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Abstract: LncRNAs are involved in regulatory processes in the human genome, including gene
expression. The rs35705950 SNP, previously associated with IPF, overlaps with the recently annotated
lncRNA AC061979.1, a 1712 nucleotide transcript located within the MUC5B promoter at chromo-
some 11p15.5. To document the expression pattern of the transcript, we processed 3.9 TBases of
publicly available RNA-SEQ data across 27 independent studies involving lung airway epithelial cells.
Epithelial lung cells showed expression of this putative pancRNA. The findings were independently
validated in cell lines and primary cells. The rs35705950 is found within a conserved region (from fish
to primates) within the expressed sequence indicating functional importance. These results implicate
the rs35705950-containing AC061979.1 pancRNA as a novel component of the MUC5B expression
control minicircuitry.

Keywords: non-coding RNA; MUC5B; IPF; rs35705950

1. Introduction

Human DNA consists of protein-coding regions and non-coding regions. Protein-
coding genomic regions are abundantly transcribed, evolutionarily conserved, mutationally
sensitive sequences which impact cellular phenotype. These constitute approximately 1% of
the human genome [1]. Non-coding regions of DNA, on the other hand, are more complex
and can be divided into at least five structural types: (i) binding motifs for regulatory
proteins, (ii) non-coding RNAs (ncRNAs), (iii) transposable elements, (iv) highly repetitive
DNA—essential in gene regulation and chromosome maintenance, and (v) pseudogenes [2,3].
In 2003, the ENCODE (Encyclopedia of DNA Elements) project was launched to identify
and classify functional elements in the human genome including non-coding transcripts.
The project continues to grow with the results being made available on Ensembl and UCSC
genome browser for both human and mouse [4].

Most of the ncRNAs predicted by ENCODE are expressed at low levels [4]. However,
their abundance is not a proxy for their functionality [5]. For example, the predicted
lncRNA ENST00000567151 or viability enhancing in lung Cancer transcript (VELUCT) was
found at only 0.01 copies per cell. Despite its low copy number, VELUCT expression was
reported to be upregulated by 5.2 fold in lung cancer cells, and its knockdown reduces the
viability of multiple lung-cancer cell lines by as much as 90% [6].
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Recently, lncRNAs (long ncRNAs) have been intensively studied due to their involve-
ment in cancer [7], neurological conditions [8], pulmonary diseases [9], and the regulation
of chromosome structure [10]. This research culminated in several published lncRNA
databases: NONCODE [11], Lnc2Cancer [12], LncRNADisease [13], and LncRNAdb [14].
LncRNAs can regulate expression via at least two mechanisms: cis-acting lncRNA (which
regulate expression of adjacent genes) and trans-acting lncRNAs (regulating the expres-
sion of distant genes on other chromosomes) [15]. Most pancRNAs (promoter associated
ncRNAs), to date, have been associated with an increased production of mRNA from the
adjacent protein-coding gene, suggesting that pancRNAs might contribute to gene expres-
sion regulation. Protein-coding genes that possess pancRNAs also exhibit tri-methylated
lysine 4 of histone 3 (H3K4me3) and acetylated lysine 27 of histone histone 3 (H3K27ac),
whereas the pancRNA-free genes appear to lack such epigenetic signatures [16]. However,
how pancRNAs change the expression of protein-coding genes remains unknown.

Furthermore, evidence is amassing concerning the expression of pancRNAs and the
occurrence of epigenetic changes. Thus, typically, when single nucleotide polymorphism
(SNPs) appear in such non-coding transcript loci, the associated pancRNA secondary
structure is disrupted, affecting expression patterns and impacting upon the function [17].
Whilst expression changes in high-copy-number lncRNA are easy to determine by routine
RNA-SEQ, the effect of SNPs resulting in small changes in lncRNA expression levels is
harder to study.

The G/T rs35705950 SNP found in the promoter of mucin 5B (MUC5B) on chromosome
11p15.5 [18,19] has one of the highest (∼40%) [20] and most reproducible associations with
idiopathic pulmonary fibrosis (IPF) across white, hispanic, and Asian populations [21–37],
with homozygous mutants exhibiting a higher risk of developing the disease [38] and
higher mortality [39]. The polymorphism is implicated in the elevated transcription and
translation of MUC5B in both healthy and diseased individuals [40]. This is evidenced via
episomal expression of luciferase driven by TT or GG MUC5B promoters cloned from IPF
patients in A549 alveolar epithelial cells [41]. Since MUC5B is one of the largest proteins
encoded in the human genome, excessive expression is proposed to lead to elevated endo-
plasmatic reticulum (ER) stress [42] through MUC5B protein recycling and the unfolded
protein response, increasing cell sensitivity to exogenous insults and pro-apoptotic phe-
notypes. This is exacerbated in alveolar lung epithelia, where MUC5B aberrant mRNA
expression is elevated but MUC5B protein production is not normally observed. Presently,
the polymorphism is thought to a) disrupt a 25 CpG motif differentially methylated region
which is, counterintuitively, hypermethylated in IPF, and b) enhance the binding of the
transcription factor Forkhead Box Protein A2 (FOXA2), 32 bp downstream of the SNP, as
evidenced by chromatin immunoprecipitation [18]. Given the distal effect of the SNP to
the FOXA2 binding site and the emerging role of pancRNA in transcription regulation,
we sought to determine whether an lncRNA transcript might be implicated in MUC5B
expression and its transcriptional dysregulation in the context of the rs35705950 SNP.

To this end, we analysed publicly deposited RNA-SEQ datasets. However, most
pipelines for novel transcript discovery are focused on small RNA populations or certain
RNA species [43], and RNA-SEQ workflows typically involve polyadenylated transcript
enrichment. This creates a classical signal-to-noise-ratio detection problem where selective
signal acquisition and amplification during sequencing-library preparation may reduce
non-polyadenylated transcript read frequencies to levels typically ascribed to background
noise. Inspired by the application of very long base interferometry in expanding obser-
vation dynamic range beyond standard signal-to-noise-ratio limitations through signal
integration from multiple sources operating similar data acquisition protocols [44], we
applied composite analysis of third-party RNA-SEQ datasets to reveal the existence of such
technically occluded transcripts. Overall, we describe a novel and simple computational
method for performing such de-novo lncRNA transcript searches by aggregating data from
diverse input sources, and focusing analytical efforts on the RNA-SEQ-verse to specific
genomic regions of interest.
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2. Results
2.1. Rediscovery of the Non-Coding Transcript AC061979.1 in the Promoter Region of the MUC5B Gene

To identify a putative non-coding transcript in a “dark” intergenic region on the p-
terminus of chromosome 11 on the human genome in the context of lung epithelia, we
manually collected and interrogated a total of 3.9 TBases of publicly available RNA-SEQ
data involving epithelial lung cells (see Table S1) to generate a summative transcriptional
signal of the AC061979.1 locus (see Figure 1A). Concomitantly, the GENCODE [45] release
32 (GRCh38) described the putative transcript AC061979.1 (chromosome 11:1,218,530–
1,220,242) mapping to the same region (see Figure 2). Interestingly, this novel lncRNA is
reported to be subject to splicing, with rs35705950 mapping to the second nucleotide of exon
2 and, therefore, possibly altering AC061979.1 splicing; however, no evidence of splicing
was immediately apparent through our analysis (see Figure 1) and no rs35705950-containing
RNA-SEQ data from lung epithelia were found among the surveyed studies, with the ex-
ception of three donor samples across two independent studies (SRP096589/GSE93526 and
SRP102483/GSE97036) where the expression of AC061979.1 was documented (see Table S1).

Manual inspection of each dataset indicated that almost all samples representing
lung epithelial cell lines or primary lung epithelial cells showed evidence of expression
in the locus. Of particular interest, however, was a dataset (SRP082973) that isolated only
basal cells from the epithelium. Thus, within the same study, we compared basal cell and
the epithelium (mix of basal, ciliated, columnar and secretory cells) RNA expression [46].
Interestingly, whilst reads from epithelial cell extracts mapped liberally to the AC061979.1
locus, sporadic alignments of only a couple of reads were detected among basal-cell RNA
(Figure 1). Given that basal cells are a sub-type of human-airway epithelial cells not
involved in mucous production, which act as stem cells for the other sub-types (ciliated,
columnar and secretory cells) [47], these results potentially show the activation of ncRNA
AC061979.1 after cell differentiation. Analysis of data from IPF studies (see Figure 1C)
involving lung tissue (GSE52463 or SRP033095), primary cells (GSE116086 or SRP151008),
and at single-cell level (GSE124685 or SRP175341) demonstrated only limited coverage
of the locus in line with the low expression level indicated elsewhere, and confirmed the
absence of AC061979.1 expression in fibroblasts. Taken together, these results suggest
that expression at AC061979.1 is detectable in lung epithelia irrespective of the biological
origin of the data or the precise sequencing protocol used, minimising the risk of batch-
associated effects.

To determine the evolutionary importance of the DNA sequence harbouring the
rs35705950 polymorphism, the human reference genome (GRCh38.p13) was aligned against
nine vertebrate genome seuqences: six mammals (Rhesus monkey, baboon, marmoset, pig,
sheep, rat, mouse), one fish (zebrafish) and one bird (chicken). High similarity was ob-
served in exonic regions across primates, with phylogenetically distant mammals showing
conservation only at the 5′ end of the second exon (see Figure 3A). This region appears to
harbour at least three conserved loci, including a FOXA2 binding motif and four SMAD
binding motifs, two of which reside in the putative intron (see Figure S1) and are found
across mammalian species (see Figure 3B).

Although AC061979.1 transcript abundance in other species is limited by the lack
of RNA-SEQ datasets to interrogate, taken together these results indicate a functional
significance for this pancRNA, with the G/T rs35705950 SNP possibly being involved in
differential splicing of AC061979.1.
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Figure 1. RNA-SEQ data processing results. Depth of coverage spanning chromosome 11: 1,218,530–
1,220,242 collected from (A) 27 studies (3.9 TBases), (B) a single dataset (SRP082973) comparing
epithelial to basal cell expression, and (C) 3 IPF-related lung-tissue (SRP033095) and fibroblast
(SRP151008 and SRP175341) studies. The position of rs35705950 is indicated by a red vertical line and
the AC061979.1, primary transcript and spliced exons are indicated in orange.

Figure 2. UCSC genome browser Genomic location of the annotated lncRNA AC061979.1. The puta-
tive pancRNA AC061979.1 is located on chromosome 11, at 1,218,530–1,220,242—green; the transcrip-
tion start site of MUC5B—dark blue; thick line—exons; thin line—introns; rs35705950—highlighted
in red.
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Figure 3. Conservation of the MUC5B-MUC5AC intergenic region across 10 species. (A) The genomic
sequences were aligned using AVID in mVISTA: global pair-wise alignment between ∼2000 nt
spanning the human AC061979.1 transcript and the whole intergenic region of the other species
(∼20,000 nt; Table S2). Coloured peaks (purple: AC061979.1 exons; pink: intergenic regions) indicate
at least 50 bp with 70% similarity. The grey rectangle indicates the conserved exon across mammals.
(B) Multiple Sequence Alignment by ClustalOmega in Jalview shows that 100 nucleotides downstream
of rs35705950 (red rectangle) there are (i) 15–25 bp conserved across mammals (purple shades by
nucleotide similarity percentage), (ii) a FOXA2 binding site (grey rectangle), and (iii) a third conserved
region approximately 10 nt downstream of the FOXA2 binding site.

2.2. MUC5B pancRNA Expression Validation

To independently validate the expression of AC061979.1, we first designed probe
hydrolysis RT-qPCR assays for the putative spliced variant and holotranscript. These
assays exhibited amplification efficiencies of 128.8% and 90.6% when tested against serial
dilutions of a spliced AC061979.1 geneblock or A549 cell DNA extracts, respectively. Next,
we obtained RNA extracts from adenocarcinoma human alveolar type-II epithelial cells
(A549 cells) and cystic-fibrosis bronchial epithelial cells (CFBE41o-) representing alveolar
and bronchial epithelial cells, respectively. To account for the potential impact of contact
inhibition effects on AC061979.1 expression, total RNA was extracted at low (<30%) and
high (>70%) confluence, and expression of the two AC061979.1 variants was assessed
against 18S rRNA and MUC5B, across serial dilutions of total RNA. These analyses indi-
cated that only the AC061979.1 full transcript was detectable, albeit at a very low copy
number (see Figure 4). Thus, at 50 ng of RNA input per RT-PCR reaction, in A549 cells the
paRNA ∆Ct to 18S was 22.44 (±5.94) at high confluence vs 24.12 (±3.16) at low confluence,
whereas in CFBE41o- the ∆Ct was 21.92 (±5.53) at high confluence vs 28.59 (±0.81) at low
confluence (n = 3). Of note is that where RNA extraction resulted in higher Ct values for
18S, the capacity to detect the pancRNA transcript was lost as concentrations dropped
below the assay limit of detection, justifying the very high load of RNA template in the
RT-PCR reactions.
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Figure 4. AC061979.1 expression validation in cell culture. Two-fold serial dilutions of A549 (A,B) and
CFBE41o- (C,D) RNA extracts obtained from low- (<30%; (A,C)) and high- (>70%; (B,D)) confluence
cells were analysed by probe hydrolysis RT-qPCR for 18S rRNA (triangle), MUC5B (diamond) and
AC061979.1 pancRNA (square) expression across two-fold serial dilutions, with a no RT of AC061979.1
reaction set included as a negative control (grey circles). Data are expressed in log2-linear scale and
are representative of three independent biological experiments and dual technical replicate Ct’s
points shown.

The same assays were perfomed with undifferentiated (basal) and ALI differentiated
HAEpCs. The basal cells were cultivated to a confluence of 40–50% before extracting total
RNA. Of the two AC061979.1 transcripts, only the full variant was detectable (36.19 ± 0.29),
whereas the spliced variant was not detectable. Interestingly, MUC5B levels were below
the assay detection limit; 18S was detected at a Ct of 10.63 (±0.14). ALI-differentiated
HAEpCs in control conditions showed similar values to the basal cells (36.84 ± 1.38),
whereas in IL-13-stimulated cells both AC061979.1 variants were below the detection limit.
In differentiated epithelia, Cts for 18S were low for both controls and IL-13-treated cells
(7.97 ± 0.06 and 8.53 ± 0.08, respectively). Similarly, to the basal cells, MUC5B was not
detectable. Efforts to define the 5′ and 3′ ends of the transcript by RLM-RACE failed
to produce sequencing-grade amplicons, probably due to the low expression level of
the transcript.

To ascertain the relevance of the FOXA2 binding motif in exon 2 of AC061979.1, we
examined FOXA2 expression levels in A549 cells and HAEpCs. This analysis indicated
no statistically significant difference between A549 cells at different confluence levels
(p = 0.1000), but a 10.6 ± 2.77-fold reduction in FOXA2 levels after IL-13 stimulation
(p < 0.0001) consistent with the loss of AC061979.1 (see Figure S2).

3. Discussion

MUC5B dysregulation presently appears to be mechanistically involved in the de-
velopment of the underlying pathology, particularly in the context of the IPF-associated
SNP rs35705950. It contributes to mucus overproduction and expression in the alveolar
microenvironment, leading to micro-injuries to alveolar epithelium and, across the lifetime
of a carrier, excessive cell death and fibrosis [48]. Whilst in one study the polymorphism
was found in 51% of the patients with IPF, but in only 23% of the control group [18], it is
unclear at present if the onset of disease among rs35705950 positive controls is a matter of
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time, lifestyle, or additional genetic variability. However, the strong association and high
incidence rate of the polymorphism in IPF make a compelling case for lifestyle management
and preventative chronic or genome modifying treatments targeting MUC5B expression
repression and IPF, such as small interfering RNA, antisense or genome/prime editing.
The four putative SMAD binding sites within the AC061979.1 locus, four of which reside in
the proposed intron, suggest complex interplay between SMAD as an inducer and FOXA2
as a repressor of MUC5B.

Helling et al. (2017) reported a binding motif for FOXA2, located 32 bp downstream
of rs35705950, which overlaps with the second putative exon of the pancRNA AC061979.1,
as reported in GENCODE v32 (see Figure 2). The protein-coding gene for FOXA2 origi-
nates on chromosome 20, p11.21, between the lncRNA LINC00261 and LNCNEF. Whilst
LINC00261 (a.k.a. DEANR1 [49], FALCOR [50], and LCAL62 [51]) is widely studied for
its role in non-small cell lung cancer, no study exists on LNCNEF to date. LINC00261 is
an endoderm-associated lncRNA which recruits SMAD2/3 to induce the expression of
FOXA2 [49,51]. FOXA2 transcription factor is known to have a role in lung development
and homeostasis [52], MUC5B expression and IPF [53]; however, research in this area
is limited.

Our RNA-SEQ-verse survey did not return an explicit splicing signal in line with
RNA-SEQ observations associated with high copy number RNAs (see Figure 5); However,
if the proposed splicing event is confirmed, the location of the SNP raises the possibility
that aberrant AC061979.1 splicing might be occurring in the context of the rs35705950 SNP.
In turn, improper AC061979.1 splicing could be driving aberrant biochemistry on the locus
such as the FOXA2 association demonstrated by Helling et al. (2017). Such a finding would
introduce the additional option of a splice-correcting treatment in preventing the onset of
IPF among rs35705950 carriers. Importantly, this oligonucleotide therapeutic modality has
been approved for clinical use in Duchenne’s muscular dystrophies (eteplirsen) and spinal
muscular atrophy (nusinersen) without the need for drug-delivery solutions that otherwise
plague efficacious oligonucleotide therapies for the lung [54].

Figure 5. UCSC genome browser genomic location of the annotated lncRNA LINC00261 and FOXA2.
LINC00261 and lncRNA neighboring enhancer of FOXA2 (LNCNEF)—green; FOXA2—dark blue.

LncRNAs can form complex biological systems by binding to other RNA molecules,
regulatory proteins, or DNA. FENDRR is an lncRNA expressed in the nascent lateral
mesoderm, in the promoter of Forkhead Box F1 (FOXF1), where it forms a triple helix with
double-stranded DNA and increases the occupancy of the Polycomb repressive complex 2
(PRC2) at this site. Rescue experiments on FENDRR-knockdown cells wherein a construct
expressing the lncRNA was placed randomly in the genome showed its biological role
and that the transcript acts in trans [55]. Similarly, LINC00261-null cells were rescued by
viruses expressing FOXA2, in the transcriptional activation of FOXA2, which is upstream
of LINC00261 [49]. It is, thus, possible that the mechanism behind MUC5B regulation
involves an assembly between the pancRNA AC061979.1 and other regulatory proteins
or transcripts interacting with the promoter region of MUC5B acting in cis or in trans,
including the competitive binding of FOXA2 or SMAD2/3. Although Helling et al. (2017)
did not assess the importance of SMAD2/3 in MUC5B expression, Feldman et al. (2019)
showed that phosphorylated SMAD levels are low in mucosecretory cells, and the inflam-
matory TGF-beta-dependendent SMAD signaling inhibition enhanced mucin expression,
as well as goblet-cell metaplasia and hyperplasia, supporting a role for SMAD proteins in
MUC5B expression regulation [56]. Interactions with SMAD2/3 in the promoter of MUC5B
and AC061979.1 are indeed possible due to the presence of the canonical SMAD binding
element (SBE) CAGAC within the intronic region of the pancRNA, and the newly described
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GGC(GC)(CG) motif also known as 5GC SBE [57] within the first exon of AC061979.1 [56].
Moreover, SMAD2/3 does not necessarily need to occupy either of these SBEs on chromatin,
because SMAD2/3 does not occupy the SBEs located within the LINC00261 gene [49]: in-
stead, it interacts with LINC00261 directly at least under some experimental conditions [50].
LINC00261 is, therefore, an example of cis-acting ncRNA, whereas other lncRNAs such
as EMT-associated lncRNA induced by TGFbeta1 (ELIT-1) act in trans to bind SMAD to
SMAD binding elements (SBEs) such as the CAGAC box [58]. Disruption of this proposed
SMAD2/3, AC061979.1, and possibly the FOXA2 ribonucleoprotein and chromatin interac-
tion network at the MUC5B promoter by rs35705950, for example, due to aberrant splicing,
could explain MUC5B overexpression in IPF, given the pivotal role of SMAD proteins in
resolving goblet-cell metaplasia and hyperplasia in inflammatory pulmonary disease [56].

To date, the FOXA2 binding site 32 bp downstream of rs35705950 has been shown to
bind FOXA2 in episomal reporter systems but not by genome editing or CHIP-SEQ [18].
Our own genome-editing efforts with three separate single-guide RNAs to introduce the
rs35705950 G/T transversion at Chr11:1,219,991 in A549 cells in support of CHIP-SEQ,
RIP-SEQ, and proteomic experiments to resolve the MUC5B transcriptional complex, have
so far proven to irreparably affect cell viability or fail in generating any detectable editing
either by T7-EI or sequencing assays. Furthermore, no verified G/T or T/T lung epithelial
cell line is currently available to support such mechanistic studies. As lncRNA–protein
interaction is a hot research topic, recent studies have focused on developing computational
methods for predicting these complex networks [59–62]. It is, thus, anticipated that with
increasing understanding of lncRNA biology and characterisation of lncRNA structures
and families, additional insights into AC061979.1 function might be obtained.

In this study, we developed a simple-to-use method for the targeted mining of the RNA-
SEQ dataverse for lncRNA transcripts irrespective of their polyadenylation status. Our
method is achievable on a public server in Galaxy (galaxyproject.org) with an extensive easy-
to-follow guide available (see Scheme S1). It takes as input Sequence Read Archive (SRA)
codes and the output is a .TXT file reporting the depth of coverage per position making
end-user memory requirements compatible with standard desktop/laptop computers or
even smartphones. However, it can be adapted to run on a cluster without a graphical
user interface (GUI). Using this method, we have been able to amass evidence through the
analysis of 3.9 TBase of RNA-SEQ data across 27 publications documenting the expression
of a novel pancRNA overlapping the IPF-associated rs35705950 SNP implicated in MUC5B
overexpression, annotated as AC061979.1 by GENCODE. The results were replicated by
qRT-PCR in A549 cells and CFBE41o submerged cultures as well as in pHAECs.

4. Materials and Methods
4.1. RNA-SEQ Data Processing for Novel ncRNA Detection

To determine the existence of a MUC5B pancRNA, we manually collected publicly de-
posited RNA-SEQ data from 27 independent studies involving alveolar and bronchial sam-
ples from primary human tissue and in vitro experiments (see Table S1). RNA-SEQ reads
above Q20 were mapped to the human reference genome GRCh38.p13 using HISAT2 [63].
Mapped reads were filtered with samtools view [64] and only read pairs mapping to chro-
mosome 11, region 1,202,000–1,220,500, were kept. Subsequently, the depth of coverage per
base was extracted from all datasets and collapsed. The results were visualised in R Studio
(ggplot2). The pipeline can be performed in Galaxy (galaxyproject.org). An extensive
step-by-step guide is available as a supplementary file (Scheme S1).

4.2. Multiple Sequence Alignment

To demonstrate the evolutionary importance of the region overlapping the promoter
polymorphism rs35705950, we compared the human ncRNA with nucleotide sequences
of 10 other species from fish to primates. Rhesus monkey (Macaca mulatta), baboon (Papio
anubis), white-tufted-ear marmoset Callithrix jacchus, pig (Sus scrofa), sheep (Ovis aries),
Norvegian rat (Rattus norvegicus), house mouse (Mus musculus), chicken (Gallus gallus)
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and zebrafish (Danio rerio). Alignments of genome sequences were undertaken using
AVID and Shuffle-LAGAN programs implemented through mVISTA (http://genome.lbl.
gov/vista/mvista/submit.shtml, accessed on 10 January 2022) [65] with a match criterion
of 70% identity over 50bp [66]. All sequences used in analysis are included in Table S2.
Subsequently, we aligned the same genomic sequences with ClustalOmega for nucleotide-
by-nucleotide approach.

4.3. Cell Culture

A549 cell passages 10–12 were thawed, seeded on t25 flasks at 37 ◦C 5% CO2 in DMEM/F12
(1:1) (ThermoFisher Scientific, Cramlington, UK) with 10%FBS, +1% L-Glutamine, 1% Peni-
cillin/Streptomycin (Merck Life Science UK Ltd., Dorset, UK). Cells were cultivated till
50–60% confluency, then split in other t25 flasks until 20–30% confluency was reached
(usually 24h). CFBE41o- cells (passage 10–12) were thawed, then seeded on T25 flasks at
37 ◦C, 5% CO2 in MEM (Merck Life science UK limited) with 10% FBS, 1% L-Glutamine,
1% Pen/Strep (Merck Life Science UK Ltd.). Cells were cultivated till 50–60% then seeded
into new t25 flasks until 20–30% or 50–60% confluency was reached for subsequent low-
confluency or high-confluency total RNA extractions, respectively.

Primary human airway epithelial primary cells (pHAECs) from several donors (n = 1
basal cells, n = 4 ALI differentiated cells) were isolated from fresh tissues that were obtained
during tumor resections or lung transplantation with the full consent of patients (ethics
approval: ethics committee Medical School Hannover, project no. 2701-2015).

In addition, pHAECs basal cells (passage 4) were cultivated on T75 Flasks in airway
epithelial cell basal medium supplemented with airway epithelial cell growth medium sup-
plement pack and with 5 µg/mL Plasmocin prophylactic, 100 µg/mL Primocin and 10 µg/mL
Fungin (all from InvivoGen, Toulouse, France). Trypsinization with Promocell DetachKit
(Promocell, Heidelberg, Germany) and RNA etxraction was performed at ∼40–50% confluency.

pHAECs basal cell for air liquid interface (passage 2) were expanded as above in T75
flasks till 90% confluency. The cells were than trypsinized and seeded into Transwell filters
(6.5 mm diameter, 4 µm pore size, Corning Costar, Kaiserslauten, Germany). Filters, prior
to cell seeding, were coated with 100 µL collagen solution (StemCell Technologies, Saint
Égrève, France), and left to dry under sterile hood overnight. Subsequently, the filters were
exposed to UV light for 30 min and stored at 4 ◦C.

Cells were resuspended in growth medium, and 200 µL containing 4 × 104 cells were
added apically to each filter, an additional 600 µL of the medium were added basolaterally.
The medium was replaced every 48 h until 100% confluence was reached. Growth medium
was then removed from apical side and on the basolateral side it was replaced with ALI
differentiation medium ±10 ng/ml IL-13 (IL012; Merck Millipore). Once the ALI interface
was established, medium was exchanged every second day till day 25–28 on ALI. At the
endpoint of cultivation, RNA extraction was performed directly on the filter.

4.4. RNA Extraction

RNA extraction was carried out using the miRNeasy mini kit (Qiagen, Manchester,
UK). Briefly, cells were detached by trypsinisation then resuspended in 0.7 mL Qiazol Lysis
reagent with subsequent steps according to the supplier’s total RNA extraction protocol.

For pHAECs, cells were detached by trypsinisation then resuspended in 2.1 mL Lysis
Solution RL from my-Budget RNA Mini Kit (BioBudget, Krefeld, Germany), RNA isolation
was performed following the manufacturer protocol. If not used immediately after lysis, the
samples were stored at−80 ◦C. For pHAECs ALI cultures, 100 µL of Lysis Solution RL from the
same kit was added to the filters apically and the samples were immediately frozen at−80 ◦C.

4.5. DNase Treatment and cDNA Synthesis

Total RNA was DNase treated using the PrecisionTM DNase kit Primer Design
(Southampton, UK), following the manufacturer’s protocol. cDNA synthesis was car-
ried out using the High Capacity cDNA reverse Transcription Kit (Thermo Fisher scientific
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(ThermoFisher Scientific) following the manufacturers protocol. A total of 1000 ng of total
RNA was loaded into each 20 µL cDNA synthesis reaction.

For pHAEC cells, the cDNA synthesis from the extracted was performed using Super-
Script VILO cDNA Synthesis Kit (Thermo Fisher) following the manufacturer protocol. A
total of 400 ng of RNA were used for each reaction.

4.6. Real-Time Quantitative PCR

Custom primers and probes (Table S3) were designed using the PrimerQuestTM
tool (Integrated DNA Technologies BVBA, Leuven, Belgium) and validated against an
AC061979.1 geneblock (Integrated DNA Technologies) corresponding to the predicted
spliced transcript. Inventoried predesigned assays for 18S and MUC5B were purchased
from Thermo Fisher Scientific, and for FOXA2 from Qiagen. Real-time quantitative PCR
was performed in 10 µL reactions containing 5L TaqMan Fast Advanced Master Mix (2×)
(ThermoFisher Scientific), 900 nM forward primer, 900 nM reverse primer and 250nM probe
per reaction and 1µL template on a StepOnePlusTM real-time PCR system (Thermo Fisher
Scientific). After a UNG incubation at 50 ◦C for 2 min, initial denaturation at 95 ◦C for
2 min was followed by 40 cycles of 95 ◦C denaturation for 1 s and 60 ◦C anneal extension
for 20 s. Gene expression was calculated according to the delta Ct method [67]. Statistical
analyses on gene expression were performed on data expressed as a fold difference to high
confluence A549 samples, and control samples in a paired sample fashion for HAEpCs,
respectively. GraphPad Prism v.9.4.1 (GraphPad Software. LLC, San Diego, CA, USA)
was used for Kolmogorov–Smirnov tests for cell-line results and paired t tests for HAEpC
results. For RNA ligase-mediated 5′ and 3′ rapid amplification of cDNA ends (RLM-RACE),
the FirstChoice RLM-RACE kit was used according to the manufacturer’s instructions
(Thermo Fisher) using pancRNA gene-specific primers for RT-PCR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ncrna8060083/s1, Table S1: List of the studies used in the RNA-
SEQ meta-analysis; Table S2: Overview of the intergenic region between MUC5AC and MUC5B and
the rs35705950-MUC5B transcription-start-site (TSS) distance across four species; Table S3: Primers
and probes used in the study; Scheme S1: Extensive workflow of the RNA-SEQ meta-analysis;
Figure S1: AC061979.1—DNA Sequence. Uper case letters—exons; lower case letters—intron; green
highlight—SMAD2/3 binding motif; pink highlight—FOXA2 binding motif; Figure S2: FOXA2
expression levels in A549 and HAEpC’s. The levels of FOXA2 mRNA were determined in A549 cells
at low and high con uence levels and HAEpC’s with and without IL-13 stimulation. Expression, nor-
malised to 18S rRNA levels, was calculated relative to high con uence A549s or paired unstimulated
HAEpC’s. ****: p < 0.0001.

Author Contributions: Conceptualization, S.A.M.; methodology, R.N., I.E., G.F., G.A. and M.F.;
software, R.N.; validation, D.J.T.; formal analysis, R.N.; investigation, R.N; resources, E.C.S., S.A.M.
and P.B.; data curation, R.N.; writing—original draft preparation, R.N.; writing—review and editing,
S.A.M. and E.C.S.; visualization, R.N.; supervision, S.A.M., S.V. and M.F.; project administration,
S.A.M.; funding acquisition, S.A.M. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the ethics committee Medical School Hannover (project no.
2701-2015, approved on 23 April 2015.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. The SRA/GSM
accession numbers for each study can be found in Supplementary Table S2.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ncrna8060083/s1
https://www.mdpi.com/article/10.3390/ncrna8060083/s1


Non-Coding RNA 2022, 8, 83 11 of 13

References
1. Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 2008,

134, 25–36. [CrossRef] [PubMed]
2. Chen, Y.G.; Satpathy, A.T.; Chang, H.Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 2017,

18, 962–972. [CrossRef] [PubMed]
3. Palazzo, A.F.; Gregory, T.R. The case for junk DNA. PLoS Genet. 2014, 10, e1004351. [CrossRef]
4. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57.

[CrossRef] [PubMed]
5. Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015, 6, 2. [CrossRef] [PubMed]
6. Seiler, J.; Breinig, M.; Caudron-Herger, M.; Polycarpou-Schwarz, M.; Boutros, M.; Diederichs, S. The lncRNA VELUCT strongly

regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Res. 2017, 45, 5458–5469. [CrossRef]
7. Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1,

a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene
2003, 22, 8031–8041. [CrossRef]

8. Bahrami, T.; Taheri, M.; Omrani, M.D.; Karimipoor, M. Associations Between Genomic Variants in lncRNA-TRPM2-AS and
lncRNA-HNF1A-AS1 Genes and Risk of Multiple Sclerosis. J. Mol. Neurosci. 2020, 70, 1050–1055. [CrossRef]

9. Kumar, P.; Sen, C.; Peters, K.; Frizzell, R.A.; Biswas, R. Comparative analyses of long non-coding RNA profiles in vivo in cystic
fibrosis lung airway and parenchyma tissues. Respir. Res. 2019, 20, 284. [CrossRef]

10. Gendrel, A.V.; Heard, E. Fifty years of X-inactivation research. Development 2011, 138, 5049–5055. [CrossRef]
11. Zhao, Y.; Li, H.; Fang, S.; Kang, Y.; Wu, W.; Hao, Y.; Li, Z.; Bu, D.; Sun, N.; Zhang, M.Q.; et al. NONCODE 2016: an informative

and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016, 44, D203–D208. [CrossRef] [PubMed]
12. Ning, S.; Zhang, J.; Wang, P.; Zhi, H.; Wang, J.; Liu, Y.; Gao, Y.; Guo, M.; Yue, M.; Wang, L.; et al. Lnc2Cancer: a manually curated

database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res. 2016, 44, D980–D985.
[CrossRef] [PubMed]

13. Chen, G.; Wang, Z.; Wang, D.; Qiu, C.; Liu, M.; Chen, X.; Zhang, Q.; Yan, G.; Cui, Q. LncRNADisease: A database for
long-non-coding RNA-associated diseases. Nucleic Acids Res. 2012, 41, D983–D986. [CrossRef] [PubMed]

14. Quek, X.C.; Thomson, D.W.; Maag, J.L.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2. 0:
Expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015, 43, D168–D173. [CrossRef]

15. Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 2013, 10, 924–933. [CrossRef]
16. Uesaka, M.; Agata, K.; Oishi, T.; Nakashima, K.; Imamura, T. Evolutionary acquisition of promoter-associated non-coding RNA

(pancRNA) repertoires diversifies species-dependent gene activation mechanisms in mammals. BMC Genom. 2017, 18, 285.
[CrossRef]

17. Minotti, L.; Agnoletto, C.; Baldassari, F.; Corrà, F.; Volinia, S. SNPs and somatic mutation on long non-coding RNA: New frontier
in the cancer studies? High-Throughput 2018, 7, 34. [CrossRef]

18. Helling, B.A.; Gerber, A.N.; Kadiyala, V.; Sasse, S.K.; Pedersen, B.S.; Sparks, L.; Nakano, Y.; Okamoto, T.; Evans, C.M.; Yang, I.V.;
et al. Regulation of MUC5B expression in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2017, 57, 91–99. [CrossRef]

19. Evans, C.M.; Fingerlin, T.E.; Schwarz, M.I.; Lynch, D.; Kurche, J.; Warg, L.; Yang, I.V.; Schwartz, D.A. Idiopathic pulmonary
fibrosis: A genetic disease that involves mucociliary dysfunction of the peripheral airways. Physiol. Rev. 2016, 96, 1567–1591.
[CrossRef]

20. Seibold, M.A.; Wise, A.L.; Speer, M.C.; Steele, M.P.; Brown, K.K.; Loyd, J.E.; Fingerlin, T.E.; Zhang, W.; Gudmundsson, G.;
Groshong, S.D.; et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. New Engl. J. Med. 2011, 364, 1503–1512.
[CrossRef]

21. Noth, I.; Zhang, Y.; Ma, S.F.; Flores, C.; Barber, M.; Huang, Y.; Broderick, S.M.; Wade, M.S.; Hysi, P.; Scuirba, J.; et al. Genetic
variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: A genome-wide association study. Lancet
Respir. Med. 2013, 1, 309–317. [CrossRef] [PubMed]

22. Dressen, A.; Abbas, A.R.; Cabanski, C.; Reeder, J.; Ramalingam, T.R.; Neighbors, M.; Bhangale, T.R.; Brauer, M.J.; Hunkapiller, J.;
Reeder, J.; et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant
status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir. Med. 2018, 6, 603–614.
[CrossRef] [PubMed]

23. Hobbs, B.D.; Putman, R.K.; Araki, T.; Nishino, M.; Gudmundsson, G.; Gudnason, V.; Eiriksdottir, G.; Zilhao Nogueira, N.R.;
Dupuis, J.; Xu, H.; et al. Overlap of genetic risk between interstitial lung abnormalities and idiopathic pulmonary fibrosis. Am. J.
Respir. Crit. Care Med. 2019, 200, 1402–1413. [CrossRef] [PubMed]

24. Wang, C.; Zhuang, Y.; Guo, W.; Cao, L.; Zhang, H.; Xu, L.; Fan, Y.; Zhang, D.; Wang, Y. Mucin 5B promoter polymorphism is
associated with susceptibility to interstitial lung diseases in Chinese males. PLoS ONE 2014, 9, e104919. [CrossRef]

25. Hunninghake, G.M.; Hatabu, H.; Okajima, Y.; Gao, W.; Dupuis, J.; Latourelle, J.C.; Nishino, M.; Araki, T.; Zazueta, O.E.; Kurugol,
S.; et al. MUC5B promoter polymorphism and interstitial lung abnormalities. New Engl. J. Med. 2013, 368, 2192–2200. [CrossRef]

26. Van der Vis, J.J.; Snetselaar, R.; Kazemier, K.M.; ten Klooster, L.; Grutters, J.C.; van Moorsel, C.H. Effect of M uc5b promoter
polymorphism on disease predisposition and survival in idiopathic interstitial pneumonias. Respirology 2016, 21, 712–717.
[CrossRef]

http://doi.org/10.1016/j.cell.2008.06.030
http://www.ncbi.nlm.nih.gov/pubmed/18614008
http://dx.doi.org/10.1038/ni.3771
http://www.ncbi.nlm.nih.gov/pubmed/28829444
http://dx.doi.org/10.1371/journal.pgen.1004351
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.3389/fgene.2015.00002
http://www.ncbi.nlm.nih.gov/pubmed/25674102
http://dx.doi.org/10.1093/nar/gkx076
http://dx.doi.org/10.1038/sj.onc.1206928
http://dx.doi.org/10.1007/s12031-020-01504-z
http://dx.doi.org/10.1186/s12931-019-1259-8
http://dx.doi.org/10.1242/dev.068320
http://dx.doi.org/10.1093/nar/gkv1252
http://www.ncbi.nlm.nih.gov/pubmed/26586799
http://dx.doi.org/10.1093/nar/gkv1094
http://www.ncbi.nlm.nih.gov/pubmed/26481356
http://dx.doi.org/10.1093/nar/gks1099
http://www.ncbi.nlm.nih.gov/pubmed/23175614
http://dx.doi.org/10.1093/nar/gku988
http://dx.doi.org/10.4161/rna.24604
http://dx.doi.org/10.1186/s12864-017-3662-1
http://dx.doi.org/10.3390/ht7040034
http://dx.doi.org/10.1165/rcmb.2017-0046OC
http://dx.doi.org/10.1152/physrev.00004.2016
http://dx.doi.org/10.1056/NEJMoa1013660
http://dx.doi.org/10.1016/S2213-2600(13)70045-6
http://www.ncbi.nlm.nih.gov/pubmed/24429156
http://dx.doi.org/10.1016/S2213-2600(18)30135-8
http://www.ncbi.nlm.nih.gov/pubmed/29891356
http://dx.doi.org/10.1164/rccm.201903-0511OC
http://www.ncbi.nlm.nih.gov/pubmed/31339356
http://dx.doi.org/10.1371/journal.pone.0104919
http://dx.doi.org/10.1056/NEJMoa1216076
http://dx.doi.org/10.1111/resp.12728


Non-Coding RNA 2022, 8, 83 12 of 13

27. Wei, R.; Li, C.; Zhang, M.; Jones-Hall, Y.L.; Myers, J.L.; Noth, I.; Liu, W. Association between MUC5B and TERT polymorphisms
and different interstitial lung disease phenotypes. Transl. Res. 2014, 163, 494–502. [CrossRef]

28. Peljto, A.L.; Zhang, Y.; Fingerlin, T.E.; Ma, S.F.; Garcia, J.G.; Richards, T.J.; Silveira, L.J.; Lindell, K.O.; Steele, M.P.; Loyd, J.E.; et al.
Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA
2013, 309, 2232–2239. [CrossRef]

29. Peljto, A.L.; Selman, M.; Kim, D.S.; Murphy, E.; Tucker, L.; Pardo, A.; Lee, J.S.; Ji, W.; Schwarz, M.I.; Yang, I.V.; et al. The MUC5B
promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries.
Chest 2015, 147, 460–464. [CrossRef]

30. Stock, C.J.; Sato, H.; Fonseca, C.; Banya, W.A.; Molyneaux, P.L.; Adamali, H.; Russell, A.M.; Denton, C.P.; Abraham, D.J.; Hansell,
D.M.; et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of
lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 2013, 68, 436–441. [CrossRef]

31. Borie, R.; Crestani, B.; Dieude, P.; Nunes, H.; Allanore, Y.; Kannengiesser, C.; Airo, P.; Matucci-Cerinic, M.; Wallaert, B.; Israel-Biet,
D.; et al. The MUC5B variant is associated with idiopathic pulmonary fibrosis but not with systemic sclerosis interstitial lung
disease in the European Caucasian population. PLoS ONE 2013, 8, e70621. [CrossRef] [PubMed]

32. Kishore, A.; Žižková, V.; Kocourková, L.; Petrkova, J.; Bouros, E.; Nunes, H.; Loštáková, V.; Müller-Quernheim, J.; Zissel, G.;
Kolek, V.; et al. Association study for 26 candidate loci in idiopathic pulmonary fibrosis patients from four European populations.
Front. Immunol. 2016, 7, 274. [CrossRef] [PubMed]

33. Zhu, Q.Q.; Zhang, X.L.; Zhang, S.M.; Tang, S.W.; Min, H.Y.; Yi, L.; Xu, B.; Song, Y. Association between the MUC5B promoter
polymorphism rs35705950 and idiopathic pulmonary fibrosis: A meta-analysis and trial sequential analysis in Caucasian and
Asian populations. Medicine 2015, 94. [CrossRef] [PubMed]

34. Horimasu, Y.; Ohshimo, S.; Bonella, F.; Tanaka, S.; Ishikawa, N.; Hattori, N.; Kohno, N.; Guzman, J.; Costabel, U. MUC 5 B
promoter polymorphism in J apanese patients with idiopathic pulmonary fibrosis. Respirology 2015, 20, 439–444. [CrossRef]
[PubMed]

35. Deng, Y.; Li, Z.; Liu, J.; Wang, Z.; Cao, Y.; Mou, Y.; Fu, B.; Mo, B.; Wei, J.; Cheng, Z.; et al. Targeted resequencing reveals genetic
risks in patients with sporadic idiopathic pulmonary fibrosis. Hum. Mutat. 2018, 39, 1238–1245. [CrossRef]

36. Mathai, S.K.; Humphries, S.; Kropski, J.A.; Blackwell, T.S.; Powers, J.; Walts, A.D.; Markin, C.; Woodward, J.; Chung, J.H.; Brown,
K.K.; et al. MUC5B variant is associated with visually and quantitatively detected preclinical pulmonary fibrosis. Thorax 2019,
74, 1131–1139. [CrossRef]

37. Lorenzo-Salazar, J.M.; Ma, S.F.; Jou, J.; Hou, P.C.; Guillen-Guio, B.; Allen, R.J.; Jenkins, R.G.; Wain, L.V.; Oldham, J.M.; Noth, I.;
et al. Novel idiopathic pulmonary fibrosis susceptibility variants revealed by deep sequencing. ERJ Open Res. 2019, 5. [CrossRef]

38. Moore, C.; Blumhagen, R.Z.; Yang, I.V.; Walts, A.; Powers, J.; Walker, T.; Bishop, M.; Russell, P.; Vestal, B.; Cardwell, J.; et al.
Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary
fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 199–208. [CrossRef]

39. Jiang, H.; Hu, Y.; Shang, L.; Li, Y.; Yang, L.; Chen, Y. Association between MUC5B polymorphism and susceptibility and severity
of idiopathic pulmonary fibrosis. Int. J. Clin. Exp. Pathol. 2015, 8, 14953.

40. Stock, C.J.; Conti, C.; Montero-Fernandez, Á.; Caramori, G.; Molyneaux, P.L.; George, P.M.; Kokosi, M.; Kouranos, V.; Maher, T.M.;
Chua, F.; et al. Interaction between the promoter MUC5B polymorphism and mucin expression: is there a difference according to
ILD subtype? Thorax 2020, 75, 901–903. [CrossRef]

41. Nakano, Y.; Yang, I.V.; Walts, A.D.; Watson, A.M.; Helling, B.A.; Fletcher, A.A.; Lara, A.R.; Schwarz, M.I.; Evans, C.M.; Schwartz,
D.A. MUC5B promoter variant rs35705950 affects MUC5B expression in the distal airways in idiopathic pulmonary fibrosis. Am.
J. Respir. Crit. Care Med. 2016, 193, 464–466. [CrossRef] [PubMed]

42. Chen, G.; Ribeiro, C.M.; Sun, L.; Okuda, K.; Kato, T.; Gilmore, R.C.; Martino, M.B.; Dang, H.; Abzhanova, A.; Lin, J.M.; et al.
XBP1S regulates MUC5B in a promoter variant–dependent pathway in idiopathic pulmonary fibrosis airway epithelia. Am. J.
Respir. Crit. Care Med. 2019, 200, 220–234. [CrossRef] [PubMed]

43. Di Bella, S.; La Ferlita, A.; Carapezza, G.; Alaimo, S.; Isacchi, A.; Ferro, A.; Pulvirenti, A.; Bosotti, R. A benchmarking of pipelines
for detecting ncRNAs from RNA-Seq data. Briefings Bioinform. 2020, 21, 1987–1998. [CrossRef] [PubMed]

44. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First
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