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Abstract: Circular RNAs (circRNAs) are generated by back-splicing of immature RNA forming
covalently closed loops of intron/exon RNA molecules. Pervasiveness, evolutionary conservation,
massive and regulated expression, and post-transcriptional regulatory roles of circRNAs in eukaryotes
have been appreciated and described only recently. Moreover, being easily detectable disease
markers, circRNAs undoubtedly represent a molecular class with high bearing on molecular
pathobiology. CircRNAs can be detected from RNA-seq data using appropriate computational
methods to identify the sequence reads spanning back-splice junctions that do not co-linearly map to
the reference genome. To this end, several programs were developed and critical assessment of various
strategies and tools suggested the combination of at least two methods as good practice to guarantee
robust circRNA detection. Here, we present CirComPara (http://github.com/egaffo/CirComPara),
an automated bioinformatics pipeline, to detect, quantify and annotate circRNAs from RNA-seq data
using in parallel four different methods for back-splice identification. CirComPara also provides
quantification of linear RNAs and gene expression, ultimately comparing and correlating circRNA
and gene/transcript expression levels. We applied our method to RNA-seq data of monocyte and
macrophage samples in relation to haploinsufficiency of the RNA-binding splicing factor Quaking
(QKI). The biological relevance of the results, in terms of number, types and variations of circRNAs
expressed, illustrates CirComPara potential to enlarge the knowledge of the transcriptome, adding
details on the circRNAome, and facilitating further computational and experimental studies.
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1. Introduction

Circular RNAs (circRNAs) are generated from immature RNA by a process called back-splicing
where the 3′ and 5′ ends of linear RNA molecules are covalently joined in a non-collinear way
forming RNA-loops. It has been estimated that circRNAs are produced from more than 10% of
genes [1]. Circularity confers specific properties to circRNAs: they have longer half-lives compared
with linear RNAs [2], tend to accumulate in cells with a low proliferation rate [3], and are resistant
to RNase R. RNA circularization can engage single exons, two or more exons [4], both exon and
intron sequences, or intronic sequences only [5]. A given gene can generate several circular isoforms
and these isoforms may show distinct expression profiles [6]. Generation of circRNAs happens at
the expense of their corresponding linear RNA isoforms and a correlation between exon skipping
and circularization [7] has been demonstrated. Back-splicing adds complexity to alternative RNA
splicing, and circRNA biogenesis and splicing are clearly interleaved processes. Thus, mutations or
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deregulation of splicing factors and/or alterations of cis-regulatory elements may impact circRNA
biogenesis. Several splicing factors have been linked to circRNA expression: the RNA-editing enzyme
ADAR1 (adenosine deaminase RNA specific) antagonizes back-splicing, whereas muscleblind like
splicing regulator (MBL) and the RNA-binding protein Quaking (QKI) both seem to promote circRNA
levels [8]. As also suggested by their evolutionary conservation, a critical position of circRNAs in core
biological processes starts to unfold. Like linear isoforms, circRNAs can act as competing endogenous
RNAs that decoy miRNAs and indirectly regulate miRNA target gene and protein expression. Notably,
circRNAs with multiple miRNA-binding sites are efficient miRNA sponges that participate in the
regulation of specific cellular pathways [9–12] and can play key roles in cancer axes [5]. In addition,
circRNAs are supposed to be involved in a variety of molecular mechanisms, such as interactions with
RNA-binding proteins [13].

Library enrichment protocols using ribosome depletion and RNA deep sequencing allowed
discovering of more than 10,000 human circRNAs having differential developmental stage- and
tissue-specific expression. The abundance, pervasiveness, evolutionary conservation and stability
of circRNAs, along with emerging evidence of putative circRNA functions, prompted the interests
of the scientific community, which generated an array of tools for circRNA analysis [5]. CircRNA
detection from RNA-seq data is based on the identification of sequence reads spanning the back-splice
junctions generated in circRNAs biogenesis. Back-splice reads map to the genome in chiastic order,
i.e., two segments of a single read align separately in reverse order. Thus, circRNA detection from
RNA-seq reads needs appropriate methods for non-collinear read alignment and analysis. Recently,
several computational methods for the detection of back-splice events from RNA-seq data have
been developed, such as find_circ [10], CIRCexplorer [14], circRNA_finder [15], testrealign [16],
CIRI [17], KNIFE [18], UROBORUS [19], NCLscan [20], PTESFinder [21], and Acfs [22]. Each type
of software uses different strategies for circRNA identification, employing different read aligners,
requires variable inputs, as genome and gene annotation, and provides software-related output in
term of predicted back-splice junction annotation. Five circRNA prediction tools (circRNA_finder,
find_circ, CIRCexplorer, CIRI, and MapSplice [23]) were evaluated for the levels of bona fide and
false-positive circRNAs comparing RNase R treated vs. untreated data [24]. This study showed that
the most abundant predicted circRNAs are not true positives in all of the cases, that, notably, in general
circRNAs identified by one single method lack reliability, and suggested that the combination of at
least two methods might be a good practice to increase the robustness of circRNA detection.

In this work, we present CirComPara, an automated bioinformatics pipeline to detect and
quantify circRNAs from RNA-seq data using in parallel different methods for back-splice identification.
We applied the software to a published RNA-seq dataset, for which circRNA investigation was
not previously considered, and provide original results on circRNA expression during monocyte
differentiation in relation to the QKI protein function.

2. Results

2.1. CirComPara Provides circRNA Detection, Quantification, Annotation and Correlation with
Gene Expression

We designed and implemented CirComPara (http://github.com/egaffo/CirComPara),
a bioinformatics pipeline that allows detecting, quantifying and studying circRNAs from RNA-seq
data. CirComPara quantifies linear transcript expression and, in the subsequent phase, it uses in
parallel different methods to identify expression of putative circRNAs. The circRNAs are selected
according to a combination of the results of circRNA discovery methods, and quantified with
normalized estimates. Ultimately, CirComPara annotates the circRNAs in terms of overlapping genes
and provides expression correlation measures of circRNA to overlapping genes or linear counterparts.
CirComPara yields results in tabular format to ease custom downstream analysis, as well as different
default analysis results in HTML pages with several informative display items, such as statistics on
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circRNAs types, features and expression, and descriptive analyses of samples in terms of circRNA and
gene expression profiles, and correlations.

In the next paragraphs, we first describe the software characteristics and then, by a demonstrative
application on real data, we show CirComPara’s output.

2.2. CirComPara’s Default Workflow and Usage

A schematic overview of the CirComPara workflow architecture for the analysis of a single sample
is represented in Figure 1A. The required input for the pipeline are RNA-seq reads from Illumina
sequencing (both single- and paired-end reads supported), the reference genome in multi FASTA
format, and the gene/transcript annotation in GTF format (as retrieved from genomic databases like
Ensembl). In a typical analysis, the researcher needs to compile a metadata table specifying the sample
files and their respective raw read file locations. In addition, the file location of the reference genome
and annotation files, which can be stored in a project specification file (vars.py file), together with other
non-default parameters chosen.

For each sample, CirComPara first pre-processes the raw reads to retain only high quality
fragments that will be used in downstream analysis. In parallel, CirComPara builds the files required
by each method, such as genome indexes and specific formats of annotation. Next, a preliminary
read alignment to the (linear) reference genome is performed with strict criteria, especially important
for paired-end reads: unpaired and discordantly aligned reads are considered unmapped and thus
separated from linear aligned reads. The alignments are used to detect and quantify linear transcript
and gene expression, which are computed for each sample both as raw counts and normalized values
(fragments per kilobase per million mapped reads; FPKM). Reads that fail to be aligned to the reference
genome are used as candidates for the detection of back-splice junctions and are given as input to
each circRNA detection method. Multiple methods for circRNA detection and quantification can be
selected: at the time of this writing, CirComPara uses, as a default setting, four different circRNA
detection tools that ground on different strategies (CIRCexplorer, CIRI, find_circ, and testrealign) and
unfiltered outputs of each detection tool are saved separately to be available for custom analyses.
CircRNAs are distinguished and named in terms of the back-splice genomic positions that identify
them. By this approach, predictions from the different methods and samples can be compared and
enhanced by defining the set of the “reliable circRNAs”, which, by default, are the circRNAs expressed
with at least two back-splice reads and jointly detected by at least two methods.

CircRNAs’ back-splice genomic coordinates are compared against the linear transcripts’
annotation to relate the genes and genomic features that generated circular isoforms. The overlap with
gene annotation allows characterizing back-splices according to transcript structure: exonic, intronic,
and intergenic circRNAs are the main classes that can be distinguished. Finally, expression levels of
the reliable circRNAs (normalized according to reads per million mapped, RPM) are correlated to the
overlapping genes’ normalized expression estimates and reported in tabular format.
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Figure 1. (A) CirComPara workflow. Round corner boxes represent inputs; currently used tools are
represented by gray labels next to the relative pipeline level; dotted lines represent optional functions;
(B–D) CirComPara summary plots of circular RNAs (circRNAs) expressed; (B) absolute number of
circRNAs detected by each method and (C) commonly detected by two or more methods; (D) number
of circRNAs expressed per sample, considering the whole set of detected back-splices and the selected
subset of circRNAs detected by at least two methods.

2.2.1. CirComPara’s Output

CirComPara saves a rich set of results in separate directories. Results of the main analysis steps and
objectives are saved in tabular text files, which are useful for data interpretation and post-processing,
and offer the user the possibility to examine the complete output. On top, an HTML document reports
a detailed summary, with the most relevant results presented in aggregated forms and displayed as
tables and figures.

The HTML output file (Supplementary File 1) comprises four different sections. The first and
the last sections give technical details, whilst the two central sections, with several subsections each,
provide the core information. The first section summarizes the analysis run by listing number and
IDs of RNA-seq samples, and the back-splice detection methods used for the combined analysis.
The second section is dedicated to statistics and plots reporting the circRNAs detected by at least
one program, and circRNAs found only by one method or commonly detected by two or more
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methods. Next, only bona fide more robust circRNAs detected by at least two methods (reliable
circRNAs) are considered for further elaborations, including: circRNA category annotation according
to back-splice end positions in relation to known exons or introns of overlapping genes; number of
circRNAs expressed by genes; and expression analyses, also in comparison with gene expression
profiles. The last section reports names and versions of the software and packages used in the
CirComPara analysis run.

2.2.2. Additional Options and Features

CirComPara is a flexible tool that allows output stringency modulation through different setting
of parameters. CirComPara by default applies all four circRNA-discovery methods implemented,
but different combinations of methods can be specified. In fact, the user can select which circRNA
tools to run (at the time of this writing, from one to up to four). For instance, the user may choose only
a pair of methods, such as CIRI and find_circ, or find_circ and testrealign; only three methods, such as
CIRCexplorer, CIRI, and find_circ; or even only a single method. In addition, the minimum number
of back-splice reads and methods jointly predicting a circRNA, which define the reliable circRNA
set, can be changed by the user to tune CirComPara’s output. For instance, by setting at least one
read and at least one method, CirComPara maximizes its sensitivity, possibly reducing false negative
predictions. Conversely, requiring all methods to jointly detect the circRNAs (the most restrictive
setting) will possibly reduce the number of false positive predictions.

Moreover, CirComPara can run with alternative workflows. Specifically, raw read preprocessing
can be bypassed; already computed genome indexes can be given as input, thus skipping the automatic
genome indexes building; and novel genes and transcript isoforms can be inferred from the data when
the transcriptome reconstruction option is enabled.

CirComPara optimizes the computational performance by allowing parallel computation at
two levels: the former regards a multithreaded run of the tools allowing parallel computing.
The latter regards simultaneous execution of CirComPara’s steps that are mutually independent,
which maximizes the use of available computational devices when running the program.

2.3. CirComPara Predicts Thousands of circRNAs Expressed in Monocytes and Macrophages of a QKI
Haploinsufficient Patient and Her Sibling

In the following, we present the pipeline output obtained from a run in default mode on a
published dataset, as a demonstrative analysis. We analyzed the RNA-seq data produced by de
Bruin et al. [25], which focused on the role of Quaking in linear pre-mRNA splicing in the context
of monocytes to macrophage differentiation. As the original study did not interrogate circRNAs,
our results illustrate CirComPara discovery power and value.

The dataset comprised four samples of primary monocytes from peripheral blood and
experimentally induced differentiated macrophages from a QKI haploinsufficient patient (with 50%
QKI mRNA and protein expression due to an unbalanced reciprocal translocation hitting the QKI
gene) and her sibling (as control QKI wild-type).

Considering the four samples together, as many as 39,538 non-redundant back-splices were
detected by at least one method, with quite different numbers of events detected by different methods
from the same sequencing data (Figure 1B): testrealign detected 34,049 back-splice events (86% of
the total detected), CIRCexplorer detected 2924 events (7%), whereas CIRI and find_circ detected
similar intermediate numbers of back-splices, respectively 6228 (16%) and 6920 (18%). In the QKI
dataset, 5759 (14.6%) back-splices were detected by a least two methods (Figure 1C) and 85% (33,779)
by one method only. Hansen et al. [24] showed that, in RNase R treated libraries, the circRNAs
detected by at least two methods are enriched with respect to circRNAs detected by only one method.
Although circRNAs detected by only one method could represent true positives, in this sample analysis,
we considered circRNAs detected independently by two or more methods, according to CirComPara’s
default settings, to reduce false positive calls. Thus, we obtained a set of fairly reliable 5759 circRNAs,
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which are expressed in monocytes and macrophages (Figure 1D), with apparent quantitative and
qualitative differences between QKI haploinsufficient and control samples and between monocytes
and macrophages.

CircRNA normalized expression (Figure 2A) values ranged over five degrees of magnitude,
reaching over 15,800 RPM in the control macrophages samples for the most abundant circRNA
(chr11:33286413–3328751) expressed from HIPK3 (homeodomain interacting protein kinase 3).
CircRNA median expression levels show small differences across the samples, which is also observed
in median gene expression, even if with a different pattern (Figure 2A,B). Regarding the cumulative
expression, 752 circRNAs on average accounted 75% of sample circRNA expression, whilst only 239
genes on average accounted 75% of sample gene expression (Figure 2C,D).
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Figure 2. CirComPara summary plots of circRNA and gene expression and integration thereof.
(A,B) twin boxplots of circRNA and gene expression levels per sample; (C,D) cumulative expression
plots of circRNA and gene per sample; (E) frequency distribution of number of circRNAs per gene;
(F) density distribution of pairwise circRNA/gene Spearman correlation values.

To evaluate CirComPara’s predictions, we compared predictions from our sample analysis to
the 111,665 circRNAs reported by Hansen et al. [24], in which the circRNA expression estimate from
fibroblast samples with and without RNase R treatment provided indication on circRNA prediction
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accuracy. CircRNAs were grouped into: enriched by the treatment (E), probably representing true
circular forms; unvaried expression (U); and depleted after treatment (D), probably representing
false predictions. The comparison showed that 80% (4619 out of 5759) of the circRNAs selected by
CirComPara were also identified by Hansen et al. [24], with 91.6% (4233) of these being enriched,
4.3% (200) being unvaried, and 4.0% (186) being depleted. Table 1 reports the 30 most expressed
circRNAs according to de Bruin et al. [25] data. All of these were also detected by Hansen et al. [24],
and classified as enriched (26), or unvaried (only four). Furthermore, 14 circRNAs of Table 1 were
reported in circBase [26] as experimentally validated in previous studies, including the circRNA from
HIPK3 that was recently functionally characterized as a multiple miRNA sponge [27]. In addition,
three of the most expressed circRNAs of Table 1 were reported and characterized in other independent
studies [28–30].

The 5759 reliably expressed circRNAs resulted associated to 3123 annotated genes, with two
circRNAs per gene in average and 42% of circRNAs overlapping genes associated with 2 to up to 22
different circRNAs each (Figure 2E). Indeed, the PICALM gene (coding also the Phosphatidylinositol
Binding Clathrin Assembly Protein) expresses 22 different circular isoforms, five of them being more
abundant and expressed in all four samples. The large majority (5620, 97.6%) of reliable circRNAs
resulted exonic and only few were “intergenic” or intronic (with back-splice ends falling outside
annotated genes or annotated exons, respectively).

Expression correlation of circRNAs with genes presented a slight tendency toward positive values
(Figure 2F): the average and the median values of the 2149 computable pairwise Spearman correlations
were 0.07 and 0.40, respectively, and 835 (39%) and 676 (32%) circRNA/gene pairs had a positive
correlation over 0.5 or a negative correlation lower than −0.5, whereas 638 (30%) had an (absolute)
weaker correlation.

In addition, we evaluated the number of circRNAs expressed in monocytes and macrophages
from the QKI +/− and the control QKI +/+ sibling (Figure 3A). The number of circRNAs expressed
is lower (0.63×) in QKI +/− monocytes compared to the control, whereas, in macrophages, the
number of circRNAs increases at a lower extent (1.15×) in the same comparison. In accordance
with the original study of linear transcripts, and considering that no replicates were available,
we calculated the log2FC of circRNA expression, considering for each cell type QKI+/− versus
control values. The expression variation, represented in Figure 3B as waterfall plots of log2FC for
all expressed circRNAs, is toward downregulation in QKI haploinsufficient monocytes and slightly
toward downregulation in macrophages. The number of circRNAs showing a Log2FC over 1.5 or lower
than −1.5 (Figure 3C) is also informative and is in accordance with the above observations. Indeed,
considering only those circRNAs with absolute log2FC > 1.5, we identified 865 and 1904 circRNAs
up and downregulated when comparing QKI haploinsufficient monocytes. The same comparison
regarding macrophages detected 1631 and 1290 up and downregulated circRNAs.

Finally, as an example of analysis that can be performed from CirComPara’s output data, we report
in Figure 3D the coordinates and expression values of three circular isoforms expressed from the
QKI gene showing different abundance in normal monocytes and macrophages that appeared to
be affected by the QKI haploinsufficiency. All three of these circRNAs resulted as being enriched
by RNase R according to the data of Hansen et al. [24] and two of them (6:163455279–163535125;
6:163478780–163535125) were previously detected by Rybak-Wolf et al. [6].
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Table 1. The 30 most expressed circular RNAs (circRNAs) with annotations, estimated expression levels (reads per million mapped reads; RPM), enrichment group
in Hansen et al. [24], validation reported in circBase, and references of studies that validated specific circRNAs. E = enriched, U = unvaried, NA = not assayed,
VAL = validated.

CircRNA ID Overlapping Gene
Ensembl ID

Overlapping Gene
Symbol

CircRNA
Category

QKI+− Mo
(SRR2923169)

QKI++ Mo
(SRR2923170)

QKI+−Ma
(SRR2923171)

QKI++ Ma
(SRR2923172)

RNase R
Enrichment [24]

Validated
(CircBase)

Other
Studies

11:33286413-33287511:+ ENSG00000110422 HIPK3 exonic 2964 8861 12386 15822 E VAL [27]

2:40428473-40430304:− ENSG00000183023 SLC8A1 exonic 2519 4845 10077 10604 U NA

12:108652272-108654410:− ENSG00000110880 CORO1C exonic 3090 3625 10701 10471 E VAL

17:20204333-20205912:+ ENSG00000128487 SPECC1 exonic 2341 3273 8062 8485 U NA [29]

1:7777160-7778169:+ ENSG00000049245 VAMP3 exonic 8613 4941 4105 2832 E|U NA

4:143543509-143543972:+ ENSG00000153147 SMARCA5 exonic 4458 6008 4288 4863 E|U VAL

14:99458279-99465813:− ENSG00000183576 SETD3 exonic 5399 2854 5094 6114 E VAL

3:196391813-196403019:−
ENSG00000163960|
ENSG00000206644|
ENSG00000241868

UBXN7|RNU6-1279P|
RN7SL434P

exonic|intergenic
spanning gene 2848 5594 5553 3853 E VAL

8:130152736-130180880:− ENSG00000153317 ASAP1 exonic 1823 2232 6744 6410 E NA

2:201145378-201149835:+ ENSG00000003402 CFLAR exonic 5294 3675 3775 3644 E NA

2:61522611-61533903:− ENSG00000082898 XPO1 exonic 8801 3638 1503 2329 E VAL

1:117402186-117420649:+ ENSG00000198162 MAN1A2 exonic 3498 4779 3812 4127 U VAL

8:130358017-130361771:− ENSG00000153317 ASAP1 exonic 0 250 8392 7447 E NA

3:149846011-149921227:+ ENSG00000082996 RNF13 exonic 1044 1278 6891 6829 E|U VAL

13:32517857-32527532:− ENSG00000244754 N4BP2L2 exonic 5770 3191 2788 3627 E VAL

18:9182382-9221999:+ ENSG00000265257|
ENSG00000101745 RP11-21J18.1|ANKRD12 exonic 5431 3236 3041 2173 U VAL

21:15762891-15766141:+ ENSG00000155313 USP25 exonic 3122 2630 2896 4360 E VAL

15:64499293-64500166:+ ENSG00000180357 ZNF609 exonic 2770 4645 2109 3334 E NA [28]

4:152411303-152412529:− ENSG00000109670 FBXW7 exonic 3297 4365 2566 2339 E NA

4:87195324-87195690:− ENSG00000145332 KLHL8 exonic 6312 2664 2162 1246 E NA

9:110972073-110973558:− ENSG00000198121 LPAR1 exonic 2039 1168 5094 3715 E NA [30]

16:85633914-85634132:+ ENSG00000131149 GSE1 exonic 3340 4629 2089 1859 E NA

4:37631385-37638504:− ENSG00000181826 RELL1 exonic 3469 2260 3336 2653 E VAL

6:4891713-4892379:+ ENSG00000153046 CDYL exonic 1048 1845 3431 4272 E NA [29]

5:73074742-73077493:+ ENSG00000157107 FCHO2 exonic 763 1482 4361 3953 E NA

5:137985257-137988315:− ENSG00000031003 FAM13B exonic 3018 1830 2530 2753 E NA

14:73147795-73148094:+ ENSG00000080815 PSEN1 exonic 3881 2625 2055 1408 E NA

12:32598497-32611283:+ ENSG00000139132 FGD4 exonic 1579 1639 3884 2764 E|U NA

7:158759486-158764853:− ENSG00000117868 ESYT2 exonic 2734 4661 1026 1042 E VAL

8:37765526-37766355:+ ENSG00000147471 PROSC exonic 1980 2841 2712 1908 E VAL
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Figure 3. circRNAome expression varies in relation to Quaking (QKI) haploinsufficiency during
monocyte to macrophage induced differentiation. (A) number of circRNAs expressed per sample;
(B) waterfall plot of log2FC in the QKI +/− vs. QKI +/+ in the two cell types, for all the expressed
circRNAs; (C) number of circRNAs with absolute log2FC > 1.5 or < −1.5 when comparing QKI
haploinsufficient with control cells, separately considering monocytes and macrophages; (D) QKI
circular isoforms detected from RNA-seq (the table indicates for each circRNA the genomic coordinates
of the back-splice ends, the expression level per sample and the intensity of observed log2FC).

3. Discussion

Research advancements on the analysis of RNA-seq data is generating new protocols [31] and
improvements of software tools, including methods for circRNA detection [22]. CirComPara was
designed and implemented with independent modules interfacing each other in hierarchical scripts.
This gives CirComPara great flexibility for incorporating new features, such as additional methods;
for updating the used software; and for upgrading to improved performing tools implemented in the
pipeline steps.

CirComPara implements practices that, in our opinion, are the current best for the analysis of
RNA-seq data and for circRNA discovery. The initial raw read pre-processing step for trimming and
filtering low quality reads is highly recommended, although optional, since it was demonstrated to
improve the alignment rate, decrease the timings of subsequent processing, and eventually improve
the quality of results [32].

The strategy of mapping RNA-seq reads to the linear genome before circRNA identification, also
used by other methods [14,33], provides the possibility to characterize gene or transcript expression,
reduces computational load for circRNA discovery, and importantly allows for filtering out false
positive back-splice findings.

The four circRNA detection methods considered ground on different search strategies used for
read alignment to the reference genome, including Burrows-Wheeler [34–36] and suffix arrays [16,37]
based methods. The combined use of different methods is expected to increase the sensitivity of
the overall procedure to the price of an increased number of false positive predictions. The huge
number of circRNAs reported by testrealign and the difference with the other methods (nearly five
times more circRNAs) is probably due to the fact that, differently from the other methods, testrealign
does not perform any alignment post-processing specific for circRNA identification. Such behavior
has also been reported recently by [22]. However, by combining the methods’ results and selecting
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the circRNAs commonly identified by more tools, our method is expected to reduce the number of
loose predictions.

CirComPara includes a branch for de novo transcriptome reconstruction and quantification
from RNA-seq data in parallel to circRNA detection. Importantly, this feature extends CirComPara
application also to species without gene annotation or with scarcely annotated transcriptomes.

From a technical point of view, CirComPara relieves the user from the burden of many preparatory
steps that are required by the different tools in the pipeline, such as the read aligners’ genome index
building and gene annotation formatting. Moreover, CirComPara provides plentiful access to each
method’s optional parameters. In addition to the above mentioned alternative analysis workflows,
advanced users can set and combine the parameters to optimize performance and adapt the analysis
to specific data. Nevertheless, the use of default parameters can bear good quality results, as it was
reported in the present demonstrative analysis.

The sample analysis showed the discovery power of the pipeline and the richness and usefulness
of obtained results. De Bruin et al. [25] provided evidence that QKI is induced during monocyte
differentiation and plays a key role as a dynamic regulator of pre-mRNA splicing and expression
profile changes that drive monocyte activation, adhesion and differentiation into macrophages. Our
sample analysis identified numerous circRNAs expressed in monocytes and macrophages, with more
than one circular isoform expressed by half of genes. Most of the selected set of 5759 circRNAs
detected by two or more methods resulted to be exonic. Moreover, comparison with independent data
revealed that almost 92% of these circRNAs are detected also in other tissues and enriched by RNase
R treatment.

The expression of circRNAs were scattered across five orders of magnitude, with a relatively low
number of elements expressed at high level. Although a direct comparison is difficult, it is worth
noting that circRNA expression values distribution were less skewed than that of genes: 13% of
circRNAs and 0.8% of genes account for three quarters of the total expression. Notably, almost all
30 most expressed circRNAs reported in Table 1 resulted either being enriched in RNase R treated
libraries, and/or experimentally validated by independent studies, such as the top ranking circRNA
we detected, which derives from the HIPK3 gene. A recent study [27] reported four circular isoforms of
HIPK3, and showed that the predominant circHIPK3 is abundantly expressed in many tissues where it
sponges nine different miRNAs, including the tumor suppressor miRNA miR-124. The same study
confirmed circularity and stability of circHIPK3 and showed that the silencing of circHIPK3, but not
HIPK3 mRNA, significantly inhibits human cell growth. The other two highly expressed circRNAs in
Table 1, expressed by SPECC1 (17:20204333–20205912) and CDYL (6:4891713–4892379), were detected
by Schneider et al. [28] that identified IMP3-associated circRNAs. Moreover, the circRNA ZNF609 (zinc
finger protein 609) was recently shown to regulate AKT3 (AKT serine/threonine kinase 3) expression
by sponging miR-150-5p. This evidence supports the validity of predictions selected by CirComPara.

This study provided a first glance on circRNA expression variations in monocyte to macrophage
differentiation and in relation to QKI haploinsufficiency. Extending the results of de Bruin et al. [25],
we showed indeed that also circRNA expression is affected by QKI, with a complex pattern during
monocyte to macrophage differentiation, as observed for linear isoforms. QKI haploinsufficiency in
monocytes seems to reduce the total number of circRNAs expressed respectively to the control and
produce a larger number of downregulated circRNAs than of upregulated circRNAs. This result
is in accordance with a previous study that showed that QKI promotes circularization [8] and also
with de Bruin et al. [25] results on linear RNAs. Indeed, QKI haploinsufficiency in QKI peripheral
blood monocytes was previously associated with significantly lowered expression of targets with QKI
response elements (QRE) compared to non-targets (no QRE).

We showed that in macrophages the number and the average expression of circRNAs are
moderately increased in relation to QKI haploinsufficiency. Also in this case, this is in accordance with
the previous observation that macrophages of the haploinsufficient patient showed higher expression
of mRNAs containing QREs relative to her sibling. Although preliminary, our results confirm that QKI
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regulates not only linear splicing but also circular RNA expression during monocyte to macrophage
differentiation with a complex pattern. We could hypothesize that QKI regulates the expression of
specific circRNAs directly impacting on observed expression patterns. Moreover, QKI regulation
of circRNA expression could also be indirect, since QKI could modulate expression of linear RNA
isoforms that act or encode trans-acting factors involved in circularization. Both direct and indirect
interactions deserve further investigation.

4. Materials and Methods

4.1. CirComPara’s Implementation Details

4.1.1. Automation and Parallelism: Scons

The Scons building tool is the CirComPara’s engine devoted to the automatic execution of the
various scripts and tools implementing each step of the pipeline. Scons is a utility software conceived
mainly for the compilation of source code in software production, yet its functions can handle tasks
beyond standard compiling procedures.

Scons computes the tasks’ execution dependencies, indeed allowing concurrent execution of
independent tasks. For instance, CirComPara can simultaneously run the different methods for
circRNA detection, but all of them must wait for the termination of the read alignment to the
linear genome. In addition, the linear gene/transcript expression quantification is independent
from detection of circRNAs, but gene expression to circRNAs’ expression correlation computation
depends on both of these steps.

4.1.2. CirComPara’s Software Tools

We used existing methods to implement the analysis steps and developed custom scripts
in Python, R and Bash when needed. At the time of this writing, only one method for read
preprocessing is supported, Trimmomatic [38], while read statistics are implemented through
FASTQC. For the linear genome mapping step, we chose HISAT2 [34] for its speed, accuracy of
alignment, low computational requirements, and compatibility with downstream analysis tools,
such as Cufflinks [39] and htseq-count [40], that carry out gene and transcript expression quantification.
We restrict linear genome alignments by setting HISAT2 parameters to ensure linear and concordant
alignments (–no-discordant –no-mixed options). Gene and transcript expression levels are computed
with the Cufflinks tool suite, which is also used for the transcriptome reconstruction optional feature.
CircRNA detection methods are: CIRCexplorer [14], which uses the STAR [37] aligner; CIRI [17],
which uses the BWA-MEM [36] aligner; find_circ [10], which uses the Bowtie2 [35] aligner; and
testrealign, from the segemehl [16] aligner. CircRNA annotation was computed by overlapping back
splice genomic positions to gene annotation using BEDTools [41]. Analysis report was generated with
custom R scripts using the data.table, ggplot2, and knitr R packages. Software versions used for the
presented analysis are reported together with references in Table 2.
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Table 2. List of the main software tools included in CirComPara with description of their function,
and reference.

Software Tool Description Citation/Website Version

R custom scripts http://cran.r-project.org 3.2.5 (2016-04-14)

Python custom scripts http://www.python.org 2.7.3

Scons script execution manager http://www.scons.org 2.5.0

Trimmomatic read preprocessing [38] 0.36

FASTQC read statistics http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ 0.11.5

HISAT2 linear genome mapping [34] 2.0.4

CIRCexplorer circRNAs detection [14] 1.1.10

STAR reads alignment by
CIRCexplorer [37] 2.5.2a

CIRI circRNAs detection [17] 2.0.2

BWA reads alignment by CIRI [36] 0.7.15-r1140

find_circ circRNAs detection [10] 1.2

Bowtie2 reads alignment by find_circ [35] 2.2.9

testrealign circRNAs detection [16] 0.1

Segemehl reads alignment by testrealign [16] 0.2.0-418

Cufflinks
gene/transcript expression

quantification and
transcriptome reconstruction

[39] 2.2.1

BEDtools genome coordinates comparison [41] 2.26.0

Samtools handle alignment files; extract
unmapped reads http://www.htslib.org 1.3.1

ggplot2 R library for analysis report http://ggplot2.org 2.2.0

data.table R library for analysis report https://cran.r-project.org/web/
packages/data.table/index.html 1.10.0

knitr R library for analysis report http://yihui.name/knitr 1.14.0

4.2. Quaking Haploinsufficiency Dataset and Analysis Parameters

The sample analysis has been conducted on an RNA-seq dataset (GEO accession GSE74978)
recently obtained by de Bruin et al. [25] in a study focused on the role of Quaking in the
linear pre-mRNA splicing specifically in the context of monocyte differentiation into macrophages.
The dataset comprises four samples (primary monocytes from peripheral blood and differentiated
macrophages of a QKI haploinsufficient patient and from the control wild-type sibling) for which
RNA-seq data (49 million reads per sample in average) have been obtained using Illumina HiSeq
2000 technology, with paired-end design and importantly using a library construction protocol with
ribosomal RNA depletion without polyA enrichment, allowing circRNA detection. Samples’ tissue
and genotype are reported in Table 3.

http://cran.r-project.org
http://www.python.org
http://www.scons.org
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.htslib.org
http://ggplot2.org
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/data.table/index.html
http://yihui.name/knitr
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Table 3. Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO) accession numbers,
genotype, and cell type of the samples analyzed in the demonstrative analysis.

Sample ID GEO ID QKI Status Cell Type

SRR2923169 GSM1939602 QKI+/− (CD14+) monocytes from peripheral blood
SRR2923170 GSM1939603 QKI+/+ (CD14+) monocytes from peripheral blood
SRR2923171 GSM1939604 QKI+/− differentiated CD14+ cells (macrophages)
SRR2923172 GSM1939605 QKI+/+ differentiated CD14+ cells (macrophages)

Below are listed the CirComPara parameters set for the analysis presented in this work.
These parameters were defined in the vars.py file; other non-shown parameters were left with
default values: CPUS = “16”, ANNOTATION = “Homo_sapiens.GRCh38.86.gtf”, GENOME_FASTA
= “Homo_sapiens.GRCh38.dna.primary_assembly.fa”, PREPROCESSOR = “trimmomatic”,
PREPROCESSOR_PARAMS = “MAXINFO:40:0.5 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:30
MINLEN:35 AVGQUAL:30”, CIRCRNA_METHODS = “ciri,circexplorer,findcirc,testrealign”,
TOGGLE_TRANSCRIPTOME_RECONSTRUCTION = ‘False’, CUFFNORM_EXTRA_PARAMS =
“–output-format cuffdiff”, BWA_PARAMS = “-T 19”.

Adapter sequences used for read preprocessing were from the Trimmomatic file “TruSeq3-PE-2.fa”.
The analysis was performed on 64 cores AMD Opteron Processor 6380 with 512 GB of RAM Linux
server running 64 bit Ubuntu Precise (12.04.5 LTS).

5. Conclusions

RNA-seq data have high discovery potential. The recent possibility of detecting circular RNAs
using appropriate methods for back-splice identification extended the set of RNAs that can be studied
with RNA-seq assays. CirComPara is a new tool that allows detecting, discovering, and quantifying
circRNAs from RNA-seq data using four different methods in parallel for back-splice identification,
reporting bona fide predictions from their result comparison. CirComPara also allows for annotating
circRNAs in terms of overlapping genes, in order to quantify linear RNAs and gene expression,
and to ultimately compare and correlate circRNA with gene and transcript expression levels. Thus,
CirComPara is an original method providing substantial improvement for a computationally efficient
integrative and comparative study of circular and linear transcriptome from RNA-seq experiments.

Supplementary Materials: The following are available online at www.mdpi.com/2311-553X/3/1/8/s1. File S1
is the result report HTML page obtained from the sample analysis presented in this work.
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