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Abstract: MiRNAs have been shown to play a powerful regulatory role in the progression of serious
diseases, including cancer, Alzheimer’s, and others, raising the possibility of new miRNA-based
therapies for these conditions. Current experimental methods, such as differential expression analysis,
can discover disease-associated miRNAs, yet many of these miRNAs play no functional role in
disease progression. Interventional experiments used to discover disease causal miRNAs can be time
consuming and costly. We present DisiMiR: a novel computational method that predicts pathogenic
miRNAs by inferring biological characteristics of pathogenicity, including network influence and
evolutionary conservation. DisiMiR separates disease causal miRNAs from merely disease-associated
miRNAs, and was accurate in four diseases: breast cancer (0.826 AUC), Alzheimer’s (0.794 AUC),
gastric cancer (0.853 AUC), and hepatocellular cancer (0.957 AUC). Additionally, DisiMiR can generate
hypotheses effectively: 78.4% of its false positives that are mentioned in the literature have been
confirmed to be causal through recently published research. In this work, we show that DisiMiR
is a powerful tool that can be used to efficiently and flexibly to predict pathogenic miRNAs in an
expression dataset, for the further elucidation of disease mechanisms, and the potential identification
of novel drug targets.

Keywords: miRNAs; computational biology; machine learning

1. Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that regulate major cellular func-
tions through action on multiple genes, and miRNA dysregulation has been heavily linked
to many diseases, including Alzheimer’s disease, heart failure, and many types of cancer.
Up to 60% of the proteome is estimated to be regulated by miRNAs, and these post-
transcriptional regulators are differentially expressed in almost every disease studied to
date [1]. Due to the regulation of disease-causing proteins, variation in miRNA expression
can modify or ameliorate the disease state, thus forming attractive drug targets. Some
proteins are completely undruggable, but they could be targeted through their miRNA
regulators, enabling the treatment of diseases that, up to this point, might seem impossible
to cure [2]. MiRNA-based drugs for cancers have the potential to target several genes
in the same oncogenic pathway, thereby maintaining the drug’s efficacy even if multiple
target genes develop mutations, thereby decreasing the development of acquired resis-
tance [3]. In pursuit of pathogenic miRNAs, differential expression analysis has been an
invaluable tool in narrowing the search. However, disease-associated miRNAs are not
always pathogenic [4], since a miRNA differentially expressed by disease state can have
statistical significance but not functional significance. Indeed, it can be hard to determine if
dysregulation of a particular miRNA is the cause or the result of an underlying disease.
Discovering disease causal miRNAs requires interventional experiments that can be time-
consuming and costly, potentially taking many months and many thousands of dollars
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to execute [5]. Thus, computational methods to predict disease causal miRNAs are very
attractive, although few methods exist.

DisiMiR is based on the hypothesis that pathogenic miRNAs have a set of biological
characteristics that set them apart, at least on average, from other miRNAs. One such
characteristic is that disease causal miRNAs are highly influential in the miRNA–miRNA
interaction network, in which they regulate other miRNAs indirectly through the regulation
of genes. Evidence of this characteristic is the fact that there are several miRNAs that are
differentially expressed and functionally implicated in virtually all cancers, such as miR-21,
meaning that these miRNAs are so influential that they influence several diseases [6].
MiRNAs that are highly influential have been suggested to cause signaling cascades, which,
when dysregulated, can lead to the disruption of homeostasis and the progression of
disease [7]. Highly influential miRNAs are also likely to regulate many mRNA targets,
with the number of direct gene targets also contributing to the disease-causing potential
of miRNAs. Additionally, many pathogenic miRNAs will be differentially expressed.
Although being differentially expressed does not guarantee pathogenicity, it does increase
the probability of it [4]. A final characteristic of pathogenic miRNAs is that they are
more likely to be biologically conserved across species. Many disease causal miRNAs
regulate key biological functions and, by virtue of their importance, are more likely to be
conserved [8].

DisiMiR integrates these characteristics into a machine learning pipeline that works at
the disease-specific level. DisiMiR uses miRNA conservation data, predicted target infor-
mation, disease context miRNA expression data, and miRNA–disease causal associations
to train a model to predict pathogenic miRNAs. At the disease-specific level, researchers
can train DisiMiR on a single dataset to generate potential hypotheses for future investiga-
tion. DisiMiR’s implementation is available online at https://github.com/Wanff/DisiMiR
(accessed on 6 June 2022).

Other methods used to predict pathogenic miRNAs computationally work strictly at
the pan-disease level. miRfluence is a computational method that determines influential
miRNAs by inferring miRNA influence in a cross-disease miRNA–miRNA interaction
network that is able to identify influential miRNAs in multiple diseases [7]. According
to our knowledge, miRfluence was the first method to predict disease causal miRNAs in
a disease-agnostic framework. However, since there was no established database of dis-
ease causal miRNA associations at the time, like the Human MicroRNA Disease Database
(HMDD) 3.2 Causal Database [9], they confirmed their results through corroboration with
other computational methods, such as miRsig and TAM [10,11]. Building on recent data
advances, MiRNA–Disease Causal Association Predictor (MDCAP) is a label propagation
algorithm that utilizes miRNA and disease similarity matrices to predict potential disease
causal associations [12]. Like other miRNA–disease association prediction algorithms,
MDCAP uses clustering of miRNAs based on their associations to similar diseases to
predict further miRNA–disease associations [13]. However, a benchmarking study of
36 miRNA–disease association prediction algorithms showed that none of the algorithms
were able to differentiate between causal and non-causal miRNAs, with the highest AUC
being 0.538. The authors of the study suggested that additional biological information is
necessary for the prediction of disease causal miRNAs [14]. One great strength of MDCAP
was the development of HMDD, a manual compilation of disease causal miRNAs [9]. MD-
CAP can effectively differentiate between the causal and non-causal miRNAs in the HMDD
database; however, like other disease-association prediction algorithms, it is restricted by
the size and quality of its training dataset, and thus struggles to generalize to diseases less
characterized in the literature. The authors of MDCAP have also recently created an im-
proved method, LE-MDCAP, that uses Levenshtein distance to measure miRNA sequence,
function and expression similarities, and significantly outperforms the previous MDCAP
model in differentiating between disease causal vs. non-causal miRNAs and disease causal
vs. disease-associated miRNAs [15]. All three methods, miRfluence, MDCAP, and LE-
MDCAP, have discovered important characteristics about pathogenic miRNAs: miRfluence
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showed that miRNA pathogenicity was linked to miRNA network influence; MDCAP
discovered that miRNA pathogenicity was associated with cross-species conservation; and
LE-MDCAP demonstrated the efficacy of the Levenshtein distance as a measure of miRNA
similarity [7,12,15]. We build on these insights in our work with DisiMiR.

2. Method
2.1. DisiMiR

DisiMiR starts with the miRNA expression data of a specific disease and proceeds
in four major steps. (1) A consensus-based network inference algorithm that integrates
(1.1–1.5) five different network inference methods is used to infer the Consensus Influence
Network from that expression data. This network is used to calculate (2.1) whole-network
influence and (2.2) disease-specific influence, where (2.1) whole-network influence is a
miRNA’s comparative influence relative to other miRNA’s, and (2.2) disease-specific in-
fluence is a disease-associated miRNA’s comparative influence relative to other disease-
associated miRNAs. These two characteristics are aggregated with (3) miRNA conservation
data and (4) mRNA target information to create a training dataset for (5) an AdaBoost
model, which integrates whole-network influence (2.1), disease-specific influence (2.2),
conservation (3), and mRNA targeting (4) to predict pathogenic miRNAs.

2.2. DisiMiR Algorithm Outline

I. Consensus-based Network Inference

a. clr [16]
b. mrnet [17]
c. mrnetb [18]
d. aracne [19]
e. GENIE3 [20]

II. Influence Inference

a. Whole-network influence
b. Disease-specific influence

III. miRNA Conservation
IV. mRNA Target Information
V. Causal miRNA Prediction

a. AdaBoost Model
b. Performance Evaluation
c. Validation of False Positive miRNAs using Recent Literature

2.2.1. Consensus-Based Network Inference

DisiMiR starts with miRNA expression data from a particular disease of interest and
is agnostic to the tissue of the dataset. In our present analysis, we apply DisiMiR on three
different publicly available cancer datasets and one Alzheimer’s dataset from the Gene
Expression Omnibus, but in principle, any similar dataset could be used. In the consensus-
based network inference step, we use five different biological network inference algorithms
on the chosen disease-specific miRNA expression data. We then combine the five different
networks inferred using a normalized average (Figure 1). We will briefly describe the five
different network inference algorithms employed below.

CLR [16], mrnet [17], mrnetb [18], and aracne [19] are information-theoretic network
inference approaches that use the mutual information matrix to infer the regulatory network.
We implement CLR, mrnet, mrnetb, and aracne with the minet Bioconductor package
(v. 3.51.0) [21].

GENIE3 is a tree-based network inference approach that decomposes the network
prediction problem over p nodes by creating p different regression problems [20]. For each
node, GENIE3 trains a tree-based ensemble method to predict that node’s expression level
based on the expression level of all other nodes in the network. The importance of a node
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in predicting the target node’s expression level indicates a putative regulatory link. These
putative links are then aggregated over all nodes, and then ranked to construct the network.
We implement GENIE3 with the GENIE3 Bioconductor package (v. 3.13) [20,22].
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Figure 1. The consensus-based network inference algorithm computes the Consensus Influence
Network from the average of five different networks inferred from the miRNA expression data. The
GENIE3, mrnet, aracne, mrnetb, and clr network inference algorithms are used to infer five different
networks, these are then aggregated into the Consensus Influence Network with a normalized
average. The edges of the Consensus Influence Network are then pruned, retaining only edges with a
weight higher than 0.7.

The output of each of these methods is an m × m adjacency matrix, where m is the
number of miRNAs in the miRNA expression dataset, and an edge weight [i, j] represents
the confidence that node i influences node j. By combining diverse network identification al-
gorithms in a consensus-based approach, we increased the robustness of the inferred network.
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Each of the five networks has edge weights scaled to [0, 1]. These are then averaged
and pruned, retaining only edges with a weight of 0.7 or higher to obtain the Consensus
Influence Network (1). We chose a relatively high cut-off threshold to retain only high-
confidence edges, as is common practice in network inference algorithms [8].

2.2.2. Influence Inference

We devised a miRNA influence inference algorithm I() that operates upon an influence
network. With this influence inference algorithm, we calculate two types of influence: (2.1)
whole-network influence and (2.2) disease-specific influence. The whole-network influence
of a miRNA is obtained by computing I() on the entire Consensus Influence Network. To
compute the disease-specific influence, we define the Disease-Specific Network as follows.
The Disease-Specific Network is constructed from the Consensus Influence Network by
pruning away all miRNAs and their incident edges not associated with the disease in the
HMDD (Figure 2). The disease-specific influence of a miRNA is the obtained using I() on the
Disease-Specific Network, which only contains disease-associated miRNAs and their edges.
Disease-specific influence not only encodes whether a given miRNA is disease-associated,
but also provides another dimension to look at a miRNA’s influence.
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Figure 2. Whole-network influence uses I() on the Consensus Influence Network, while disease-
specific influence uses I() on the Disease-Specific Network, with I() described in Algorithm 1. (a) Cal-
culation of whole-network influence for node A. Node A has four children, which is raised to the
power of 1. Node B and Node D each have one child, which is raised to the power of 1

2 . Node C has
two children, which is also raised to the power of 1

2 . This gives a total whole-network influence of
6 +
√

2 for node A’s whole-network influence. (b) Calculation of disease-specific influence for node
A. The Disease-Specific Network is created by removing all the nodes that are not disease-associated
and their incident edges. Node A has two children, and Node B has one child. This gives a total
disease-specific network example of 3.

We then compute the whole-network influence of a given node in its network, using
I() and the Consensus Influence Network, as follows. I() computes influence of a node as
the weighted sum of the number of children of each node in its reachable network, where
that sum is weighted by the length of the shortest path from the original node to a target
node. We compute the disease-specific influence of a disease-associated miRNA similarly,
using the Disease-Specific Network. We describe these computations in more detail in the
following algorithm.
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Algorithm 1: Influence Inference I().

#For every miRNA
for m in V:

Cm = 0
#Add the immediate influence of all the miRNAs in a miRNA’s reachable network
for m’ in V’:

Cm + = nm’ˆ(1/d)
end for

end for
V = all miRNAs
m = a given miRNA
V’ = all the miRNAs in the reachable network of m
m’ = a given miRNA in the reachable network of m
Cm = the influence of m
nm’ = the number of children m’ has
d = (the length of the shortest path from m’ to m) + 1

2.2.3. miRNA Conservation

We also use miRNA conservation to predict pathogenic miRNAs. The authors of
MDCAP discovered that miRNAs that were causally implicated in more diseases were
generally more conserved across species [12]. MiRNAs that are highly conserved are more
important to key biological functions, and thus have a higher probability of causing disease
when they are dysregulated. Of course, this conjecture is a statistical generalization, and
not an inviolable rule: just because a miRNA is highly conserved does not mean it will
cause a disease. As a measure of miRNA cross-species conservation, we used the sum of the
miRNA family size as defined in miRbase (Release 22.1) and a Levenshtein distance-based
sequence similarity metric S() [23]. miRNA family size counts the number of similar miRNAs
within species and across species, and is a rough proxy for evolutionary conservation [23].
MiRNAs that have more family members across multiple species are more conserved
because of their ubiquitous presence across multiple genomes [8]. Sequence similarity
between miRNAs in a given family is a more direct measure of evolutionary conservation.
Inspired by LE-MDCAP’s use of the Levenshtein distance [15], a function that returns the
number of edits that are required to make two strings equivalent, we use a Levenshtein
distance-based metric that represents how similar a given miRNA’s sequence is to all the
other sequences in its family, as shown in Algorithm 2. By combining these two metrics in
a single sum, we hope to gain a more accurate picture of miRNA conservation.

Algorithm 2: Sequence Similarity S().

#For every miRNA
for m in V:

Sm = 0
#Add the immediate influence of all the miRNAs in a miRNA’s reachable network
for m’ in F:

Sm + = (length(m) − lev(m, m’))/length (m)
end for

end for

V = all miRNA sequences
m = a given miRNA sequence
F = the miRNA family of m
m’ = a given miRNA sequence in F
Sm = the similarity between m and all other sequences m’ in F
lev(a, b) = returns the Levenshtein distance between String a and String b
length (a) = returns the length of String a
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2.2.4. mRNA Target Information

The final piece of biological information we use to predict pathogenic miRNAs is the
number of predicted mRNA targets a given miRNA has. It is intuitively true that miRNAs
that regulate more mRNA targets should also exert greater influence in their regulatory
network. For example, transfection of human cells with miR-124, which is preferentially
expressed in the brain, causes the expression profile to shift towards that of the brain,
showing its influence over the cellular state [24]. Since highly influential miRNAs can
cause changes in the cellular state through signaling cascades, they are more likely to cause
disease when disrupted. We take the number of predicted targets a given miRNA has from
the TargetScan (Release 7.2) database [25].

2.2.5. Causal miRNA Prediction
AdaBoost Model

We then aggregate the (2.1) whole-network influence, (2.2) disease-specific influence,
(3) miRNA conservation, and (4) mRNA target information using an AdaBoost model
(Figure 3). This will learn appropriate weights for each of these four features (whole-
network influence, disease-specific influence, miRNA conservation, and mRNA target
information). We split the miRNA feature matrix into a training and testing set, where
one-third of the disease causal miRNAs according to HMDD are placed in the testing set,
and the rest are used for training. We train an AdaBoost classifier with 1500 estimators on
the training set, and validate it on the testing set, using the sklearn 1.0.2 AdaBoost python
package [26].

Performance Evaluation

DisiMiR’s predictions are a probability from 0 to 1, indicating whether a given miRNA
is pathogenic or not. We measure performance primarily with the Area Under the Receiver
Operator Characteristic Curve (AUC) using DisiMiR’s average probability predictions
across 100 random splits (Figure 4). In order to convert DisiMiR’s probability predictions
into classes, we use a threshold defined as the point on the AUC that minimizes the sum of
errors—false positives and false negatives—while still maintaining at least 10 false posi-
tives. We use this minimum false positive condition because the hypotheses generated from
DisiMiR’s false positives could be useful for further investigation. Using this threshold,
we also compute the confusion matrix and hypergeometric p-value. DisiMiR’s average
predictions across 100 random training and testing splits are used to calculate the AUC,
confusion matrix, p-values, and confidence intervals. We additionally report the average
feature importance for the three features (whole-network influence, disease-specific in-
fluence, and miRNA conservation) across 100 random splits, which informs us about the
importance of each feature for miRNA disease causality prediction.

Validation of False Positive miRNAs Using Recent Literature

MiRNAs falsely identified by DisiMiR to be disease causal according to HMDD (i.e.,
false positive errors) were investigated as follows. Using the Entrez PubMed API, a
public application programming interface (API) connected to the database of papers in
PubMed, we searched for publications using the combination of the hypothesis miRNA
and the disease upon which it was hypothesized to have a causal effect, e.g., “mir-145
breast cancer”. This returned a number of papers, which were then analyzed manually.
If the query returned no papers, that hypothesis was ignored and removed from further
consideration. Relevant papers were then reviewed to determine if the manuscript was
reporting research that demonstrated a causal effect of the miRNA. We use the same criteria
as in the original HMDD paper [9]: causal effects were considered present if the manuscript
was reporting an intervention in cellular or animal models that lead to characteristics
indicative of pathology, not including interventions that enhanced treatment effects. These
interventions included knockout experiments on the miRNA, knockout experiments on a
regulator of the miRNA, or transfection of a miRNA mimic. In most cases, the abstracts
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were sufficient to make such a determination; however, in a small minority, the complete
manuscript was considered. We report the proportion of false positive miRNAs with
causal associations supported by disease-relevant literature to those with no support in
disease-relevant literature.
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Figure 3. For a disease of interest, DisiMiR constructs a miRNA feature matrix, including whole-
network influence, disease-specific influence, and miRNA conservation, in order to infer pathogenic
miRNAs. The consensus-based network inference algorithm infers the Consensus Influence Network
from the miRNA expression data. This network is used to calculate whole-network and disease-
specific influence. These two characteristics are combined with miRNA conservation data from
miRbase, target information from TargetScan, and miRNA causality information from HMDD, to
create a training dataset. An AdaBoost model is then trained on this dataset to predict disease
causal miRNAs.
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3. Data
3.1. MiRNA Expression Datasets

On the basis that DisiMiR relies on multiple sources of biological information to infer
disease causality, multiple datasets were used to develop and test DisiMiR. Four publicly
available miRNA expression datasets from the Gene Expression Omnibus (GEO) [27] were
used to develop and demonstrate DisiMiR (Table 1). All miRNA expression datasets were
processed according to the proper guidelines and regulations. Each one of these datasets
was used separately as an input to DisiMiR. These four datasets described breast cancer,
Alzheimer’s disease, gastric cancer, and hepatocellular cancer. These data were used as
is; no additional preprocessing was performed. All samples were disease state tissue; no
control tissue was used.



Non-Coding RNA 2022, 8, 45 10 of 17

Table 1. Disease Dataset Information.

HMDD Disease
Name

Expression Profiling
Method Tissue Type Number of

Samples
Disease
Causal

Disease
Associated

Disease
Irrelevant

Number of
miRNAs

GEO Accession
Number Citation

Breast Neoplasms
NanoString nCounter

Human v3 miRNA
Expression Assay

Breast Cancer
Tissue 32 151 348 480 828 GSE155362 Kunc, M. et al. [28]

Alzheimer’s
Disease

3D-Gene Human miRNA
V21 spotted

oligonucleotide array
Serum 197 40 165 2356 2521 GSE150693 Shigemizu, D. et al. [29]

Gastric
Neoplasms

3D-Gene Human miRNA
V21 spotted

oligonucleotide microarray
Serum 1423 270 478 2046 2524 GSE164174 Abe, S. et al. [30]

Carcinoma,
Hepatocellular

Agilent Human miRNA
Microarray

Liver Cancer
Tissue 7 395 636 1933 2569 GSE108724 Zhu, H.-R. et al. [31]
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The breast cancer dataset contained 32 human breast cancer, single hormone receptor-
positive patient samples of different subtypes. Expression profiling was implemented with
the NanoString nCounter Human v3 miRNA Expression Assay, and expression data had
already been normalized according to the global mean of the counts of positive controls
and all miRNA genes [28].

The Alzheimer’s disease dataset contained 197 serum Mild Cognitive Impairment
(MCI) samples of different subtypes. MCI is a clinical precursor to Alzheimer’s disease
(AD), and many MCI patients convert to AD, although others remain stable. Expression
profiling was implemented with the 3D-Gene Human miRNA V21 spotted oligonucleotide
array, and expression data had already been signal-filtered and normalized according to
the ratio of the average signal of three internal control miRNAs [29].

The gastric cancer dataset contained 1423 serum gastric cancer samples. Expression
profiling was implemented using the 3D-Gene Human miRNA V21 spotted oligonucleotide
microarray, and expression data had already been normalized by signal filtering. The
GENIE3 network inference algorithm was run on a random subset of 200 samples; the full
dataset overwhelmed GENIE3, and caused it to run without terminating [30].

The hepatocellular cancer dataset contained seven samples of hepatocellular carcinoma
tissue. Expression profiling was implemented with the Agilent Human miRNA Microarray, and
expression data had already been quantile normalized using Gene Spring Software 11.0 [31].

3.2. HMDD

Known disease-associated and disease causal miRNAs were taken from the Human
microRNA Disease Database (HMDD) v3.2, a manually curated database of miRNAs
linked to disease [9]. Disease-association information was used as an input to calculate the
disease-specific influence (step 2.2), and disease causality information was used to train
and validate the method (steps 4.1 and 4.2). Since some diseases have multiple names in
HMDD (for example, breast cancer can go by “Breast Neoplasms” or “Carcinoma, Breast”),
we chose the name that yields the most confirmed causal miRNAs for each disease.

The HMDD 3.2 Causality Database was created through a manual literature review
based on the following criteria: (1) the corresponding study must contain gain-of-function
and/or loss-of-function experiments of the given miRNAs; (2) functional experiments
must be conducted in a cell line and/or animal disease model; (3) studies that show that
miRNAs could enhance drug effects, but have no contributions to diseases, are excluded [9].
If a study shows that there exists a causal relationship between a miRNA and disease,
this relationship is recorded in the database; however, the absence of evidence does not
conclusively mean a causal relationship does not exist, but rather, a causal relationship has
not yet been found. Since miRNA expression analysis and sequencing technologies are still
relatively nascent compared to other technologies and modalities, we expect the number
of causal relationships found due to interventional experiments to increase in the coming
years, including new causal relationships that were previously excluded from the HMDD
3.2 Causality Database.

4. Results
4.1. Inferred Networks

We trained and ran DisiMiR on four separate datasets from GEO: three cancer datasets
(hepatocellular, breast, and gastric) and an Alzheimer’s dataset. Consensus Influence
Networks for each disease are shown in Figure 5. The largest of the networks, the hep-
atocellular cancer network (Figure 5a), had 194,126 edges with two main subnetworks:
the dense cluster visible in the top left, and the sparser subnetwork in the middle. The
gastric cancer network had 3563 edges, with one main connected component (Figure 5b).
The Alzheimer’s disease network had 4642 edges, with one main connected component
(Figure 5c). The breast cancer network had 42,536 edges, with two main subnetworks
(Figure 5d): the dense cluster visible in the top left, and the sparse, smaller subnetwork in
the middle.
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4.2. Validation

DisiMiR models were then tested for their ability to determine if miRNAs in the
testing set were pathogenic or not. This was adjudicated according to HMDD. We report
here results from averaging over 100 random train/test splits (Table 2, Figure 6). Dis-
iMiR was most accurate on the hepatocellular cancer dataset, with an AUC of 0.957 (95%
confidence interval (CI) 0.950, 0.965). Accuracy on gastric cancer and breast cancer was
similar, with AUCs of 0.853 (95% CI 0.825, 0.882) and 0.853 (95% CI 0.791, 0.860), respec-
tively. DisiMiR performed poorest on the Alzheimer’s disease data, with an AUC of 0.794
(95% CI 0.702, 0.886).

Table 2. Validation Metrics for each Disease Dataset across 100 random train/test splits.

Disease AUC

Disease Causal Accuracy Feature Importance

True
Negative

False
Positive

False
Negative

True
Positive

Disease
Influence

Network
Influence

miRNA
Conservation

Number of
Targets

Breast
Cancer 0.826 647 30 115 36 0.121 0.197 0.386 0.297

Alzheimer’s
Disease 0.794 2473 8 34 6 0.007 0.115 0.506 0.372

Hepatocellular
Cancer 0.957 1999 175 71 324 0.183 0.197 0.379 0.241

Gastric
Cancer 0.853 2236 18 200 70 0.040 0.187 0.371 0.403
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DisiMiR was also able to differentiate disease-associated miRNAs from disease causal
miRNAs (Figure 6). HMDD was used to identify a subset of miRNAs that were associated
with each of the four diseases. Surprisingly, DisiMiR differentiated best in the Alzheimer’s
dataset, with an AUC of 0.708 (significantly better than random guessing; hypergeometric
p-value 8.58 × 10−4). The rest of the diseases performed similarly: hepatocellular cancer,
gastric cancer, and breast cancer had an AUC of 0.665 (p-value 4.61 × 10−5), 0.646 (p-value
3.42 × 10−8), and 0.612 (p-value 0.016).

In step 4 of the DisiMiR algorithm, AdaBoost was used to learn a weighting to the four
major types of information employed: (1) whole-network influence; (2) disease-specific
influence; (3) miRNA conservation; and (4) target information. These weights, or feature
importance (Table 2), reveal that each piece of biological information plays a non-trivial
role in helping the model predict pathogenic miRNAs. miRNA conservation and target
information seem to provide the most information, while the influence metrics provided
the least information.

DisiMiR learns disease-specific models during training. In Supplementary Figure S1,
we show the overlap of the miRNAs predicted to be causal for each of the four diseases,
and compare this to the overlap between the causally associated miRNAs in HMDD. In
general, DisiMiR predicted different miRNAs would be causal for each condition, with
some overlap for the three cancer datasets. This effect is clearly seen in hepatocellular
cancer: even though there are only 97 miRNAs causally associated with hepatocellular
cancer in HMDD, DisiMiR predicts 241 unique miRNAs are causally associated with
hepatocellular cancer. These figures, combined with the evidence that DisiMiR learns
different feature importance for each disease, suggest that DisiMiR is, in fact, learning
disease-specific models.

4.3. Hypothesis Generation with DisiMiR

Due to the fact that the HMDD database of pathogenic miRNAs is necessarily in-
complete, we wanted to see whether the hypotheses that DisiMiR generated have been
confirmed to be causal in recent literature. A miRNA was considered hypothesis-worthy
if it was a false positive in the Confusion Matrix averaged over 100 random splits. Of the
miRNAs that returned papers for a given disease, many of them were found to be causal.
Out of all the false positives that had papers in PubMed, 78.4% of them were found to be
causal (Table 3). This result shows that DisiMiR’s predictions can generalize outside of its
training distribution, potentially identifying novel pathogenic miRNAs.
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Table 3. Percentage of false positive miRNAs that were causal according to recent literature.

Disease Number of
Causal miRNAs

Number of Non-Causal
miRNAs Mentioned in

Literature without
Causal Evidence

Percent Causal
miRNAs

Number of miRNAs
Unmentioned in

Disease Literature

Total False
Positives

Breast Cancer 24 5 82.8% 1 33

Gastric Cancer 14 4 77.8% 0 18

Hepatocellular
Cancer 121 33 78.6% 21 155

Alzheimer’s Disease 1 2 33.3% 5 33

5. Discussion

In this study, we present a method that flexibly and efficiently predicts pathogenic
miRNAs from a disease context miRNA expression dataset. This method has possible
diagnosis, research, and therapeutic applications. MiRNA drug targets are a promising new
modality for drug discovery, yet there are few computational pipelines for miRNA drug
target discovery. DisiMiR enables researchers to identify functional miRNAs in their own
miRNA expression datasets for the elucidation of the underlying biological mechanisms,
as well as to discover potential miRNA drug targets.

DisiMiR performed better on some disease datasets than it did on others. Somewhat
surprisingly, the number of samples in each disease dataset did not seem to influence
performance. DisiMiR was most accurate on the hepatocellular cancer dataset; the per-
formance on the breast cancer and gastric cancer datasets was roughly the same, and the
performance on the Alzheimer’s disease dataset was the worst. Two factors emerge as
contributing explanations. First, how well a disease is characterized in the literature leads
to more positive examples in the HMDD, which should, in turn, increase the method’s
performance on that disease by providing more positive samples for the method to train
on. This explanation is supported by the fact that hepatocellular cancer had the most
positive samples in its testing set (395), followed by gastric cancer (270), breast cancer (151),
and then Alzheimer’s disease (40). Additionally, we implemented DisiMiR on two other
diseases, tuberculosis (10) and heart failure (3), and both of these disease datasets failed
to train a statistically significant classifier. Second, miRNAs may play roles of differing
importance in different diseases. At the biological level, miRNAs may be more involved in
the progression of cancers, but less involved in the progression of neurological disorders
such as Alzheimer’s disease. The role of miRNAs in cancer has been well established, and
many miRNAs have been found to have a functional role in disease progression [32]. How-
ever, the role of miRNAs in Alzheimer’s disease is less characterized, and fewer miRNAs
have been found to have functional significance [33]. With the decision threshold we used,
DisiMiR skews towards specificity over sensitivity. This threshold resulted in high-quality
false positive predictions, as 78.4% of our false positives were actually found to be positive
according to the literature, but low overall sensitivity, especially compared to the AUC. For
example, DisiMiR achieved a sensitivity of 0.238 on the breast cancer dataset. An AUC
represents the spectrum of possible trade-offs a classifier can make between sensitivity and
specificity, which may be tuned in various ways. By choosing a different threshold, we can
achieve a sensitivity of 0.662 with little loss in specificity (Supplementary Table S1). The
decision to make DisiMiR specificity- or sensitivity-favored is application dependent. For
example, if a small set of false positive hypotheses are needed for further analysis, then
specificity should be favored, but if a large set of false positive hypotheses are needed for a
literature search, then sensitivity should be favored.

There were several alternate algorithmic design and parameter choices that DisiMiR
could have implemented. We chose 0.7 as the threshold for the Consensus Influence
Network edges over higher thresholds, such as 0.9, because higher thresholds resulted
in networks that were too sparse. In the influence inference algorithm I(), we strictly
used the topology of the consensus-based network, instead of taking the edge weights
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into account. Biological systems are incredibly complex, and there is no general way to
accurately quantify the influence one regulatory element has on another. The authors
of miRfluence attempted such an approach, yet they found that quantifying the edge
weights yielded little improvement [7]. Additionally, we experimented with a hill-climbing
procedure to optimize the weights used to average the consensus-based network, but
DisiMiR’s performance improved negligibly. Finally, we tried different machine learning
models, such as Logistic Regression, Random Forest, and an ensemble of weak AdaBoost
classifiers, with different hyperparameters, and we found that a single AdaBoost classifier
with 1500 estimators performed best on our datasets.

In conclusion, DisiMiR was able to successfully identify disease causal miRNA in four
publicly available datasets, at rates higher than prior software. Furthermore, DisiMiR was
also able to differentiate disease causal miRNAs from merely disease-associated miRNAs.
DisiMiR can be used by researchers with miRNA expression data for a particular disease
to identify disease causal miRNAs for further investigation. Future work could consist
of exploring additional potential features to be used to predict pathogenicity, addressing
DisiMiR’s low sensitivity, and investigating if certain network properties of the influence
graphs impact the results. Utilizing biological insights, our work represents an important
step forward in predicting disease causal miRNAs, and we believe DisiMiR will be a useful
tool for future research into the regulatory mechanisms that drive disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ncrna8040045/s1, Figure S1: Venn diagrams showing the overlap
in causal miRNAs for each of the four diseases we examined, considering the 758 miRNAs that
were present in all four miRNA expression datasets. LEFT: DisiMiR’s predictions of causal miRNAs.
RIGHT: HMDD listing of causal miRNAs; Table S1: DisiMiR accuracy with different thresholds. By
using a different threshold for adjudicating causal and not-causal miRNAs, DisiMiR makes gains in
sensitivity with little losses in its specificity.
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