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Abstract: Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that
contain more than 200 nucleotides that play important roles in plant survival in response to different
stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the
regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These
lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the
level of transcription and post-transcription. Emerging information from computational biology and
functional characterization of some of them has revealed their diverse mechanisms of action and
possible roles in biological processes such as flowering time, reproductive organ development, as well
as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in
biotic stress response due to the limited availability of knowledge in this domain. We have discussed
the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further,
considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we
have highlighted the importance of lncRNAs against pathogen responses and the progress in plant
research to develop a better understanding of their functions and molecular mechanisms.

Keywords: abiotic stress; biotic stress; fungal; lncRNAs; plant development; viral

1. Introduction

Enhanced knowledge of the involvement of non-protein-coding regions of DNA in
regulatory functions has provided remarkable progress in elucidating the important roles
of non-coding molecules. The non-coding regions of the genome are not involved in any
protein coding. The main focus on the protein-coding region of DNA delayed the discovery
and the functional elucidation of the non-protein-coding regions of DNA and misidentified
it as a “junk DNA” [1]. The non-coding regions of DNA are transcribed into a large
number of transcriptional units known as non-coding RNAs (ncRNAs). These ncRNAs
were initially considered to be trash DNA, but recently, they have become a key component
of various regulatory processes [2]. High-throughput sequencing and expression profiling
have given the limelight to these transcriptional units after decades of existential crisis [3].

Non-coding RNAs can be classified into two broad categories: housekeeping and
regulatory ncRNAs. Structural ncRNAs such as tRNA, rRNA, snRNA, and snoRNA
are grouped into housekeeping ncRNAs and are constitutively expressing in the cell [4].
Based on their length, small RNAs (sRNAs such as miRNA, siRNA, and piRNA) and
lncRNAs are various types of regulatory ncRNAs. Earlier, researchers had emphasized
the key role of sRNA in the regulation of gene expression at the transcriptional and post-
transcriptional level and considered lncRNAs to be “transcriptional noise”. However,
recent studies on model plants have revealed several important roles of lncRNA in various
plant development processes, for instance, regulation of photomorphogenesis by red light,
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flowering, and biotic and abiotic stress responses [5–9]. The first eukaryotic lncRNA was
H19, identified in the mouse [10]. GmENOD90 from Glycine max was the first identified plant
lncRNA using RNA sequencing and in vitro based analysis [11]. Due to high-resolution
transcriptomic analysis, the identification of lncRNAs in plants has blossomed and caught
up with the mammalian research field in a few years [11]. Long non-coding RNAs are
transcribed by RNA polymerase II, similarly to mRNAs, and processed through 5′-capping
and 3′ poly (A) addition. In addition to RNA Pol II, they are also transcribed by polymerase
IV/V in plants [12,13] and processed through splicing or non-splicing and polyadenylation
or non-polyadenylation. Long non-coding RNAs can be broadly classified on the basis of
their genomic location as: (i) long intergenic ncRNAs (lincRNAs), (ii) long intronic ncRNAs
(incRNAs), and (iii) natural antisense transcripts (NATs) [14]. Their subcellular localization
can be nuclear or cytoplasmic. The lincRNAs and incRNAs are transcribed from intergenic
and intronic regions of DNA, respectively, while NATs originate from associated genes
of complementary DNA strands [15]. Apart from the above groups, there is one more
group of lncRNA, which are less in abundance and are transcribed from back-spliced exons,
known as circular non-coding RNAs (circRNAs). Some lncRNAs are transcribed by RNA
polymerase II from regions of essential DNA elements such as promoter and enhancer,
for instance, PROMPT and eRNAs. These RNAs are short lived with rapid turnover rates
and targeted by the RNA exosome in the nucleus, indicating their significance in gene
regulation [16]. The ideally known function of lncRNAs might be in the regulation of
transcription as “riboregulators.” Moreover, the molecular mechanism of lncRNAs can be
depicted in several ways; they can act as signals and decoys of miRNAs or a competitor of
pre-mRNAs in alternate splicing, as a guide in directing RNP (ribonucleoprotein) complex
to specific targets, and as scaffolds in the recruitment of complex protein molecules [17].

2. Origin and Database Development of Plant lncRNAs

The mechanisms of plant adaptation to different stresses that we see today are the
result of a joint venture among plants, microorganisms, and different types of environ-
mental conditions. Plants have encountered various biotic and abiotic stresses during
the long course of evolution and these interactions have been recorded in the form of
intricate molecular mechanisms. These mechanisms developed over time and help in many
developmental processes by surviving and sustaining harsh conditions such as mechan-
ical and biological stresses. A genome’s transcriptional inventory consists of coding as
well as non-coding RNAs, and the latter is said to be equally contributing to the plant’s
complex adaptations processes. Non-coding RNAs (ncRNAs) have emerged as crucial
bioactive molecules that contribute to genome and phenotypic diversity. Only around 2%
out of 90% of the transcribed RNAs from the eukaryotic genome result in the production
of proteins [18,19]. Next-generation sequencing (NGS) technology advancements have
been critical to finding ncRNAs in plants, in combination with homology-based and/or
experimental techniques [20,21]. High-throughput sequencing has made major advances
in understanding the biology of lncRNAs. Plant lncRNAs remain a mystery, despite new
findings that provide insight on their functions and methods of action. Moreover, the
origins and roles of these ncRNAs have been reported to be diverse [22]. Existing transpos-
able elements (TEs), random hairpin configurations, pseudogenization of protein-coding
sequence, and DNA repeat are some prominent explanations for the origins of various
ncRNAs such as miRNA, siRNA, piRNA, and lncRNA [23–26].

Despite being poorly conserved, sequence conservation among subsets of lncRNAs
across the species can be found [27]. On exploring biological significance and evolution
across 23 plant species, low sequence conservation at the transcript level among the majority
of lncRNAs has been observed [28]. Conservation studies of lncRNAs to predict their
possible functions are difficult because of less availability of tools and datasets. However,
some databases have been developed recently and are made available to researchers to
decipher their phylogenetic relationship, expression pattern, and molecular interactions.
Plant specific databases such as PlncRNAdb, PLncDB 2.0, CANTATAdb 2.0, GreeNC,
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TAIR10, PNRD, and PlantNATsDB, along with databases containing information from the
plant as well as other organisms (e.g., RNA central, EVLncRNAs, lncRNAdbv2.0, and
NONCODE v4) are available to make more in-depth inferences on the lncRNAs [29]. Some
of the databases with their features for the identification of plant lncRNAs have been listed
in the table below (Table 1).

Table 1. Some databases available for the identification of plant lncRNAs.

Database Features Reference

Plant long non-coding
RNA database

This database consists of >13,000
lincRNAs and associated epigenetic markers [18]

Plant ncRNA database It consists of 11 different types of ncRNAs of
150 plant species [30]

Green non-coding database It consists of data of 37 plant species and algae with
more than 120,000 lncRNAs [31]

The Arabidopsis
information resource It also consists of data of various noncoding RNAs [32]

Araportll It consists of annotated lincRNA, NATs, and various
other ncRNAs [33]

Plant natural antisense
transcripts database

It consists of NATs annotated data along with
expression of small RNA of 70 plant species [34]

CANTATAdb It consists of data of 45,000 lncRNAs of 10 model
plant species [35]

3. Involvement of lncRNAs in Various Biological Processes

Long non-coding RNAs control the gene regulation processes mostly at the level
of mRNA processing, editing, and turnover [36]. However, some lncRNAs also display
gene regulatory functions by post-transcriptional modifications. They mediate regulatory
functions by binding to DNA/RNA either through cis-acting or trans-acting sequences.
Various lncRNAs have been identified in plants coupled with the defense responses re-
lated to plant immunity and adaptation to environmental conditions. Many lncRNAs
have been documented using in silico analysis, whole-genome and RNA sequencing in
different plants such as Arabidopsis thaliana [37], Triticum aestivum [38], Oryza sativa [39],
Zea mays [40], Medicago truncatula [41], Vitis vinfera [42], etc. Ample reports have been
published on the possible functions and molecular mechanism of lncRNAs despite being
less explored and functionally characterized [43]. Their mode of action and targeting
mechanism differ in different biological processes. Most of the reported lncRNAs are stress
responsive [44]. However, their roles have also been reported in other plant development
processes (Figure 1). The lncRNAs involved in the regulation of flowering time are the
most diverse studied group of lncRNAs in model plants. FLOWERING LOCUS C (FLC), a
key regulator of flowering time in Arabidopsis is epigenetically regulated by lncRNAs COLD
INDUCED LONG ANTISENSE INTRAGENIC RNAs (COOLAIR) and COLD-ASSISTED
INTRONIC NON-CODING RNA (COLDAIR) [20,45,46]. COOLAIR and COLDAIR help in
recruiting PHD-PRC2 complex enabling histone modification of FLC. Some lncRNAs such
as EARLY NODULIN 40 (ENOD40) and AUXIN REGULATED PROMOTER LOOP (APOLO)
are involved in nodule development and polar auxin transport, respectively. ENOD40
participates in the nodule development in the leguminous plants by relocalization of RNA
binding protein 1 (RNP1) from nuclear speckles to cytoplasmic granules [47]. APOLO, an
intergenic lncRNA, is transcribed by RNA polymerase II and V, this dual APOLO tran-
scription directs the chromatin loop dynamics modulating the expression of neighbor
PID gene that plays an important role in the regulation of polar auxin transport [48,49].
Several lncRNAs have been reported to be involved in regulating various kinds of chal-
lenges related to abiotic stresses. For instance, under phosphate starvation conditions, a
lncRNA Induced by phosphate starvation 1 (IPS1) is expressed in Arabidopsis which promotes
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phosphate uptake and accumulation. It acts as an endogenous target mimic (eTM) for
miR399, which is a repressor of PHOSPHATE2 (PHOS2). PHOS2 is responsible for encoding
ubiquitin-conjugating (E2) enzymes, and its repression enhances phosphate uptake and
accumulation [50]. Some lncRNAs are responsive to light such as HIDDEN TREASURE
1 (HID1). It negatively regulates the expression of the PHYTOCHROME-INTERACTING
FACTOR (PIF3), a transcription factor that is the main repressor in photomorphogenesis
resulting in the hypo-photomorphogenic response under red light conditions [5,51]. Some
lncRNAs regulate photoperiod-sensitive genetic male sterility modulating reproductive or-
gan development. The reduced transcript level of long day-specific male fertility-associated
RNA (LDMAR) under long-day conditions causes programmed cell death at the time of
anther development in rice leading to male sterility [52,53].
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4. Roles of lncRNAs in Various Biotic Stress Responses

Plants have evolved through sets of defense mechanisms to mitigate different diseases
effectively. Plant cells respond to pathogen attacks after pathogen recognition, triggering
downstream signaling networks at the molecular level to arrange transcriptional machin-
ery [54]. A minimal effort has been made in identifying and annotating the lncRNAs related
to biotic stresses. Therefore, the molecular mechanisms of some lncRNAs in three major
biotic stresses have been highlighted below (Table 2 and Figure 2).

Table 2. Long non-coding RNAs related to the biotic stress response.

Pathogen Associated Stress lncRNA Mechanism Plant Reference

Ba
ct

er
ia

Bacterial speck disease
(Pseudomonas syringae pv.

tomato DC3000)
Up- ELENA1 Directly interact

with MED19a Arabidopsis thaliana [55]

Bacterial canker (Pseudomonas
syringae pv. actinidiae)

Up- TCONS_00202033,
TCONS_0019494 &
TCONS_00076221

Unknown Actinidi adeliciosa [56]

Bacterial leaf blight
(Xanthomonas oryzae pv. oryzae) Up- ALEX1 Interacts with JA

related genes Oryza sativa [57]
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Table 2. Cont.

Pathogen Associated Stress lncRNA Mechanism Plant Reference

Fu
ng

al

Powdery mildew (Blumeria
graminis f. sp. tritici)

Up- TalnRNA5,
TapmlnRNA19

Precursor of
miR2004 Triticum aestivum [58]

Powdery mildew (Blumeria
graminis f. sp. tritici) Up- TalnRNA9

Signal recognition
particle 7S RNA

variant 1
Triticum aestivum [58]

Powdery mildew (Blumeria
graminis f. sp. tritici)

Up- TapmlnRNA2,
TapmlnRNA7

Precursor of
siRNA Triticum aestivum [58]

White mold
(Sclerotinia sclerotiorum)

Up- TCONS_00012499,
TCONS_00004577,
TCONS_00004034,
TCONS_00009614,
TCONS_00015411

Precursor of mi156 Brassica napus [59]

White mold
(Sclerotinia sclerotiorum)

Up- TCONS_00006568,
TCONS_00018692,
TCONS_000017152,
TCONS_00008591,
TCONS_00001092

Precursor of mi169 Brassica napus [59]

Wilt disease
(Fusarium oxysporum) Up- TAR-66 (lincRNA)

Co-induction with
neighboring

defense-related
gene

Arabidopsis thaliana [60]

Wilt disease
(Fusarium oxysporum)

Up- TAR- 67,-191,-
197,-224 Unknown Arabidopsis thaliana [60]

Stripe rust (Puccinia striiformis
f. sp. tritici) Up- TalncRNA18, 106 Unknown Triticum aestivum [61]

Stripe rust (Puccinia striiformis
f. sp. tritici)

Up & Dp at different
dpi- TalncRNA73, 108 Unknown Triticum aestivum [61]

V
ir

al

TYLCV Infection Up- Slylnc0195 Target mimicry of
miR166

Solanum
lycopersicum [62]

TYLCVInfection Dn- Slylnc1077 Target mimicry of
miR399

Solanum
lycopersicum [62]

CGMMV infection Up- lncRNALNC_1497
Target mimicry of

MIR4995-
p5_Iss19GC

Citrullus lanatus [63]

Up, upregulation; Dn, Downregulation; dpi, days post-inoculation; TAR, transcriptionally active region; TYLCV,
tomato yellow leaf curl virus; CGMMV, cucumber green mottle mosaic virus.

4.1. Long Non-Coding RNAs against Fungal Infection

Commercially valuable crops such as wheat, rice, tomato, and cotton can be severely
damaged by fungal diseases. Powdery mildew (PM) and stripe rust in wheat caused by
Blumeria graminis f. sp. tritici (Bgt) and Puccinia striiformis f. sp. tritici (Pst), respectively,
are such examples. Rice blast is another example of such a destructive disease caused by
Magnaporthe oryzae and resulting in remarkable yield loss. The molecular studies of these
diseases can provide better insights for developing pathogen resistance strategies.

A comparative expression profile analysis of two cultivars of wheat (PM-susceptible
JD8 and PM-resistance JD8-pm30) in response to powdery mildew (PM) infection has
revealed expression patterns of 71 lncRNAs in a tissue-specific manner [58]. It was found
that some (TapmlnRNA5, TapmlnRNA8, and TapmlnRNA19) differentially expressing
lncRNAs in different tissues were precursors of miRNA having stable hairpin structures.
The tissue dependent expression of these lncRNAs in response to Bgt infection indicates
their role in the development and regulation of biotic stress [58].
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signal perception, PAMP-triggered immunity (PTI) is activated through the production of signal
transducers such as reactive oxygen species (ROS). Pathogen-specific effector-triggered immunity
(ETI) is activated by NB-LRR resistance (R) genes after effectors such as the virulence factor of
pathogens, enter into the plant cells. PTI and ETI both lead to activation of defense-related pathways.
Long non-coding RNAs play important regulatory functions in various plant defense mechanisms
either by acting as a precursor of miRNAs and siRNAs or as a miRNA target mimic. (NB-LRR,
nucleotide-binding leucine-rich repeats; MAPK, mitogen-activated protein kinase; TFs, transcription
factor; RISC, RNA-induced silencing complex; AGO, argonaute proteins).

By investigating changes in transcriptionally active regions (TARs) (both TARs an-
tisense to overlapping or adjacent genes and intergenic TARs) using a strand-specific
RNA-seq approach, 15 lncNATs and 20 lincRNAs were identified in Arabidopsis thaliana
against Fusarium oxysporum infection [60]. Functional characterization of some lncRNAs
using knockout or knockdown in Arabidopsis plants have revealed evidence of lncRNAs
role against disease development. For instance, novel intergenic TAR-191 and TAR-197
induced upon F. oxysporum infection were attenuated in the RNA interference (RNAi) line
and T-DNA insertion knockout lines, respectively, and these lines were showing significant
disease development [60].

Intriguingly, there was a negative correlation between co-induction of transcripts
from the At2g30770 gene and its lncNATs after F. oxysporum infection. The At2g30770 gene
encodes CYP71A13, an essential P450 enzyme involved in the biosynthesis of an essential
phytoalexin called camalexin which plays important role in disease resistance. In the core
promoter of this gene, TCA-element and TC-rich repeat are found which are responsive to
salicylic acid and stresses, respectively, suggesting the presence of shared TFs binding sites
and pathogen responsive elements in the promoter regions [60].

Phytophthora infestans which is the causal agent of late blight (LB) in tomatoes causes
serious economic loss worldwide in field-grown tomatoes and is a major threat to its produc-
tion. A comparative transcriptomic analysis of resistant (Sp) and susceptible tomatoes lines
(Slz) against P. infestans infection identified a total of 1037 differentially expressed genes
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(DEGs) and 688 DElncRNAs (DELs) [64]. After analyzing co-localization and expression
between DEGs and DELs, lncRNA16397, a lncNAT of the glutaredoxin gene SlGRX22, was
identified, which regulates expression of SlGRX22. GRXs are glutathione-dependent disul-
fide oxidoreductases involved in oxidative stress response in plants [65]. The lncRNA16397
and SpGRX overexpressing plants showed fewere LB symptoms, depicting their roles in
disease resistance. SpGRX functions by reducing ROS accumulation and alleviating injury
in cell membrane eventually enhancing resistance in tomato against P. infestans.

A genome-wide investigation carried out in susceptible Vitis vinifera in response to
obligate biotrophic phytopathogens Erysiphe necator and Plasmopara viticola, causing agents
of PM and DM (Downey mildew), respectively, identified 71 PM and 83 DM-responsive
lncRNAs [66]. A co-expression analysis revealed that 52 PM responsive lncRNAs were
co-regulating with 33 protein-coding sequences (CDS) and 22 DM-responsive lncRNAs
were found to be co-expressed with 127 CDS. Further, a Gene Ontology (GO) enrichment
analysis revealed the functional annotation of these CDS sequences, and highlighted the
putative role of the co-expressed lncRNAs in plant defense response against the PM and
DM infection [66]. Similar results were also previously found in V. vinifera, in response to
Botrytis cinerea (grey mold (GM)). A co-expression analysis of 47 GM-responsive lncRNAs
and 179 CDS revealed potential interaction between them and the role of lncRNAs in
defense response against GM infection [67].

Plants have evolved the innate immune system to counter various harmful pathogens
such as fungi. They can respond against a range of pathogens carrying pathogen-associated
molecular patterns (PAMPs) and effector molecules [68]. PAMP-triggered immunity (PTI)
acts as the first line of plant innate immunity against a pathogen attack. PAMPs are
recognized by trans-membranous pattern recognition receptors (PRRs), which trigger a
weak immune response called PTI [69,70]. The second line of plant innate immunity is
effector-triggered immunity (ETI), which is activated upon the recognition of pathogen
molecules called virulence (Avr) effectors [71]. These highly variable effector molecules
trigger robust hypersensitive reactions mediated by highly polymorphic plant resistance
(R) proteins. The innate immune system of plants, via these two layers, counters a pathogen
attack by activating many defense-related genes by various signaling pathways [72–76].
The lncRNAs may alter the expression of those defense-related genes at the transcriptional
and post-transcriptional levels to mitigate the pathogens attack. However, their role in
adaptation and specificity against pathogens and their interaction with lncRNAs is yet to
be deciphered [54]. Transcription factors (TFs) such as NAC, AP2/ERF, WRKY, and C2H2
have been reported to be involved in the regulation of plant response against pathogens.
A co-expression analysis of some lncRNAs with these neighboring TFs has suggested a
co-regulation relationship with adjacent protein-coding genes, predicting regulatory roles
of lncRNAs in both positive and negative ways. Many fungi-responsive lncRNAs have
been identified and their functions have been predicted with the help of technologies such
as genome-wide microarray analysis and SBS sequencing, supporting the involvement of
lncRNAs in the basal defense mechanism of plants. Most of the functional cues of lncRNAs
based on bioinformatical analysis have suggested that lncRNAs can potentially interact
with other classes of ncRNAs including small non-coding RNAs such as miRNAs [66,67].
In addition, techniques such as RNAi and T-DNA insertion have suggested their role by
acting as either a precursor of miRNA or miRNA mimics, yet their functional network is to
be deciphered.

4.2. Long Non-Coding RNAs against Viral Infection

Plant viruses cause significant economic losses in a wide range of crops. Virus infec-
tions cause symptoms such as necrosis, yellowing, leaf spot, mosaic color, and abnormal
growth in plants. These viruses could possess either DNA or RNA as their genetic material.
However, DNA viruses are the less common agent of plant diseases and mostly the single or
double-stranded RNA viruses infect plants by utilizing RNA-dependent RNA polymerase
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(RDRP) activity. An RNA virus usually replicates in the cytoplasm with few exceptions
such as retroviruses and negative single-stranded RNA (ssRNA) viruses.

Generally, pathogen recognition activates a cascade of signaling pathways governing
defense response. However, recently, the roles of lncRNAs involved in defense responses
have been emerging. An expression analysis of lncRNAs indicated that several lncRNAs
such as lincRNA and lncNATs were differentially regulated in response to the tomato
yellow leaf curl virus (TYLCV) infection in TYLCV-resistant cultivar CLN2777 [62]. TYLCV
belongs to the DNA Geminivirus containing a single-stranded circular DNA molecule in its
genome. The lincRNAs such as slylnc0048, slylnc0049, slylnc0483, slylnc0531, and slyinc0934
were found to be upregulated and slylnc0475, slylnc0476, slylnc0673, and slylnc1052 were
downregulated in an expression analysis, suggesting their role in defense response against
viral infection. Later, the lncRNA SlLNR1 from tomato (Solanum lycopersicum L.) was re-
ported to be involved in plant growth and leaf development. A viral small interfering RNA
(vsRNA) derived from the intergenic region (IR) of TYLCV is almost perfectly complemen-
tary with long non-coding RNA, SlLNR1. The non-coding IR sequence of intergenic regions
consists of 25 nucleotides, which are required for replication and transcription within the
host cells. The vsRNA induces silencing of SlLNR1 in TYLCV-susceptible tomato cultivar by
RNAi and its downregulation causes stunted plant growth and curled leaf phenotypes [77].
A deletion in the 25 nt IR sequences has provided resistance to vsRNA-directed repression,
as in the case of TYLCV-resistant cultivar CLN2777 (Figure 3). This is a good example of
post-transcriptional gene silencing in which SlLNR1 is targeted by IR derived siRNA.
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Studies have predicted the possibility of a complex gene-regulating relationship be-
tween lncRNA and mRNA. Rice black-streaked dwarf virus (RBSDV) is a non-enveloped
RNA virus transmitted through small brown planthopper. The transcriptomic profile
of RBSDV-infected rice plants has revealed a total of 1342 differentially expressed (DE)
mRNAs and 22 differentially expressed lncRNAs [78]. A co-expression network analysis of
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these DEmRNAs and DElncRNAs has shown a possible sign of the presence of a gene reg-
ulatory network in the plant–pathogen interaction pathways. An RBSDV infection results
in the expression of many lncRNAs regulating the expression of several genes beneficial in
plant defense mechanisms, as well as in viral pathogenesis. Genes beneficial to host plants
in defense response include genes encoding for LRR domain-containing proteins, ubiquitin-
mediated proteasomal degradation proteins, and calmodulin-like proteins, as well as genes
related to flavonoid biosynthesis. The genes beneficial in viral pathogenesis involve genes
related to hormone signaling and biosynthesis. The molecular mechanisms of a very few
lncRNAs have been understood in viral response until now. Therefore, in addition to the
PTGS through siRNAs, some lncRNAs also act as endogenous target mimics (eTM) for
miRNAs in plants. For instance, silencing of slylnc0195 by viral-induced gene silencing
(VIGS) has resulted in the accumulation of virus in slylnc0195-VIGS Nicotiana benthami-
ana plants showing miR166 as its putative targets and its functioning via miRNAs target
mimics [62] and lncRNALNC_1497 which acts as miRNA mimics of MIR4995-p5_Iss19GC
and regulates NAC gene (Cla010201) in cucumber green mottle mosaic virus (CGMMV)
infection [63].

4.3. Long Non-Coding RNAs against Bacterial Infection

In addition to fungi and viruses, bacteria are another major threat to plants, which
causes yield loss by means of various diseases. The role of lncRNAs in bacterial disease
resistance is still less explored as compared with other known pathogens. However, a
few studies have demonstrated the involvement of lncRNAs in bacterial disease resis-
tance [55–57]. Bacterial canker disease of kiwi fruit is caused by the Pseudomonas syringae
pv. actinidiae (Psa) and shows variable symptoms such as dark brown spots on leaves and
cankers on the stem. The kiwi fruit responds through a variety of immune processes against
the Psa pathogen. The upregulation of lncRNAs and their interaction with various signaling
and defense-related genes has been reported in Psa-infected kiwi fruit. The lncRNAs were
predicted to provide immunity to plants by playing their roles in systematic acquired resis-
tance (SAR), salicylic acid-mediated signaling pathway, and chitin catabolic processes [54].
Plants activate the diverse defense responses in turn of microbe signal detection through
PRRs. These responses include the production of assorted antimicrobial compounds and
PR proteins [79,80]. The PR group of proteins are important due to their antimicrobial
activities [56]. Recently, Seo et al. identified a lncRNA named ELF18-INDUCED LONG-
NONCODING RNA1 (ELENA1) in the Arabidopsis thaliana. Overexpression of ELENA1
increased the degree of resistance against Pseudomonas syringae pv. tomato DC3000 by
upregulating the PR1 proteins [55].

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight disease of rice plants. It
is considered to be the most harmful disease of rice, which is responsible for rice destruction
throughout the world. Yu et al. (2020) carried out the strand-specific RNA sequencing of
Xanthomonas oryzae pv. Oryzae (Xoo) infected leaves of rice at 2, 6, 12, and 24 h of post-
inoculation. In their work, they identified a total of 567 differential expressed lncRNAs.
Further, these lncRNAs showed their interaction with a variety of stress-related mRNAs,
which provided insight into their roles in plant defense pathways. The enhancer trap system
approach was used to develop the mutant rice plants having overexpressed ALEX1 (a leaf
expressed and Xoo-induced lncRNA 1). Jasmonic acid (JA) is an important phytohormone
known to play a vital role in rice–Xoo interactions. The JA and salicylic acids are reported to
enhance the various defense pathways by regulating the different PR proteins. ALEX1 was
found to be responsible for the activation of the JA pathway. The participation of ALEX1
in JA signaling activation has been confirmed by various findings such as upregulation of
JA interacting genes, root and shoot growth inhibition, and increased level of jasmonates
in mutant rice plants [57]. Collectively, these findings show the connection of lncRNAs
in bacterial disease resistance by mediating the various signaling pathways; however, the
exact mechanism of action is still ambiguous and needs to be explored in future studies.
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5. Conclusions

Rapid identification of novel lncRNAs and their functional characterization has be-
come possible due to recent advances in high-throughput sequencing and computational
biology. It has revealed the multifaceted regulatory function of lncRNAs in composite
regulatory pathways, playing a vital role not just in plant immune response but also in
several plant development processes, hormone signaling, and pathogenesis. Despite their
known roles as miRNA and siRNA precursors, and miRNAs mimic, the specific role of
lncRNAs in defense-related signaling pathways is yet to be deciphered. However, the
specific role of some of the lncRNAs in different stresses has been identified in model plants
such as Arabidopsis and tomato, using techniques such as RNAi and virus-induced gene
silencing. The synteny relationship among crop plants and model plants can give a major
boost to the functional characterization of novel lncRNAs of crop plants. In this review, we
have summarized the mode of action and functions of lncRNAs related to some major biotic
stresses. It is important to emphasize research about stress regulatory lncRNAs due to their
significance in crop improvement programs. The molecular mechanisms regulating stress
responses such as functional crosstalk among miRNA and lncRNAs are still unexplored
and have significant importance in enhancing our understanding of stress tolerance. The
ability of lncRNAs to mitigate regulatory and functional proteins at the transcriptional
and post-transcriptional levels has flagged them as key players not only in the cellular and
developmental processes but also in stress response. Therefore, we present lncRNAs as
worthy candidates requiring attention in future research that will further strengthen our
knowledge to overcome the global food crisis caused by pathogens.
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