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Abstract: Long noncoding RNAs (lncRNAs) play critical regulatory roles in human development and
disease. Although there are over 100,000 samples with available RNA sequencing (RNA-seq) data,
many lncRNAs have yet to be annotated. The conventional approach to identifying novel lncRNAs
from RNA-seq data is to find transcripts without coding potential but this approach has a false
discovery rate of 30–75%. Other existing methods either identify only multi-exon lncRNAs, missing
single-exon lncRNAs, or require transcriptional initiation profiling data (such as H3K4me3 ChIP-seq
data), which is unavailable for many samples with RNA-seq data. Because of these limitations,
current methods cannot accurately identify novel lncRNAs from existing RNA-seq data. To address
this problem, we have developed software, Flnc, to accurately identify both novel and annotated
full-length lncRNAs, including single-exon lncRNAs, directly from RNA-seq data without requiring
transcriptional initiation profiles. Flnc integrates machine learning models built by incorporating
four types of features: transcript length, promoter signature, multiple exons, and genomic location.
Flnc achieves state-of-the-art prediction power with an AUROC score over 0.92. Flnc significantly
improves the prediction accuracy from less than 50% using the conventional approach to over 85%.
Flnc is available via GitHub platform.

Keywords: lncRNA; machine learning; RNA-seq; tool; unannotated

1. Introduction

Only approximately 1% of the human genome and less than 3% of RNA transcripts
encode proteins [1]. Long noncoding RNAs (lncRNAs) are a subset of noncoding RNAs
longer than 200 nucleotides. Similar to messenger RNAs (mRNAs), most lncRNAs contain
5′ caps and 3′ polyadenylation (polyA) tails [2]. lncRNAs play regulatory roles in numerous
biological processes, including human stem cell development and immunity [2–9], and they
have been implicated in many diseases, including neurological disorders, cardiovascular,
lung, and liver diseases, infectious diseases, and cancer [9–11]. lncRNAs are also associated
with complex genetic traits, playing important roles in gene regulation by functioning
as protein scaffolds, guiding DNA–protein interactions, controlling post-transcriptional
regulation, and functioning as cis-regulatory elements at enhancers [12]. However, because
evolutionary constraints in noncoding regions are lower than in coding regions, lncRNAs
are less conserved and evolve faster than coding genes [13]. Increasingly, studies have
shown that lncRNAs exhibit striking disease-specific expression patterns and are potential
drivers and modifiers of disease [2,14]. Current databases, such as GENCODE [15], NON-
CODE [16], and LNCipedia [17], lack annotations for many disease- or cell-type-specific

Non-Coding RNA 2022, 8, 70. https://doi.org/10.3390/ncrna8050070 https://www.mdpi.com/journal/ncrna

https://doi.org/10.3390/ncrna8050070
https://doi.org/10.3390/ncrna8050070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ncrna
https://www.mdpi.com
https://orcid.org/0000-0002-3032-7966
https://doi.org/10.3390/ncrna8050070
https://www.mdpi.com/journal/ncrna
https://www.mdpi.com/article/10.3390/ncrna8050070?type=check_update&version=1


Non-Coding RNA 2022, 8, 70 2 of 18

lncRNAs. For example, we previously found that approximately 40% of lncRNAs expressed
in human hepatic stellate cells are not yet included in the database [18]. Therefore, it is
critical to create a universal tool for the identification of novel lncRNAs which have not
been annotated in the current databases, and this tool can be applied across various diseases
and developmental processes.

Advances in high-throughput sequencing techniques have produced a large amount
of publicly available RNA sequencing data from various tissues, cell lines, and disease
models. To date, there are more than 12,700 study series in the NCBI Gene Expression
Omnibus (GEO) database with available RNA-seq datasets. This large amount of data offers
great opportunities to identify novel lncRNAs expressed in specific biological samples. In
addition, the rapid development of computational methods for analyzing sequencing data,
including methods for transcript assembly (e.g., Scripture [19], Trinity [20], Cufflink [21],
StringTie [22], Strawberry [23], and TransComb [24]) and methods for examining the
coding abilities of transcripts (e.g., CPAT [25], LGC [26], PLEK [27], and CPPred [28]),
have allowed researchers to generate catalogs of putative lncRNAs—assembled transcripts
without protein-coding potential.

However, these methods cannot distinguish between true lncRNAs and false lncRNAs
among the putative lncRNAs. Most false lncRNAs are nonfunctional transcribed fragments
and transcriptional noise. Unlike the false lncRNAs, true lncRNAs are high-confidence full-
length lncRNA transcripts that include transcriptional start sites (TSSs). Additionally, true
lncRNAs cannot be distinguished from false lncRNAs based purely on expression levels,
because some known functional lncRNAs have low expression levels, such as VELUCT [29].

Several approaches have been developed which improve the accuracy of true lncRNAs
identification, including examining mammalian conservation, selecting multiple-exon
transcripts, or integrating additional transcriptional initiation data to determine TSSs. Each
of these suffers from drawbacks. Approaches that identify lncRNA using mammalian
conservation [30,31] can fail to detect human-specific lncRNAs, whereas selecting only
multiple-exon transcripts to identify multiple-exon lncRNAs have improved accuracy, but
will fail to detect single-exon lncRNAs [32]. As over 3000 single-exon lncRNA transcripts
have been curated in the GENCODE database, excluding single-exon transcripts in lncRNA
identification will overlook many important single-exon lncRNAs. For example, MALAT1
is a single-exon lncRNA with critical functions in various diseases, ranging from diabetes
to cancer [33]. The trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin
modification known to mark transcription start sites of active genes [34], including lncRNA
genes. Therefore, H3K4me3 profiling data (ChIP-seq or CUT-RUN seq data) are commonly
used to identify lncRNAs. However, this approach relies on the existence of matched
H3K4me3 profiling data and over 96% of the study series with available RNA-seq data in
the GEO database lack matched H3K4me3 profiling data. Generating matched H3K4me3
data is often impractical due to limitations on cost, time, and sample availability. This is
especially true for patient-derived clinical samples. Therefore, we sought to improve the
accuracy of novel lncRNA identification directly from stand-alone (lacking transcription
initiation profiles) RNA-seq data.

We developed a machine learning (ML)-based method to distinguish between true and
false lncRNAs. Incorporating this new method, we developed Flnc, a software program
that can directly identify true lncRNAs, including novel and annotated lncRNAs, from
stand-alone RNA-seq data. We assessed Flnc by comparing the results produced using only
RNA-seq data to our previous method [18], which uses RNA-seq and H3K4me3 ChIP-seq
data. In five independent test datasets, the Flnc pipeline significantly reduced the rate of
false positives and achieved over 85% prediction accuracy, significantly outperforming the
prediction accuracy of the conventional RNA-seq only method (50%). The Flnc pipeline
integrates pre-processing, mapping, transcript assembly, evaluation of protein-coding
ability, and evaluation of transcripts using our machine-learning algorithm. The Flnc
pipeline, which is implemented on the user-friendly Singularity platform, has minimal pre-
requisites and is easily portable. The Flnc can also run with parallelize tasks to optimizes
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computing resources. The Flnc is accessible from https://github.com/CZhouLab/Flnc
(accessed on 10 September 2022).

2. Results
2.1. Generation of a Benchmark Dataset of True and False lncRNAs

To benchmark our new tool, we first updated our previous computational pipeline to
use the latest available tools [18,35] (Figure 1A, see Section 4). This pipeline distinguishes
between true and false lncRNAs by first identifying putative lncRNAs from raw RNA-seq
data, then examining if putative lncRNAs have H3K4me3 peaks near their 5′ ends. When
we applied this pipeline to the 46 publicly available datasets with matched RNA-seq and
ChIP-seq data, we identified hundreds to thousands of true and false lncRNAs in each
individual dataset (Supplementary Figure S1A). Each putative lncRNA found within every
dataset was counted as one data point, and this resulted in a total of 244,412 putative
lncRNA data points. These putative lncRNAs include 95,265 true lncRNA data points and
149,147 false lncRNA data points. These true and false lncRNA data points constitute our
benchmark dataset.

Among all putative lncRNAs in the benchmark dataset, 39% are true lncRNAs, which
are supported by both RNA-seq and H3K4me3 ChIP-seq data; these transcripts, with clearly
defined transcription start sites (Figure 1C,D), we call true lncRNA. Among these true
lncRNAs, 43,941 (over 46%) lncRNAs have not been annotated in the GENCODE database
and are called novel lncRNAs.

For the remaining 61% of the putative lncRNAs, we could not locate a transcription
start site (Figure 1E–G and Supplementary Figure S1B). These transcripts would be iden-
tified as false positive lncRNAs by an RNA-seq only pipeline. Using these criteria, we
determined that 30–75% of the putative lncRNAs in each individual dataset were not true
lncRNAs (Figure 1E–G and Supplementary Figure S1B). Therefore, without H3K4me3
ChIP-seq data, 30–75% of putative lncRNAs identified from stand-alone RNA-seq can be
expected to be false hits.

For each lncRNA track, H3K4me3 peaks mark the site of transcription initiation (black,
top). RNA-seq reads supporting true lncRNA transcripts are shown in red (RNA-seq
sense). RNA-seq reads supporting annotated genes in the sense strand are shown in green
(RNA-seq sense). Antisense transcripts are shown in blue. RNA-seq reads supporting false
lncRNAs are shown in gray or in green when these reads continue the RNA-seq reads
of supporting protein-coding transcripts. The genomic structure for each gene is shown
below the RNA-seq tracks. True lncRNAs are shown in red, false lncRNA are shown in
grey, annotated genes in the antisense strand are shown in blue, and annotated genes in the
sense strand are shown in green. Boxes represent exons, lines represent introns, and arrows
represent the start and direction of transcription. Two annotated genes, LOC100287042
and PURPL, have multiple isoforms. True lncRNAs identified in this study are named
with the prefix “lncRNA” followed by the locus number assigned during assembly. False
lncRNAs are named with the prefix “false-lnc” followed by the locus number assigned
during assembly.

https://github.com/CZhouLab/Flnc
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Figure 1. Identification of true and false lncRNAs. (A) Flowchart of the standard computational
pipeline for identifying true and false lncRNAs (see Section 4 for details). The identified true lncRNAs
include both novel and annotated lncRNAs. The standard pipeline requires both RNA-seq data
and H3K4me3 ChIP-seq data generated from the same sample. (B) Flowchart of Flnc pipeline. Flnc
integrates machine learning models to identify true and false lncRNAs directly from RNA-seq data,
without matched H3K4me3 profiles. The Flnc pipeline includes two steps: first, Flnc identifies putative
lncRNAs from RNA-seq data (see Section 4 for details). Then, Flnc classifies putative lncRNAs as true
or false based on built-in machine learning models. The true lncRNAs predicted by Flnc include both
novel and annotated lncRNAs. (C) A novel true lncRNA detected in Dataset 5. lncRNA-28245 (red) is
located in an intergenic region on chromosome 3. The characteristic H3K4me3 peak identifies it as a
true lncRNA. (D) A novel true lncRNA identified in Dataset 12. lncRNA-33060 (red) is located on
the sense strand and transcribed divergently from the promoter of the protein-coding DSCC1 (blue)
gene. (E) A false lncRNA identified in Dataset 5. False-lnc-18524.1 (grey) is located downstream
of LOC100287042 (green) and antisense to SLC25A19 (blue). This false lncRNA is supported by
an abundance of RNA-seq reads but lacks H3K4me3 peaks at the 5′ end. The false-lncRNA could
be a fragment of an isoform transcript of the LOC100287042 gene. (F) An intergenic false lncRNA
identified in Dataset 5. This lncRNA is supported by an abundance of RNA-seq reads but lacks
a H3K4me3 peak at the 5′ end. (G) A false lncRNA identified in Dataset 6. False-lnc-36299 (grey)
is downstream of the protein-coding gene PURPL (green). Compared to PURPL, false-lnc-36299 is
expressed at relatively low levels; therefore, it may be the result in RNA polymerase continuing
beyond the polyA signal sequences when transcribing PURPL (transcriptional noise) [36,37].

2.2. Four Genomic Features Can Be Used to Distinguish True and False lncRNAs

To build a new pipeline (Figure 1B) which can identify lncRNAs from RNA-seq data
lacking matched H3K4me3 ChIP-seq data, we first needed to determine which features
could distinguish between true and false lncRNA. We hypothesized that a combination of
four types of features, transcript length, promoter signature, multiple exons, and genomic
location, would provide enough information to distinguish between true and false lncRNAs.
Therefore, we used our benchmark dataset to examine these features in true and false
lncRNAs.

Most false lncRNAs are transcript fragments or transcriptional noise. Therefore, we
hypothesized that true lncRNAs would tend to be longer than false lncRNAs. To test this
hypothesis, we examined the transcript length of all putative lncRNAs in the benchmark
dataset. Read length and sequencing depth differ across various RNA-seq datasets and
these factors affect transcript assembly [38–40]. To control for these differences, for each of
the 46 datasets, we normalized the transcript length of putative lncRNAs to a value between
0 and 1 (see Section 4). After normalization, the transcript lengths of true lncRNAs were
significantly longer than those of false lncRNAs (Figure 2A and Supplementary Figure S2A).
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Figure 2. Four features exhibit significant differences between true and false lncRNAs in the 46 bench-
mark datasets. True lncRNAs can be distinguished from false lncRNAs because they tend to be
longer (A), to have a predicted upstream promoter signature (B), and to be more likely to have
multiple exons (C). They can also be distinguished by genomic location and are more likely to be
divergently transcribed from the promoter of a protein-coding gene (D). True lncRNAs are less
likely to be in intergenic regions (E) or antisense (F) to a protein-coding gene. For the graph (A), the
boxplot represents the scaled transcript lengths of true and false lncRNAs. For the graphs (B–F),
each boxplot represents the percentage of a feature of true and false lncRNAs among the identified
putative lncRNAs for each of the 46 benchmark datasets. The p-values were calculated by a two-sided
Wilcoxon–Mann–Whitney test.

Whereas RNA fragments and transcripts resulting from noisy transcription lack pro-
moters and TSSs, true lncRNAs should have upstream promoters. Therefore, we used
TSSG software [41] to identify putative promoters upstream of true and false lncRNAs and
examined the percentage of true and false lncRNAs with upstream promoter signatures.
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Almost 80% of true lncRNAs had putative upstream promoters. In contrast, we find this
feature in only about 20% of false lncRNAs (Figure 2B and Supplementary Figure S2B).

Because the vast majority of single-exon transcripts result from transcriptional and
alignment noise [42,43], we hypothesized that false lncRNAs (transfrags or noise) would
have fewer exons than true lncRNAs. To test this hypothesis, we examined the per-
centage of multiple exon transcripts among true and false lncRNAs. We found that
true lncRNAs are significantly more likely to have multiple exons than false lncRNAs
(p-value < 3.27 × 10−17; Figure 2C and Supplementary Figure S2C).

Over 60% of lncRNAs have been shown to be divergently transcribed from the pro-
moter regions of protein-coding genes [18,35]. This suggests that genomic context could
be used to distinguish between true and false lncRNAs. We examined the true and false
lncRNAs in our benchmark dataset, classifying them into three categories—divergent,
antisense, and intergenic—based on their genomic locations. Consistent with previous
findings, more than 60% of true lncRNAs were divergent transcripts of protein-coding
genes, while less than 20% of false lncRNAs in each of the 46 datasets were divergent
transcripts (Figure 2D and Supplementary Figure S2D). Additionally, a small fraction of
true lncRNAs originate from intergenic regions or are antisense to coding genes. In contrast,
approximately 60% of false lncRNAs are in intergenic regions and 30% are antisense to
coding genes (Figure 2E,F and Supplementary Figure S2E,F). Therefore, true and false
lncRNAs show significantly different patterns in terms of genomic location.

In conclusion, true and false lncRNAs show significant differences in transcript length,
promoter signature, multiple exons, and genomic location. Therefore, we integrated
these features into ML models to distinguish between true lncRNAs and other noncoding
transcripts.

2.3. Training ML Models to Distinguish between True and False lncRNAs

We developed a new computational tool, Flnc (Figure 1B) which incorporates the
four types of genomic features detailed above into ML models to identify true lncRNA
from stand-alone RNA-seq data. We trained seven of the most common ML algorithms
using our training set, which comprised 81,420 true and 123,764 false lncRNA that were
identified from 41 datasets submitted to the GEO database before 2019. The seven ML
algorithms include: logistic regression (LR), k-nearest neighbors (KNN), decision tree (DT),
random forest (RF), naïve Bayes (NB), linear kernel support vector machine (SVM), and
radial-basis-function (RBF) kernel SVM.

To fit and select the best model for each ML algorithm, we first used the 10-fold cross
validation approach to train and evaluate each model using all possible combinations of
hyperparameters (Figure 3A). We divided the putative lncRNAs in the training set ran-
domly into 10 non-overlapping subsets (folds). For each ML algorithm, we held one of the
10 subsets of putative lncRNAs aside and trained a model using each set of hyperparameter
values on the other 9 subsets. We then evaluated the performance of the model on the
remaining held-aside data. We repeated the process 10 times, each time holding aside a
different subset of data. We considered the hyperparameter values that defined the model
with the best mean F1 score—the harmonic mean value of the precision and sensitivity—the
optimal model architecture. Next, we trained the optimal model architecture on the entire
training set to build the models for Flnc.

On the training set, the random forest, decision tree, and KNN models had the
best overall prediction performance based on the F1 score and Area Under the Receiver
Operating Characteristic (ROC) Curve (AUROC) score (Figure 3B and Supplementary
Table S3). The random forest model resulted in F1 = 0.84 and AUROC=0.94 values, the
decision tree model resulted in F1 = 0.83 and AUROC = 0.93 values, and the KNN model
resulted in F1 = 0.82 and AUROC = 0.92 values. Compared to the other models, these three
models also have better accuracy, precision, and specificity. In contrast, the linear SVM was
the worst performing of all models with respect to the F1 score, sensitivity, and accuracy.
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Figure 3. ML model construction and evaluation. (A) The overall architecture of Flnc training
and testing. The best hyperparameters, specifically the hyperparameters yielding the best mean
F1 score, were chosen using the 10-fold cross-validation approach as follows. The training set was
randomly split into 10 even folds, 9 of which were used in training the models. The 10th fold was
used for validation. We repeated this process holding each individual fold out and training with
the other 9 folds. From this, we derived 10 models for each hyperparameter setting. For each of the
10 models, we calculated the mean F1 score for each hyperparameter setting. After selecting the best
hyperparameter setting, the final model was built using the entire training set and we examined the
performance of the final model on the entire training set. Finally, we evaluated the performance of the
final model on the test set, which was composed of the five independent datasets generated in 2019
and 2020 (Datasets 42–46). (B) The seven final models of Flnc outperformed the conventional method
(without models) on the entire training set, and (C) on the five individual datasets of test set. The
left bar graphs of (B,C) show the performance metrics accuracy, precision, sensitivity, specificity and
F1 score. The right graphs (B,C) show the ROC curve for each model. The AUROC score is shown
next to each ML model. The ROC curve of (C) is the ROC curve of the seven models on the Dataset
46. Please see Supplementary Figure S3B for the ROC curves of the four additional test datasets
(Dataset 42–25). The seven models are ranked by the F1 score from largest to smallest. Abbreviations:
CONVL, conventional approach; RF, random forest; DT, decision tree; R-SVM, RBF support vector
machine; L-SVM, linear support vector machine; LR: linear regression; NB, naïve Bayes; KNN, and
k-nearest neighbors.
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2.4. Flnc Identifies True lncRNAs with up to 87% Prediction Precision

After training the models, we evaluated Flnc’s ability to predict true lncRNAs from
stand-alone RNA-seq data by testing Flnc on a test set composed of five independent
datasets that were released to the GEO database after 2019 (Figure 3C). These five datasets
were generated from multiple biological samples, including the MOLM-13 human myeloid
leukemia cell line, the HUDEP-2 erythroid cell line, Jurkat leukemia cells, and the H1299
non-small cell lung cancer cell line. We evaluated the performance of Flnc both on the entire
test set (Supplementary Figure S3A and Supplementary Table S3) and on the five individual
datasets within the test set (Figure 3C and Supplementary Figure S3B). Consistent with
the training set results, the random forest, decision tree, and KNN models have the best
overall prediction abilities, as indicated by the F1 and AUROC scores (Figure 3C and
Supplementary Figure S3B), although the seven models achieve 72–87% consistency in
lncRNA prediction (Supplementary Figure S3C). The three best models achieve 93–96%
consistency in lncRNA prediction (Supplementary Figure S3D) with the accuracy of 0.85 or
greater, and precision of 0.83 or more. As with the training set, based on the F1 score and
accuracy, the linear SVM and naïve Bayes models had the worst performance. Variations in
performance between datasets were small (Figure 3C and Supplementary Table S3) with
standard deviations in F1 and AUROC scores of less than 0.03 less than 0.02, respectively
(Supplementary Table S3). Furthermore, an ensemble approach, which consists of combin-
ing the results from all seven models such that a lncRNA is considered true if all seven
models predict it, can further improve prediction precision from 83% to 87% and specificity
from 92% to 95% at the cost of reducing the sensitivity (Supplementary Figure S3E).

2.5. Many lncRNAs Identified by Flnc Are Novel and Are Supported by H3K4me3 Profiles

Because true lncRNAs include both novel and annotated lncRNAs, we examined the
novel lncRNAs among the true lncRNAs predicted by Flnc in the five independent test
datasets. We found that up to 60% of true lncRNAs predicted by Flnc have not yet been
annotated in the GENCODE database (Figure 4A). To determine if these novel lncRNAs are
true lncRNAs, we examined H3K4me3 ChIP-seq data to determine if these lncRNAs have
TSSs; we found that 65–90% of these novel lncRNA are supported by H3K4me3 ChIP-seq
data (Figure 4B). Indeed, a novel lncRNA identified by Flnc is almost twice as likely to be
confirmed by H3K4me3 than one identified using conventional RNA-seq only methods
(Figure 4B). Taking the ensemble approach improved the chance of being confirmed even
further to between 74% and 94% (Figure 4B).

Next, we examined the genomic features of novel lncRNAs predicted by Flnc in the
five independent test datasets. Because the random forest model had the best F1 and
AUROC scores, we compared the genomic features of novel lncRNAs predicted with
the random forest model with those of novel lncRNAs identified by the H3K4me3 ChIP-
seq data (Figure 4C,D). The novel lncRNAs predicted by Flnc and those identified by
H3K4me3 profiles were similar in terms of transcript length (Figure 4C) and multiple
exons (Figure 4D), but the novel lncRNAs predicted by Flnc were more likely to have
promoter signatures and to be divergent transcripts (Figure 4D). We observed similar
trends among all the true lncRNAs predicted by Flnc and those determined by H3K4me3
profiles (Supplementary Figure S4A,B).

Additionally, we note that 16–40% of novel lncRNAs predicted by Flnc have multiple-
exon (Figure 4D) across the five independent test datasets. This means that 60–74% of novel
lncRNAs predicted by Flnc are single-exon lncRNAs. Similarly, among all the true lncRNAs
predicted by Flnc, 37–42% of true lncRNAs are single-exon lncRNAs (Supplementary
Figure S4D). This indicates that Flnc will not miss the single-exon lncRNAs with potential
functions.
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Figure 4. Most novel lncRNAs predicted by Flnc are supported by H3K4me3 profiles. (A) A large
proportion of true lncRNAs predicted by Flnc are novel lncRNAs in the five individual test datasets.
(B) The percentage of novel lncRNAs predicted by the conventional method without models and
Flnc methods are verified by H3K3me3 profiles. Most novel lncRNAs predicted by the conventional
method cannot be verified by H3K4me3 profiles, whereas most of the novel lncRNAs predicted by
Flnc methods (ensemble approach or each of the seven single models) can be verified by H3K4me3
profiles. The error bars of the single model (gray) bars represent the standard deviations for the
results of the seven ML models. (C) The novel lncRNAs predicted by Flnc (with random forest
model) show similar normalized transcript length distribution as the novel lncRNAs determined by
H3K4me3 ChIP-seq data. (D) The novel lncRNAs predicted by Flnc (with the random forest model)
includes significantly more divergent transcripts and transcripts with promoter signatures than the
novel lncRNAs determined by H3K4me3 ChIP-seq data, whereas multiple exon features exhibit
similar percentage between these two groups of novel lncRNAs. Each dot represents one of the five
independent datasets in the test set.

2.6. Flnc Predicts True lncRNAs in Multiple Types of RNA-Seq Samples

For both the training and test data, we used stranded RNA-seq data generated from
polyA-selected RNA. However, many RNA-seq datasets are generated not from poly-A
RNA, but from ribosomal-RNA (rRNA)-depleted RNA and some are sequenced without
strand information. To evaluate the performance of Flnc in other types of RNA-seq data, we
tested Flnc on two stranded RNA-seq datasets that were generated using rRNA depletion
(Figure 5A) and on two unstranded polyA RNA-seq datasets (Figure 5B).

On both stranded rRNA-depleted RNA-seq and unstranded polyA-selected RNA-
seq data, four models—naïve Bayes, linear SVM, RBF SVM, and logistic regression—had
similar F1 scores and based on the F1 scores, these four models performed better than other



Non-Coding RNA 2022, 8, 70 11 of 18

three models (Figure 5). On these types of data, the linear SVM model achieved the best
prediction precision and accuracy; the naïve Bayes model ranks as the second best by the
precision metric. Although the random forest, decision tree, and KNN models ranked as
among the best models when run on polyA-selected RNA-seq data, their performance on
rRNA-depleted RNA-seq data ranked as the worst by the metrics of accuracy, precision,
sensitivity, and F1 score (Figure 5).
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Figure 5. Flnc accurately identifies true lncRNAs from rRNA-depleted and unstranded RNA-seq
datasets. (A) Performance of Flnc on two stranded RNA-seq datasets generated from ribosomal RNA
(rRNA)-depleted samples (GSE179184 on the left, GSE189861 on the right). (B) Performance of Flnc
on two un-stranded polyA-selected RNA-seq datasets (GSE72131 on the left, GSE58740 on the right).

2.7. Divergent Transcription Is the Most Important Feature for Predicting True lncRNAs

We evaluated the significance of the selected genomic features for each ML model.
The feature importance score indicates the relative importance of each genomic feature
(transcript length, promoter signature, multiple exons, and genomic location) for Flnc in
detecting true lncRNAs from RNA-seq data. Because the genomic location feature includes
three categories (divergent, antisense, and intergenic), we evaluated the feature impor-
tance for six categories: transcript length, promoter signature, multiple exons, divergent
transcript, antisense transcript, and intergenic transcript. We found that divergent tran-
script feature is the most important category across all ML models (Figure 6). For three
models—random forest, decision tree, and KNN—promoter signature ranks as the second
most important feature. In contrast, the intergenic and antisense transcript features are the
least important in all models (Figure 6).
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Figure 6. Feature importance for each of the seven final models. Each graph shows the scaled
importance scores for each feature for the given model: random forest (A), decision tree (B), KNN
(C), logistic regression (D), support vector machine (SVM) with RBF kernel (E), Naïve Bayes (F), and
SVM model with linear kernel (G) models. For each model, the importance scores of all features were
scaled to (0.1) by dividing the original score of the most significant feature (see Section 4).

2.8. Flnc Achieves Similar Performance at the lncRNA Gene Locus Level as at the Transcript Level

More than half (57%) of the true lncRNAs in the benchmark dataset have multiple
exons. Among them, 43% of multi-exon lncRNA genes have undergone alternative splicing
events, generating multiple lncRNA isoforms from the same lncRNA gene locus. Flnc has
been trained and tested at the transcript level for each RNA-seq dataset. To examine the
performance of Flnc at the locus level, we further tested Flnc on the lncRNA gene loci which
encode only lncRNA transcripts. This test showed that Flnc can achieve similar performance
at the lncRNA gene locus level as at the lncRNA transcript level (Supplementary Figure S5),
although Flnc performs better at the transcript level than at the locus level.
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3. Conclusions and Discussion

We have developed a comprehensive pipeline and software Flnc, which uses ML
models to accurately identify true lncRNAs from RNA-seq data. Flnc does not require
matched transcription initiation profiles which are usually marked by H3K4me3 histone
modifications. We trained the ML models on four types of features, transcript length,
promoter signature, multiple exons, and genomic location, which show a high degree of
discrepancy between true lncRNAs and false lncRNAs in our benchmark datasets. We
benchmarked Flnc on both the transcript level, using all 46 datasets, and the dataset level,
using the 46 RNA-seq datasets individually. Flnc can achieve up to 85% prediction accuracy
using only RNA-seq data. This software improves of prediction of true lncRNAs from
samples, such as clinical samples, where ChIP-seq data are unavailable. Flnc can save
time and resources by making the generation of H3K4me3 unnecessary and allowing the
identification of lncRNAs from publicly available RNA-seq data.

The predictive power of Flnc relies on the quality of the benchmark datasets and the
identification of true and false lncRNA within them. Therefore, the prediction power of
Flnc may be limited by factors that affect the reliability of the benchmark datasets. These
factors include RNA-seq and ChIP-seq data quality, accuracy of transcript assembly and
ChIP-seq peak calling, and sequencing depth. To minimize the effects of these factors, we
examined the data quality and sequencing depths of both RNA-seq and ChIP-seq data
in the benchmark datasets and only keep the data with good data quality and adequate
sequencing depths in this study. To improve the accuracy of transcript assembly, we
integrated multiple transcript-assembly methods. It has been shown that the accuracy of
ChIP-seq peak calling can be improved by using different approaches for long (≥70 bp)
and short (<70 bp) reads studies [44,45], and we, therefore, used this approach.

Compared to the true lncRNAs identified by H3K4me3 profiles, true lncRNAs pre-
dicted by Flnc (with random forest) are more likely to be divergent transcripts of nearby
protein-coding genes and to have promoter signatures (Supplementary Figure S4B). This
result suggests that Flnc might overestimate divergent putative lncRNAs and putative
lncRNAs with promoter signatures as true lncRNAs, but underestimate the true lncRNAs
that are in intergenic regions. One possible explanation for this is that divergent transcrip-
tion and promoter signature are the two most important features for the three best models
(random forest, decision tree, and KNN).

Because different methods of generating and sequencing RNA-seq libraries result
in slightly different collections of transcripts, feature importance may determine model
performance for different types of RNA-seq data. We found that the random forest, decision
tree, and KNN models outperform than other models for stranded RNA-seq data gener-
ated from polyA-selected RNA (Figure 3 and Supplementary Figure S3). In contrast, the
linear SVM and naïve Bayes models, which performed poorly for stranded polyA-selected
RNA-seq data, achieve better prediction accuracy and precision than other models for
rRNA-depleted and unstranded RNA-seq data. This may be because the random forest,
decision tree, and KNN models rely on three major features: divergent transcript, promoter
signature, and transcript length (Figure 6), but the transcript length feature may not be
applicable to nascent lncRNAs, which are included in rRNA-depleted RNA-seq data. In
contrast, for unstranded RNA-seq data, the promoter signature feature may not applicable
because without accurate strand information, the promoters of these putative lncRNA
cannot be inferred. Unlike the random forest, decision tree, and KNN models, the linear
SVM and naïve Bayes models mainly rely on the divergent genomic structure feature
(Figure 6), which is applicable for both nascent and unstranded lncRNAs.

Flnc includes seven embedded ML models (random forest, decision tree, logistic
regression, naïve Bayes, KNN, linear-SVM, and RBF-SVM) and an ensemble approach,
which makes Flnc suitable for identifying lncRNAs from different types of RNA-seq data.
Model performance depends somewhat on the type of RNA-seq data that is used as input.
The best three models (random forest, decision tree, and KNN) for the stranded polyA-
selected RNA-seq data achieve very high consistency (93–96%) in true lncRNA prediction
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(Supplementary Figure S3D). Therefore, we recommend that users select any of these three
models when using Flnc to identify lncRNAs from stranded polyA-selected RNA-seq data.
Precision can be further improved by the ensemble approach (Supplementary Figure S3E).
Therefore, we recommend using the ensemble setting of the Flnc software, which provides
users with the common set of true lncRNAs predicted by all models.

Although Flnc was trained on the benchmark datasets of lncRNAs identified from
stranded polyA-selected RNA-seq data and matched H3K4me3 ChIP-seq data, the Flnc
pipeline can be applied to identify lncRNAs from other types of RNA-seq data, such as
stranded rRNA-depleted RNA-seq data and unstranded polyA-selected data. Based on
the performance of the seven models on stranded rRNA-depleted RNA-seq data and
unstranded polyA-selected data, we recommend using the linear KNN or naïve Bayes
models for these two types of RNA-seq data.

The Flnc software can identify novel lncRNAs directly from RNA-seq data, as well as
evaluate whether a transcript is a lncRNA. Flnc can take three types of input files, including
raw RNA-seq data in the FASTQ format, transcript coordinates in the BED format, and
transcript sequences in the FASTA format. For maximum portability and usability, Flnc
is implemented in in Python 2 and the entire pipeline is wrapped within a Singularity
container. The current version of Flnc is applicable to data of human samples, but the
concept level of Flnc is applicable to other organisms. As a follow-up study, we plan to
extend Flnc’s method to be applicable to other organisms.

4. Material and Methods
4.1. Collection of Sequencing Datasets to Generate Benchmark lncRNAs

Because most mature lncRNAs have polyA tails [2] and clear transcriptional start sites,
generating a benchmark dataset of true and false lncRNAs requires stranded polyA-selected
RNA-seq and sample-matched H3K4me3 ChIP-seq. We identified 388 data series with
the keywords “RNA seq,” “H3K4me3,” and “Homo sapiens” from the NCBI GEO database
through February of 2021. From the 388 GEO studies, we selected 61 datasets with available
sample-matched, stranded polyA-selected RNA-seq and H3K4me3 ChIP-seq data.

For the 61 datasets, we examined the quality and sequencing depths of RNA-seq
and ChIP-seq data and removed 15 datasets, which had poor RNA-seq or ChIP-seq data
quality or extremely low sequencing depths. We considered the quality of RNA-seq data
poor if more than half of the reads had quality control scores less than 35. For ChIP-seq
data, we considered their quality poor if the number of called peaks in the dataset was an
outlier among peak numbers found in the 61 datasets (extremely small < 2000 or extremely
large > 200,000). This process resulted in selection of 46 datasets. The RNA-seq and ChIP-
seq data within each of the selected 46 high-quality datasets were generated from the
same type of sample. The datasets are heterogenous, including both single-end (50%) and
paired-end (50%) RNA-seq data and each dataset has one to four RNA-seq replicates. We
indexed these datasets 1 to 46 in chronological order by submission date (Supplementary
Tables S1–S3) and used them to identify true and false lncRNAs in each dataset as bench-
mark data.

After identifying true and false lncRNAs in each dataset (see below), we split the
benchmark dataset into training and testing sets based on the submission dates of the
RNA-seq data into the NCBI GEO database [46]. The training set included the 41 datasets
that were submitted to the GEO database before 2019; we used the five datasets generated
in 2019 and 2020 as the testing set.

4.2. Identification of Putative lncRNAs

First, we mapped the RNA-seq data to the human reference genome (hg38) using
HISAT2 v 2.0.5 [47] and assembled transcripts using both StringTie v1.3.4 [22] and Straw-
berry v1.1.2 [23]. For each sample, we then merged assembled transcripts of replicates with
the StringTie merge function. Next, we examined the coding potential of the assembled
transcripts using CPAT v1.2.4 [25], LGC v1.0 [26], PLEK v1.2. [27], and CPPred [28]. We
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excluded the transcripts with coding potential defined in any of the above tools. Next, we
excluded the resulting transcripts, as well as any transcripts that overlapped protein-coding
genes or pseudogenes on the same strand. We also excluded transcripts overlapping other
annotated noncoding RNAs, including snoRNA, rRNA, tRNA, and microRNAs, on the
same strand. From the remaining transcripts, we selected expressed transcripts that were
over 200 nucleotides long as putative lncRNAs (see Supplemental Methods for details).

4.3. Identification of H3K4me3 Peaks Using H3K4me3 ChIP-Seq Data

We aligned H3K4me3 ChIP-seq reads to the human reference genome (hg38/GRCh38)
using the BWA v0.7.5a toolkit [44]. For reads with mean read length ≥ 70 bp we used
BWA-MEM and for short reads we used BWA-aln. Next, we used the MACS2 v2.2.7.1 [48]
peakcall function to identify H3K4me3, as described previously [18], with the following
settings: -q 0.01 –broad –broad-cutoff=0.01 –nomodel –extsize 300. For H3K4me3 ChIP-seq
data without matched control data, MACS2 called peaks based on the H3K4me3 input ChIP-
seq data. For H3K4me3 ChIP-seq data with matched control data, MACS2 called peaks by
comparing the bam files to the matched background control. We used the H3K4me3 broad
peaks called by MACS2 as transcription initiation markers [49,50].

4.4. Identification of True and False lncRNAs Based on H3K4me3 ChIP-Seq Data

We used our previously established approach [18] to identify true and false lncRNAs
among putative lncRNAs. Because H3K4me3 chromatin modification is well known as
transcriptional initiation marks of active genes [34], including lncRNA genes, we examined
the distance between the 5′ ends of putative lncRNAs and the matched H3K4me3 peaks. If
the H3K4me3 peak was within 1 kb of the 5′ end of a putative lncRNA, we considered it a
true lncRNA; otherwise, we considered it false.

4.5. Normalization of Transcript Lengths

We calculated the length of putative lncRNAs by summing the length of all the
transcript’s exons. Next, we log-transformed the lengths. We calculated the upper and
lower limits as mean plus and minus 3 × standard deviation, respectively. Then, we set
the outlier data points of the log-transformed lengths as the value of upper or lower limits.
Finally, we scaled the log-transformed values of transcript lengths for each putative lncRNA
into the range between 0 and 1 using the min-max normalization technique.

4.6. Identification of Promoter Regions

We used TSSG software [41] to identify the potential promoters in the genomic
regions±1 kb of the 5′ end of putative lncRNAs. TSSG detects promoters by scanning
for transcription factor binding sites and is considered to be one of the most accurate
mammalian promoter prediction programs with the fewest false positive predictions [51].

4.7. Classification of Putative lncRNAs by Genomic Location

We used the genomic locations of protein-coding genes annotated by the GENCODE
Project release 29 [52], and compared them to the genomic locations of putative lncRNAs
using the BEDTools suite [53] and GffCompare tool [54]. We classified putative lncRNAs—
true and false—into three categories by genomic locations [18,35]: divergent, antisense,
and intergenic. A putative lncRNA was classified as divergent if the 5′ end of its locus
was within ±2 kb of the TSS of a protein-coding gene on the opposite strand [18,35]. The
remaining putative lncRNAs that were antisense to protein-coding genes and overlapped
the gene by at least one base pair were classified as antisense. All remaining putative
lncRNAs were classified as intergenic.
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4.8. Calculation of the Exon Numbers of Putative lncRNAs

The number of exons of putative lncRNAs were counted based on the assembled
transcripts in GTF format, which include the information of exon numbers and coordinates
of each exon.

4.9. Measurement Feature Importance

To determine the feature importance for all machine learning models, we used the
permutation approach [55]. We scaled the importance scores into the range between 0 and
1 by dividing each importance score by the importance score of the most significant feature.

4.10. Collection of Other RNA-Seq Datasets and Matched H3K4me3 ChIP-Seq Data

To evaluate Flnc’s performance on other types of RNA-seq data, we collected four
additional datasets, each corresponding to one sample from the GEO database (Supple-
mentary Table S4). These four datasets all contained RNA-seq data and matched H3K4me3
ChIP-seq. Two datasets included stranded rRNA-depleted RNA-seq (accession numbers:
GSE179184 and GSE189861) and two included unstranded polyA-selected RNA-seq data
(accession numbers: GSE72131 and GSE58740).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ncrna8050070/s1. Figure S1: True and false lncRNAs in each of
the 46 benchmark datasets. Figure S2: Genomic features of true and false lncRNAs in each of the
46 benchmark datasets. Figure S3: Performance of the seven final ML models used in Flnc. Figure S4:
The genomic features of true lncRNAs predicted by Flnc and true lncRNAs determined by H3K4me3
profiles in the test set. Figure S5: Flnc achieves similar performance at the lncRNA gene locus level
as at the transcript level. Table S1: Information of the collected 46 datasets, each of which includes
both of stranded polyA-selected RNA-seq data and matched H3K4me3 ChIP-seq data from the same
human sample. Table S2: The mapping information for the RNA-seq data and ChIP-seq data among
the 46 datasets used in this study. Table S3: Performance of the conventional approach and the seven
ML models of Flnc in the training set and test datasets. Table S4: Information of four datasets with
other types of RNA-seq data.
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