Table 3. Comparison of highest-ranking GO terms related to neurogenesis from different miRNA 
GO enrichment tools. 

Tool Highest Ranking GO Term Related to 
Neurogenesis Rank 

miRinGO  Nervous system development 1 

mirPath v3 Regulation of neuron maturation 11 

miRWalk v3 Axonogenesis 13 

StarBase v3 Neurogenesis 23 

miTALOS v2 N/A N/A 

3.5. Multiple miRNAs GO Analysis 
In all miRNA GO analyses so far, we used one miRNA as an input. Several studies 

have shown that miRNAs can work together to regulate certain targets and biological 
processes [35,36]. Of these, Gregory et al. [10] showed that the miR-200 family and miR-
205 together regulate epithelial-to-mesenchymal transition (EMT). The miR-200 family 
consists of miRNAs with two different seed sequences: miR-200a/miR-141 and miR-
200b/miR-200c/miR-429. We ran our tool with the following inputs: “kidney” as the tissue 
type, “biological process” as the GO category, and “indirect” as the targeting mode and 
“100” as the percentage of miRNA targets. The rank of the “epithelial to mesenchymal tran-
sition” GO term (GO: 0001837) was lower when we used the intersection of indirect targets 
of these three miRNAs compared to ranks of GO terms predicted by each miRNA indirect 
target as shown in Table 4. 

Table 4. Effect of using multiple miRNAs in capturing EMT-related GO terms. 

miRNAs Rank of Top GO Term Re-
lated to EMT 

miR-200a/miR-141 132 

miR-200b/miR-200c/miR-429 147 

miR-205-5p 105 

All three miRNAs 70 

3.6. R Shiny Application 
For ease of use of our method, we developed a web application, miRinGO, using the 

R Shiny package [37]. The miRinGO user interface has two panels as shown in Figure 6, 
the left one for input data and parameters selection and the right one for displaying the 
miRNA GO enrichment results. The enrichment results are provided in a table format and 
top GO terms are visualized using bar plot and word cloud. Word cloud visualization 
summarizes the most frequent words in enriched GO terms where the size of the word is 
proportional to how many times we see this word. The tool provides users with the ability 
to choose different input data and parameters as detailed in Supplementary Table S2. 
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Figure 6. User interface of miRinGO R shiny application. (A) input parameters; (B) Table with 
miRNA GO enrichment analysis; (C) Bar plot and word cloud summarizing the top enriched GO 
terms. 

4. Discussion 
We propose miRinGO, an easy-to-use tool that detects biological processes indirectly 

targeted by miRNAs transcriptionally through transcription factors. Using miRinGO, we 
can include potential target genes even if there is no physical interaction between miRNA 
and the regulated genes. In order to validate this method, we used a dataset of miRNAs 
and their known targeted GO terms [31]. Although this dataset is considered a significant 
step towards having a gold standard to validate different miRNA pathways or GO anal-
ysis tools, it is still limited to a fraction of human miRNAs and focused more on cardio-
vascular-related processes. Using this dataset, however, indirect targeting showed better 
performance in predicting known targeted processes compared to the direct targeting 
method, even if we use different fractions of input miRNA targets. It is also worth noting 
that although increasing the number of miRNA targets yielded better performance, using 
all of the targets did not give significantly better results compared to using the top 80% of 
targets and 40% of targets in the case of indirect and direct targeting, respectively. This 
could be due to the fact that miRNA target prediction tools suffer from having many false 
positives [37].  

Since our method is mainly focused on miRNA-targeted TFs and development-re-
lated GO terms or pathways have more TFs than other terms, it is more suitable to use 
this tool to uncover the tissue-specific roles of miRNAs in development and cell differen-
tiation. Using this method, we predicted biological pathways known to be targeted by 
miR-9, a miRNA with a known role in neurogenesis. Tan et al. [38] showed that miR-9 
regulates neural stem cell differentiation and proliferation by targeting the HES1 tran-
scription factor. Using indirect targeting, three genes related to neuron differentiation 
(FEZF2, SOX3 and ZHX2) that are predicted to be targeted by HES1 (but are not direct 
targets of miR-9-5p) are now included in GO enrichment analysis as indirect targets of 
miR-9-5p. 

One limitation of our method is that we use two sets of computationally predicted 
targets: one for miRNA direct targets and the other for tissue-specific TF targets. This 
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might increase the effect of false positives in miRNA GO enrichment analysis. This limi-
tation can be alleviated in the future by using 1) high-confidence miRNA targets (i.e., ones 
with smaller TargetScan context++ score) 2) experimentally-validated miRNA targets from 
databases such as TarBase [39] and miRTarBase [40] 3) experimentally-validated TF tar-
gets supported by chromatin immunoprecipitation followed by deep-sequencing analysis 
(ChIP-seq) experiments. Although our method outperformed the current miRNA GO 
analysis method, it is not intended to replace the standard miRNA GO analysis method 
but on the other hand, to give a different perspective of miRNA roles in regulating bio-
logical processes and to uncover ones that are previously overlooked by current tools, 
especially ones related to development and cell differentiation.  

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/ncrna9010011/s1, Table S1: gold standard dataset of mi-
croRNAs and their experimentally validated gene ontology (GO) terms; Table S2: detailed descrip-
tion of the user interface of miRinGO R Shiny application. 
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