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Abstract: Currently there are nine known examples of transmissible cancers in nature. They have
been observed in domestic dog, Tasmanian devil, and six bivalve species. These tumours can
overcome host immune defences and spread to other members of the same species. Non-coding
RNAs (ncRNAs) are known to play roles in tumorigenesis and immune system evasion. Despite
their potential importance in transmissible cancers, there have been no studies on ncRNA function in
this context to date. Here, we present possible applications of the CRISPR/Cas system to study the
RNA biology of transmissible cancers. Specifically, we explore how ncRNAs may play a role in the
immortality and immune evasion ability of these tumours.
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1. Transmissible Cancers

Cancers are usually self-limiting in that tumour cells perish with the host and are
not transmitted to others in the population [1]. Traditionally, cancer was only believed
to be a transmissible disease under exceptional circumstances [2]. These circumstances
have been referred to as a ‘perfect storm’, and include several cancer cell characteristics
(e.g., phenotypic plasticity), as well as host factors (e.g., low host genetic diversity) [2,3].
To become transmissible, a cancer must have a route to access, infect and colonise addi-
tional hosts [3].

In rare cases, a cancer can be naturally transmitted from one human to another,
e.g., during pregnancy [4]. The immune systems of both mother and foetus tolerate
foreign antigens during pregnancy, allowing human to human transmission to occur [4].
There have been numerous cases in which a mother has developed cancer while pregnant,
and the cancer has ‘metastasised’ to the developing child [4]. Cancers can also be naturally
transmitted to a human host from a different species. In one unique case, a human HIV
patient developed a tapeworm (Hymenolepis nana) cancer, which was presumably due to
immune deficiencies and pre-existing tapeworm colonisation [5].

Additionally, some cancers have been artificially transmitted between individuals in
medical settings (through transplants and surgical accidents) and laboratory experiments
(e.g., transplantation of tumours between animals) [3,6,7]. A repeated example of artificially
transmitted cancer in humans is from donor to recipient in organ transplants where the
immunosuppressed state of the recipient permits a foreign tumour to proliferate [8]. Donor
screening was improved in 1997, which lowered the incidence of transmitted cancer from
30% to 0.05% [9,10].

The above cases involve cancer transmission between two individuals only, i.e., from
mother to child, organ donor to recipient, or tapeworm to a human patient. These cancers
do not spread through the population. This contrasts at least nine naturally occurring trans-
missible cancers in dogs, Tasmanian devils and bivalves that infect multiple individuals in
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the population (Figure 1). In fact, transmissible cancers may be more common in nature
than represented in the literature [11].
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Figure 1. Currently known independently evolved transmissible cancer lineages observed in wild populations. In mammals,
canine transmissible venereal tumour (CTVT) and two lineages of devil facial tumour disease (DFTD) have been described.
In bivalves, there are six distinct examples of bivalve transmissible neoplasia (BTN). * This figure represents currently
confirmed BTN lineages. The number of bivalve species affected by BTN is likely to be underestimated [11].

1.1. Canine Transmissible Venereal Tumour (CTVT)

The first naturally occurring transmissible cancer discovered was canine transmissible
venereal tumour (CTVT), having been observed in domestic dogs around the world over the
last two hundred years [12,13]. It has been experimentally transmitted to wild canids such
as wolves, coyotes and red foxes, but there are no confirmed incidents of CTVT occurring
in wild populations [14]. CTVT is believed to have originated in a dog related to Alaskan
Malamutes approximately 4000–8500 years ago [13,15], making it the most prolonged
proliferating mammalian cell line [16]. CTVT is sexually transmitted and generally non-
fatal to the host as it regresses after three to nine months [16]. Although widespread,
its non-lethality results in minimal effect on dog populations and reproduction, creating a
stable coexistence of host and ‘pathogen’ that has developed over thousands of years.

The genome of CTVT has undergone large scale structural alterations, as well as gene
specific changes in expression. CTVT has a diploid number of 2n = 57–59, in contrast
to the domestic dog’s 2n = 76 [17]. This reduced diploid number is likely the result of
fusion events between small chromosomes, leading to 16–18 bi-armed chromosomes [17].
Specific marker chromosomes are present, which vary by geographic region [16]. A change
characteristic of CTVT is the insertion of a LINE1 upstream of the c-myc oncogene [18].
Increased expression of c-myc in CTVT may be a result of this insertion [18,19].

Further changes in gene expression have enabled CTVT to persist as a transmissible
cancer. Telomerase is upregulated, which presumably maintains telomere length [2,20].
CTVT achieves downregulation of dog leukocyte antigen genes DLA-I and DLA-II
(the canine equivalent of MHC-I and -II) via secretion of transforming growth factor
β (TGF-β) [2,16]. Their under-expression aids CTVT in evading the host immune sys-
tem [2]. However, dogs are usually immune to re-infection after the tumour regresses,
indicating that the current immune escape adaptations of CTVT do not permit unchecked
growth [16].

1.2. Devil Facial Tumour Disease (DFTD)

In contrast to the relatively innocuous and ancient CTVT is the more recently discov-
ered devil facial tumour disease (DFTD). DFTD was first observed in wild Tasmanian devils
in 1996 (DFT1) [21]. DFTD is a transmissible facial tumour that is spread primarily by biting
behaviour during mating and feeding. It causes death in approximately six months [22,23].
In 2014, a second DFTD emerged in wild devils (DFT2) [24]. Both of these transmissible
tumours are derived from neuroectodermal tissues, but cytogenetic and transcriptomic
evidence show that they originated independently in different individuals [25,26]. DFT1
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originated in a female devil; it has two rearranged X chromosomes and no Y chromo-
some [27,28]. DFT2 contains a Y chromosome, so originated in a male individual [24].
DFTD has had a severe impact on its host population. Local populations declined more
than 80% in the first 5 years after DFT1 discovery, and there was an estimated average
decline of 77% across all DFTD-affected populations to 2018 [29,30].

Both DFT1 and DFT2 have substantial karyotypic differences compared to the normal
Tasmanian devil karyotype. DFT1 has extensive rearrangement of chromosome 1 and the
X [28], and four characteristic marker chromosomes [22]. In DFT2, one copy of chromosome
6 has been inserted into chromosome 2 to form a larger chromosome [26]. Additional mate-
rial is also present on chromosomes 1 and 4 and there is a deletion involving chromosome
5 [24]. At a smaller scale, the alteration of particular genes may contribute to DFTD’s
success. For example, there is a homozygous deletion of the gene TP73 in DFT2 [26].
TP73 plays a role in activating apoptosis [31], which might contribute to uncontrolled
proliferation of DFT2.

As in CTVT, telomerase is upregulated in DFT1 [32]. This upregulation is the result of
increased expression of the catalytic subunit of telomerase: telomerase reverse transcriptase
(TERT) [32].

An important feature of both DFTD tumours is altered major histocompatibility
complex (MHC) expression. The MHC is a family of genes in the mammalian adaptive
immune system involved in self/non-self-recognition by T cells [11]. MHC class I (MHC-
I) molecules are not expressed on the surface of DFT1 cells [33]. This contrasts DFT2,
in which MHC-I genes are expressed. However, it has been suggested that this expression
in DFT2 could become downregulated over time [34,35]. MHC downregulation in both
DFTDs would hinder the host’s ability to identify foreign cells. Although MHC mRNA
is produced, it was shown that epigenetic downregulation of antigen-processing genes,
rather than physical mutation, caused the lack of MHC-I expression on the cell surface of
DFT1 [33].

Despite DFTD adaptations for immune evasion, some Tasmanian devils are evolving
an immune response to DFT1. Remarkably, there has been evidence of selection for genes
involved in cancer or immune function over only ~4–6 generations [36]. Initially, DFT1 was
thought to be 100% fatal. This is no longer the case, with multiple individuals from West
Pencil Pine, Tasmania found to survive the disease or exhibit tumour regression [37]. Inter-
estingly, a 2016 study showed that the IgM/IgG (Immunoglobulin M/Immunoglobulin G)
expression ratio in the host had a statistically significant effect on DFT1 status. Higher IgM
expression compared to IgG was associated with lower presence of DFT1 in Tasmanian
devils [38]. The strong selective pressure imposed by DFTD is driving a rapid evolutionary
response. Perhaps one day Tasmanian devil populations will be less affected by DFT1 and
DFT2, like dog populations are by CTVT.

1.3. Bivalve Transmissible Neoplasia (BTN)

Disseminated neoplasia, a leukaemia-like cancer, has been observed for decades in var-
ious bivalve species, including oysters [39–42]. Since 2015, several species were confirmed
to have independently evolved transmissible tumours (bivalve transmissible neoplasia—
BTN) [43]. These include: soft shell clams (Mya arenaria), bay mussels (Mytilus trossulus),
cockles (Cerastoderma edule), golden carpet shell clams (Polititapes aureus), Chilean mussels
(Mytilus chilensis) and blue mussels (Mytilus edulis) [44,45] (Figure 1).

There are also multiple examples of cross-species cancer transmission. The tumour
observed in golden carpet shell clams is believed to have originated from pullet shell clams,
despite low levels of neoplasia in pullet shell clams [46]. Mytilus BTN1 and Mytilus BTN2
are separate tumours that developed in bay mussels [47]. These two tumours are observed
in both bay mussels and blue mussels, whereas only Mytilus BTN2 is observed in Chilean
mussels [45,47]. Another two distinct BTN lineages arose independently in cockles [44].
The emergence of multiple BTNs in these bivalves mirrors the independent rise of two
DFTD tumours.
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It is probable that many more BTNs exist and are yet to be identified, with mod-
elling showing that transmissible cancers are likely to be more common in nature than
reported [11]. As BTN continues to be studied, more bivalve species are being added to the
list of known hosts. Mediterranean mussels (Mytilus galloprovincialis) are also potentially
BTN-affected. Disseminated neoplasia has been widely observed in this species, but its
transmissibility is yet to be confirmed [45].

In BTN and bivalve non-transmissible disseminated neoplasia, invasive cells are
found in the circulatory fluid [2]. These invasive cells can sequester TP53 protein in
the cytoplasm, express novel surface antigens and lose phagocytic and apoptotic abilities,
leading to displacement, compression, and host cell death in the circulatory system [2,48,49].
The sequestering and inactivation of TP53 is noteworthy, as p53 is a tumour suppressor
gene [49].

Unlike CTVT and DFTD, direct contact is not required for transmission of BTN.
Bivalves are filter feeders, so BTN cells can be shed into seawater and dispersed on currents
to access new hosts [2,43]. It was shown that haemocytes from a soft shell clam with
leukaemia could exist in seawater for at least six hours, and were tolerant to environmental
changes, with only low levels of cell death occurring [50].

Disseminated neoplasia and BTN can cause mass mortalities in bivalve populations.
High mortality has been previously associated with disseminated neoplasia in wild oysters
in Australia, Spain and Croatia [51,52]. As BTNs have the potential to cause bivalve
population declines [2], they pose a threat to aquaculture should a tumour infect farms.
Importantly, effects of climate change such as ocean warming will likely facilitate outbreaks
of disseminated neoplasia [53]. Therefore, it is possible that BTN will become more of a
threat into the future. The potential detriments for bivalve aquaculture are clear, which
is a global industry that produced 14.65 million tons—worth approximately $24 billion
(USD)—in 2015. Of this, China had by far the largest production with 12.4 million tons
alone, worth $18.5 billion (USD). The rest of Asia produced the next highest amount with
1.1 million tons, followed by Europe with 0.6 million tons [54].

2. Non-Coding RNAs

The number of protein coding genes in an organism was once thought to be directly
related to an organism’s complexity. Conversely, regions considered to be without function
or transcriptional activity were designated as ‘junk DNA’ [55,56]. This notion changed
when the genomes of organisms with lower complexity, such as mouse [57], nematode
worm [58] and chicken [59] were discovered to have a similar number of protein coding
genes as humans. RNA was long thought of as only an information intermediary between
DNA and protein. However, the many functions that RNA performs within the cell are
now appreciated, as previously unknown capabilities of RNA are uncovered [60]. New
genome-wide technologies such as chromatin immunoprecipitation sequencing (ChIP-
seq) [61] and RNA sequencing (RNA-seq) [62–64] have improved capabilities to identify
and understand the roles of RNA. This has resulted in the emergence of new hypotheses
about how genes are regulated.

Cases of structural non-coding RNAs (ncRNAs) carrying out basic functions were
recorded in the 1950s. These ncRNAs included ribosomal RNAs (rRNAs) [65] and transfer
RNAs (tRNAs) [66], both involved in translation. The 1990s introduced the concept of
ncRNAs with varying roles and functions with the discoveries of XIST [67,68], which
plays an important role in X chromosome inactivation, and H19 [69,70], which undergoes
paternal imprinting.

While originally considered rare, ncRNAs have a large role in gene regulation [71,72].
Only a small part (1.2%) of the human genome encodes for proteins, whereas approxi-
mately 70% is transcribed into RNA [71–73]. Most of the human genome is transcribed
into ncRNAs with complex overlapping patterns [60,71,74,75]. RNA sequencing tech-
nologies has led to identification of tens of thousands of ncRNAs, however many have
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no ascribed function because mechanistic studies of individual ncRNAs are much more
involved [71,72,76].

NcRNAs are characterised as either short ncRNAs (<200 nt) or lncRNAs (>200 nt).
MicroRNAs (miRNAs) are the most well studied of the short ncRNAs, though there are also
short-antisense RNAs (sasRNAs), piwi interacting RNAs (piRNAs), short interfering RNAs
(siRNAs), small nucleolar RNAs (snoRNAs) and transcription initiating RNAs (tiRNAs).
There is also a variety of lncRNAs, such as antisense RNAs (asRNAs) [72], transcribed
ultraconserved regions (T-UCRs) [77], enhancer RNAs [78], transcribed pseudogenes [79]
and large intergenic ncRNAs (lincRNAs) [61].

Non-polyadenylated lncRNAs have been identified, although by and large most
lncRNAs are polyadenylated [80,81]. LncRNAs are involved in a number of biological
processes. Antisense lncRNAs have regulatory roles in metabolism, cell cycle and stem
cell pluripotency [80,82,83]; one example is epigenetic regulation of HIV viral transcrip-
tion [84]. Gene expression can be regulated either transcriptionally or post-transcriptionally,
and lncRNAs can be cis or trans acting [82,85]. Gene regulation is altered through interaction
of lncRNAs with transcription factors and/or chromatin remodelling proteins [83,86,87].

An antisense RNA is complimentary to it partner sense-expressed transcript, normally
a protein coding mRNA. Antisense RNAs overlap promoters, UTRs (both 5′ and 3′), introns
and exons. Tsix, antisense to XIST at the X-inactivation centre [88], and the parent of origin
silencing (genomic imprinting) of KCNQ1 [89] and IGF2R [90] were some of the first
examples of asRNA gene regulation. AsRNA transcription occurs throughout the human
genome, which has been observed through cap analysis of gene expression (CAGE) [72]
and strand specific analysis of expressed sequence tags [91].

It is now established that asRNAs play vital roles in numerous cellular processes,
such as RNA stability [92,93], epigenetic remodelling [94], translation [95], altered mRNA
splicing [96] and imprinting [88]. A variety of cancer-associated genes (such as p53 [93],
p15 [97], and p21 [95]) are regulated by asRNAs. Upregulation of the lncRNA HOTAIR
is linked to poor prognosis and increased metastasis in a number of different tumours in
humans, including breast, lung, gastric and pancreatic cancers [98]. HOTAIR is known
to interact with members of the PRC2 complex, specifically SUZ12 and EZH2, which are
involved in methylation of H3K27 [99]. Inhibition of HOTAIR led to downregulation of
the PI3K/AKT pathway and MRP1, as well as increased sensitivity to the drug imatinib,
a tyrosine kinase inhibitor [100]. PTEN is a tumour suppressor gene that also regulates
the PI3K/AKT pathway and has a known lncRNA regulator itself, PTENP1 [101,102].
Increased expression of the lncRNA MALAT1 correlates with poor prognosis in lung
cancer, whereas reduced MALAT1 expression leads to reduced lung cancer cell motility,
an indicator of lowered metastatic ability [98]. These are just some examples of the known
roles for ncRNAs in cancer.

NcRNAs are vital for gene regulation in many biological processes and have a clear
role in cancer [92–97,103]. Much work has identified and annotated ncRNAs in humans and
other model species like mouse, but less is known for non-traditional model species. There
is a large reduction of non-coding genes and pseudogenes identified in Tasmanian devil
and dog compared to humans (Ensembl database). Popular opinion might attribute this to
the perceived increased complexity of humans and the requirement for large numbers of
ncRNAs to subtly regulate gene expression. However, much of the disparity likely results
from fewer genomic studies in devils and dogs.

3. CRISPR/Cas

The CRISPR/Cas system is capable of introducing specific genetic changes to cultured
cells or animal models of interest. It is derived from a prokaryotic immune defence in which
foreign viral DNA is recognised and cleaved by the Cas protein [104]. The CRISPR/Cas
complex is comprised of an RNA-guided DNA endonuclease (Cas9) and a single guide
RNA (sgRNA). The sgRNA itself is made up of two components: a CRISPR RNA (crRNA)
component, which directs the complex by homologous base pairing with the target se-
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quence [105], and a trans-activating crRNA (tracrRNA) component, which is involved in
the maturation of crRNA as well as binding it to the Cas protein [106]. A genomic target se-
quence must be followed by a protospacer adjacent motif (PAM), which is any base followed
by two guanine bases or an adenine and guanine (i.e., NGG or NAG) [107]. Expressing
Cas9 and a sgRNA results in precision cutting of the target, causing double stranded breaks.
Non-homologous end joining (NHEJ) and homology directed repair (HDR) can be utilised
to insert known sequence into the cleavage site or cause deletions [108], which can induce
deleterious mutations that inactivate a target gene to model disease outcomes.

A catalytically inactivated version of the Cas complex (dCas9), which does not
cleave the underlying DNA sequence, can be fused to proteins that either activate or
repress target genes. CRISPRi fuses dCas9 to transcriptional repressors such as the
KRAB domain [109,110], whereas CRISPRa fuses dCas9 to transcriptional activators [111].
In traditional CRISPR applications a plasmid containing cassettes for the Cas9 protein and
sgRNA is introduced to target cells, which will then be expressed for a short time. These
cells are then screened for the desired genomic changes. Conversely, CRISPRa and CRISPRi
technologies rely on expression of the dCas9 and guide RNA for extended periods over
which the effects can be measured. dCas-fusion proteins have also been developed that
can affect epigenetic modifications. For example, DNA methylation at specific CpGs can
be increased in targeted areas of the genome using DNA methyltransferase dCas9 fusion
proteins [112].

The versatility of the CRISPR has led to its utilisation in all aspects of medical and
biological research, especially cancer research. The occurrence and proliferation of cancer
is characterised by many genetic changes, usually in oncogenes or tumour suppressor
genes [113]. Homologous recombination (HR) and NHEJ have been used to create mouse
models and cell lines with specific mutations. This was combined with site-specific recom-
binases such as Cre and flippase to generate conditional alleles for many genes associated
with cancer [114]. However, these approaches suffer from low efficiency of gene targeting
and large time requirements for generation of mouse models. CRISPR has opened an array
of techniques that include rapid modelling of genetic events related to cancer, as well as
much faster generation of mouse models, and somatic genetic engineering ex vivo and
in vivo [115].

While CRISPR is a versatile tool for modelling mutation and controlling protein coding
gene expression, there are challenges when applied to lncRNAs. LncRNAs are present
throughout the genome in both inter- and intra-genic regions [76]. If lncRNAs of interest
are located within a protein coding gene, CRISPR mediated alteration of the expression
(or alteration of the lncRNA sequence) could affect protein coding genes on the same or
opposite strands. Despite this, CRISPR has been used to successfully alter the action of
lncRNAs, by introducing a termination signal or RNA destabilising elements immediately
downstream of the lncRNA TSS [116,117].

CRISPRa was used to overexpress the lncRNA Interferon Gamma Antisense 1 (IFNG-
AS1) in a study of inflammatory bowel disease, causing a 20-fold increase, showing the
efficacy of the use of CRISPRa on lncRNAs [118]. In contrast, CRISPRi was used in vivo in
Drosophila to supress the expression of the lncRNAs rox1 and rox2 [119]. This demonstrated
the effective use of CRISPRi, in vivo, to repress expression of lncRNAs by 50-fold.

CRISPR has also been used for widespread screening of functional lncRNAs in cancer.
These screens use a library of paired guide RNAs (pgRNAs) to direct the CRISPR/Cas
system to cause large deletions that ensure disrupted function in hundreds or thousands of
candidate target lncRNAs, which can be subsequently validated by targeted knockdown
or activation. A change in cellular growth compared to controls with no deletion can then
elucidate function. For example, a CRISPR pgRNA library was used to cause multiple
large-scale deletions, targeting approximately 700 human lncRNAs in a liver cancer cell
line. Of these, 51 lncRNAs were identified that affected tumour growth, nine of which were
further validated using targeted knockdowns and activation [120].
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While CRISPR technologies have been successfully used to study ncRNAs in can-
cers and cancer cell lines, applying these methods to transmissible cancers may present
significant challenges. Transmissible cancers can have different genome structure from
their host organism. DFTD has a karyotype distinct from the Tasmanian Devil karyotype,
with chromosome fragmentation and large-scale rearrangements [28]. CTVT also has
a significantly different genomic structure than the normal dog genome, although the
copy number appears to be similar [13]. This would present significant challenges for
any sequencing technology used to study transmissible cancers with respect to mapping
sequence data, a de novo tumour genome assembly would be required. In the absence
of an assembly, designing guild RNAs for CRIPSR/Cas experiments would be difficult.
Problems of this nature also apply to BTNs, which also have no genome assemblies,
and the added complexity of cross species infection.

Many ncRNAs are involved in cancer and perturbing expression of these loci helps
to elucidate their roles in tumorigenesis. Transmissible cancers should be no exception,
with shared immune system evasion strategies apparent in these rare tumours. However,
there is currently no published research on the ncRNAs involved in the biology of trans-
missible cancers, presenting a significant knowledge gap in this area. Further studies on
regulatory mechanisms involving ncRNAs in these tumours will help in understanding
the ecology and evolution of transmissible cancers more broadly, and give insight into the
tumourigenesis of these unique cancers.

4. The Non-Coding RNA Biology of Transmissible Cancers

The non-coding RNA biology of transmissible cancers is poorly understood, so pro-
vides a novel avenue of molecular research. Mechanistic studies examining phenotypes
produced following CRISPR overexpression or knockdown of target ncRNAs would offer
new insights into the functioning of all transmissible cancers. The potential benefits for
bivalve aquaculture are clear, which is a global industry that was worth approximately
$24 billion (USD) in 2015 [54].

CRISPR/Cas screens have been performed to identify the functional roles of lncRNAs
in human-derived cancer cell lines [120,121], but have not been carried out for transmis-
sible cancers. Although no stable cell lines currently exist for BTN, there are cell lines
readily available for DFTD and CTVT [122]. These provide the possibility for CRISPR/Cas
screens to start disentangling the lncRNA biology that contributes to the proliferation and
transmissibility of tumours.

Telomerase is responsible for telomere extensions, and contributes to a cell line
becoming immortalised [123]. Importantly, lncRNAs such as telomerase RNA (TER)
and telomere repeat-containing RNA (TERRA) are known to be involved in regulating
telomerase expression in species from animals to plants to fungi [124,125]. Telomerase is up-
regulated in both CTVT and DFTD, so is presumably critical for telomere maintenance over
long time periods of continual transmission [2,20,32], and could be an important shared
characteristic of transmissible cancers, as it is in most non-transmissible tumours [126].
The upregulation of telomerase in DFTD is the result of increased expression of the catalytic
subunit of telomerase, TERT [32]. The lncRNA TER is known to interact with TERT to
maintain telomeres [125]. Additionally, the lncRNA TERRA specifically recruits TERT
to short telomeres to lengthen them and avoid apoptosis [124]. The roles of TER and
TERRA in regulating telomerase in transmissible cancers are currently unknown. Their
knockdown or activation in both CTVT and DFTD could elucidate a common function in
transmissible tumours.

Endogenous retroviruses (ERVs) may also play a role in transmissible tumour biol-
ogy. Retroviruses have invaded genomes throughout mammal evolution, leaving behind
copies of themselves in host genomes that have become ERVs [127]. ERVs can lead to
genome instability and cancer. There are a few ncRNAs that have originated from ERV
sequences [128]. These can be hard to identify, as RNA-seq mapping can place several
of these sequences within the same genomic loci when they may be spaced throughout
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the genome. Long read sequencing technologies can overcome these shortcomings and
identify ncRNAs originating from ERVs [129,130]. As marsupial genomes have the highest
prevalence of transposable elements amongst vertebrates [131,132], it is possible that there
are ERV-derived ncRNA targets in DFTD for CRISPR knockdown studies. Such studies
could be extended to all transmissible tumours, to determine if ERVs are broadly important
in transmissible cancer.

It is interesting to note the parallels between transmissible cancers and parasites in
terms of host interactions and lifecycle. The ability of BTNs to survive outside their host
in the marine environment can be compared to the lifecycle of parasites—growing within
the host then spreading into the environment for reproduction (in the case of parasites).
Parasites and transmissible cancers also share some aspects of host evasion, downregulating
the host organism’s immune response to increase survival [133]. Perhaps there are ncRNAs
with common function between the two that enhance their ability to spread, as well as
suppress their host immune system.

The MHC is a family of genes integral to vertebrate adaptive immunity, facilitating
self/non-self-recognition via polymorphic cell surface markers (MHC-I molecules) [11,134].
Individualised cell surface MHC-I expression allows an animal to recognise and attack
foreign material (i.e., transmissible cancer cells). It is therefore unsurprising that both
CTVT and DFTD tumour cells have evolved to downregulate MHC. In CTVT, DLA class
I and II genes (canine equivalent to MHC-I and -II) are downregulated, which helps it
evade the immune system [2,16]. MHC-I is not presented on the surface of DFT1 cells, so
it escapes the immune system [33]. In DFT2 MHC-I molecules are presented on tumour
cells, so it must currently have a different strategy for escaping host immune responses [35].
It has been proposed that DFT2 may eventually evolve to downregulate MHC-I expression,
imitating the evolutionary path of DFT1 [34,35].

In humans, ncRNAs are involved in MHC regulation [135]. An RNA called lncRNA in-
ducing MHC-I and immunogenicity of tumour (LIMIT) was activated (using CRISPR) [136]
and found to indirectly cause MHC-I transcription, so was claimed to have a cancer im-
munogenic function. Similar approaches could be used to examine the function of ncRNAs
suspected to be involved in MHC regulation in dog and Tasmanian devil. While MHC
expression is not relevant to BTN (bivalves do not have a MHC), ncRNA-dependent MHC
regulation could be a key aspect of vertebrate transmissible cancers.

Tasmanian devils naturally lose T cell receptor beta chain (TCRB) diversity as they age
beyond the first year of life [137]. TCRB diversity in important for responding to pathogens
and cancers, with higher TCRB diversity associated with improved outcomes [137]. DFTD
infection causes even lower TCRB diversity in host devils [137]. TCRBs are a component of
αβ T cells, which are the most numerous T cell type and require MHC cell surface markers
to identify their targets [138]. A smaller proportion of T cells are γδ T cells, which do not
require these MHC markers [138]. It is currently unknown how DFTD impacts γδ T cells,
but they are of particular interest because they can recognise cellular stress markers, such
as those that result from tumorigenesis, independently of MHC haplotype [138]. This is
important because reduced MHC cell surface expression in DFT1 [33] leaves αβ T cells
unable to recognise the invading tumour, and γδ T cells as one of few defences.

LncRNAs are vital to the regulation of immune cell development; some examples of
function are differentiation of dendritic cells (lnc-DC) [139], regulation of the interferon-
γ region following infection (NeST) [140] and activation of γδ T cells (TANCR) [141].
Given that γδ T cells have the potential to combat tumours without cell surface MHC-I
molecules, γδ T cell expression levels may be of importance in immune evasion in all
transmissible cancers. Therefore, understanding the lncRNA biology of DFTD could
shed light on its transmission and invasiveness. RNA-seq data from normal Tasmanian
devil neuroectoderm and both DFTDs would identify targets of interest for knockdown
(CRISPRi) and activation (CRISPRa) assays. Changes in cell phenotype, or expression
of a nearby gene through cis interaction, would indicate the functional importance of
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a given lncRNA and be paramount to the first understanding of transmissible tumour
RNA biology.

The bivalve immune system is distinct from the mammalian immune system shared
by domestic dogs and Tasmanian devils. While bivalves do have a comprehensive innate
immune system with self/non-self-recognition capabilities, they do not possess the adap-
tive immune system seen in vertebrates [142]. It is conceivable that the simpler bivalve
immune system permits easier spread of BTN between hosts.

Unfortunately, there is a knowledge gap when it comes to lncRNA cancer biology in
bivalves. This lack of information emphasises the need to investigate lncRNAs in BTN,
so we can begin to understand their roles and importance. However, there has been
increased study of miRNAs in bivalves, showing that they function in stress responses and
the immune system [143,144]. To build a balanced understanding of ncRNA biology in
BTN we need to advance our knowledge of other bivalve ncRNAs.

Of particular concern is the potential for BTN to impact bivalve aquaculture, which
would have severe economic consequences (see Section 1.3). Aquaculture of oysters has
already been unstable in virtually every location around the world, usually resulting in
the introduction of non-native oyster species following disease or overfishing [145]. Con-
sidering that ocean temperatures are predicted to increase, the likelihood of disseminated
neoplasia outbreaks may also increase [53]. Therefore, we need a greater understanding of
transmissible cancer biology to address these future problems. Improving our understand-
ing of ncRNA biology in transmissible tumours affecting a variety of organisms (dogs,
Tasmanian devils and bivalves) will contribute to our overall knowledge of contagious
cancer and may identify similarities that could be targeted to treat such an infection. Im-
proved knowledge of transmissible cancer ncRNA biology may benefit the pet industry,
as CTVT has the potential to cause economic losses should it spread amongst commercial
breeding animals.

5. Conclusions

RNA biology presents many avenues of exploration into transmissible tumour biology.
Given their ability to alter and regulate gene expression, ncRNAs have potential to provide
new insights into invasiveness, transmissibility, and immune evasion. Specific pathways
of interest to perturb include ncRNAs involved with telomerase, MHC, T cells and ERVs.
This initial mechanistic understanding could be useful in developing potential therapeutics
for existing and yet-to-emerge transmissible cancer lineages. A basic understanding of
ncRNA biology in any transmissible tumour will better equip us to combat the potential
of BTN outbreaks in bivalve aquaculture. This information would also apply to CTVT
outbreaks in commercial dog breeding and DFTDs in wild Tasmanian devils. In sum-
mary, ncRNAs have the potential to play important roles in transmissible cancer biology,
and using CRISPR/Cas to investigate their function would improve on our limited knowl-
edge, likely benefiting the aquaculture, pet and conservation industries.
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